
A THREE-LEVEL APPROACH TO THE DESCRIPTION OF DATA STRUCTURES, AND NOTATIONAL FRR!EWORK

Bertrand Meyer
EDF, D i rec t ion des Etudes et Recherches

1 avenue du G~n#ral de Gaulle 92141Clamart FRANCE

! - The Three Levels

When talking about data structures, whether local
to a program or persistent over time, three diffe-
rent viewpoints are equally important. The first
one is that of the user, who is interested in the
external properties of a certain structure, more
precisely, its noticeable behavior in response to
outside effects (queries, requests for modifica-
tions, etc.). The second viewpoint is that of the
language designer, who is in search of a small
number of basic objects and building mechanisms
which will allow for the description of complex
objects in terms of simpler ones. The last view is
that of the implementor, who must find efficient
representations for the constructs thus described.

Based on this remark, a three-level description of
data structures has been used by the author in
previous work [6, 7, 8]. The three levels may be
called :

- f u n c t i o n a l ;
- c o ~ t r u U 6 i v e , o r
- p h y s i c a l .

l o g i c a l ;

The functional specification is an entirely
implicit characterization of the structure at
and by functions and properties of these
functions. This "algebraic approach", as des-
cribed by Liskov, Zilles, Guttag and others is
now classical.

The logical description, on the other hand, is
explicit : it provides a means to construct the
structure, or instances of it, starting with a
set of base objects and constructors. This
mechanism remains, however, representation-
independent, since the objects and constructors
are purely mathematical entities, not computer-
related elements. A logical description may thus
be considered as an abstract implementation.

Permission to copy without fee al l or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Comput ing Machinery. To copy
otherwise, or to republish, requires a fee a n d / o r specific permission.

© 1980 AC~ 0-89791-031-1/80/0600-0164 $00.75

Several suitable frameworks exist for expressing
such logical descriptions :

- Set theory, with constructors such as cartesian
product and disjoint union ; this is basically
Hoare's proposal in [3], and quite close to the
type construction mechanisms in Algol 68 or Pascal;

- Codd's relational model ;

- recursive functions, as suggested by McCarthy [5]
and more recently by Lehmann [4], also embodied in
Gedanken.

- a single base type (product of zero types) with
union and cartesian product as operators, and
recursive definitions, as in [2].

Lastly, physical representation is concerned with
the layout of objects in memory in accordance with
the descriptions at the previous levels. It is
only there that such concepts as flags, bytes,
words, addresses, offsets, and so forth, appear.

In this approach, it should be noted that several
functional specifications may be associated with
with the same logical description, corresponding
to various user views, protection levels, etc. ;
and that a given logical description may produce
many physical representations. This situation is
pictured on Figure I.

Func. Spec | F.S

Phys. R epr.

12 F Sm

--I/

1 P . R . 2 P . R . 3 P . R . n

Figure | : Levels of Representation

Although not identical, and developed for different
reasons, the three-level decomposition described
here has much in common with the notion of the
three "schemata" (external, conceptual, and inter-
nal) as used in Data Bases.

164

2 - Some notation

Several problems arise when trying to deal with
the preceding view of data structures. One is to
find a convenient notation at every level. Another
is to devise means to obtain the "logical" and
"physical" descriptions in a systematic way,
starting form the functional specification.

For both purposes, the Z specification language
[I] seems to be a useful tool. This formal
language, whose detailed description falls outside
the scope of this position paper, offers abstra-
ction facilities which help in the stepwise
description of data structures, and a framework
for expressing complementary approaches.

The basic structuring mechanism is the class. A Z
class describes some structure, e.g. a mathemati-
cal structure or an abstract data type, defined
by elements of one or more of the following kinds:

- p r i m a r y ~bute4, or components which must
be provided to build any instance of the class ;

p r e d i c a t e s , which must be satisfied by these
components ;

- derived ad6tcgbu;teda, which are also possessed by
any instance of the class, but are deducible from
the primary attributes.

In addition, most class definitions are generic,
i.e. relative to some formal set parameters.

As an example, a "group" structure on some set
X may be defined as a class having a generic
parameter representing X ; two primary attributes,
the internal operation and the neutral element ;
predicates representing the group conditions ;
and a derived attribute which is the inverse ope-
ration (minus). The definition in Z might look
like the following :

G~oup[X] ~.

c £ ~ s w i t h

Opf)~ : X * X + ,,.v ;

Z e r o : X ;
m i n u s : X * X ÷ X

w h e r e

a : o p e r c ASSOCIATIVE IX] ;
n : z e r o c NEUTRAL IX] (o p e r) ;
i : o p ¢ ¢ c INVERSIBLEEX] (z e r o)

d e f

m i m ~ ~ i n v e r s e (o p e r , z e r o)
e n d ;

All the attributes appear in the with clause,
which plays the rSle of a type declaration.
The de~ clause introduces the derived attributes.
Here we assume that A S S O C I A T I V E [X] , the set of
associative binary operators on X, as well as
NEUTRAL[X] , INVERSIBLE IX], i n v e r s e , are defined
elsewhere ; this is indeed done easily in Z (see
the "basic chapters" in [|]).

An important property of classes is the existence
of "derive/synthesize" relationships between

different class definitions. In particular, a pre-
viously defined class A can be used as a prefix
to a new class B which will inherit its attributes
and properties, much in the same way as in the
programming language SII~LA 67. The notation is
a slight refinement of the preceding one :

B ~

c l a ~ s A w £ t h

w h e r e

.

d e f

e n d

In the process of defining such subclasses, some
primary attributes may become derived (by being
included in the d~ clause at some lower level).
This is known as partial binding.

This mechanism is very useful for the top-down
description of complex systems or data structures.
In particular, it allows for a more systematic
description of abstract data types than the
ones which have been published, which contain much
repetition between slightly different structures.
This point is developed at length in [9].

Classes may also be combined in a bottom-up fashion
by union and join operations. However, the top-down
approach seems to be of particular interest for our
matter. The process of designing and describing a
data structure could be viewed as starting with the
construction of a class ; then refining into
subclasses, all this being at the "functional"
level and mostly implicit ; the part of Z which
is of use here is the "class sublanguage" which
has been sketched above.

Then at some point one must stop throwing in new
attributes, and freeze the functional design. The
problem of devising a compatible abstract
representation, or logical description, arises
then. This can be done entirely within the
framework of Z by using its more classical "set
sublanguage", which is essentially the language
of set theory (with sets, functions, relations etc.
as objects, and cartesian product, composition etc.
as operations) and has implicitly been used above.

It may be noted that once the functional specifi-
cation has thus been frozen, then in theory a
logical description may be obtained in a straight-
forward way by takingthe cartesian product of the
types Of the primary attributes in the correspon-
ding class definition, or rather a subset of it in
order to take the predicates into account. That is,
the logical description corresponding to

c & ~ s w i t h
p l : PI ; p2 : P2 ;
d l : DI ; d2 : D2 ; . . .

w h ~ e
p r e d (p l , p 2 , }

d l ~ . . . ; d2 ; . . . ; . . .
e n d

165

will be

s e t x for x : PI . P2 , where

pred (proj7 (x), proj2 (x))
end

proj l being the l-th projection.

3 - Conclusion

Two related points are developed in this position
paper : the need for a description of data
structures using three different levels, seen as
complementary rather than competitive ; and the
use of Z to serve as a vehicle for expressing such
descriptions. Z, which has been used much in the
same way to model the dual concept - programs -
[10] appears to be a powerful framework for expres-
sing and transforming formal specifications.

Bibliosraphy

[I] J.R. Abrial, S.A. Schuman, B. Meyer : Spe~fi-
cation Language ; Proc. Summer School on the
Construction of Programs, Belfast 1979 ; Cambridge
University Press, 1980. See also : J.R. Abrial,
The Spec i f i ca t ion Language Z : Syntax and "Seman-
£/CS" ; Internal report, Oxford University, Compu-
ting Laboratory, 1980.

[2] W. Burge : Recursive Programming Tech~ques ;
Addison-Wesley, 1976.

[3] C.A.R. Hoare : Notes on Data Structuring ; in
Structured Programming (Dahl, Dijkstra, Hoare),
Academic Press, 1972.

[4] D.J. Lehmann : 7.~odes in ALGOL Y ; University
of Southern California, 1977.

[5] J . ~ c C a r t h y : ~ a S ~ for a ~lathema~cal Theory
of Computation ; i n Comput~ Programming and Form~
Systems (Braffort and Hirschberg, Eds.) ; North-
Holland, 1963.

[6] B. Meyer et C. Baudoin : ~I~thodes de Program-
mation ; Eyrolles, Paris, 1978 (English translation
to appear).

[7] B. Meyer : Description des S t~uc tur~ de
Donn~es ; Bulletin de la Direction des Etudes et
Recherches EDF, s@rie C, 2, 1976, pages 81-90.

[8] B. Meyer : Types abs t ra i t s , S p ~ f i c a ~ i o ~ s
f o n c t i o n n ~ e s , e t D~composi~ion des Programmes ;
Journ~es SESORI sur la Synth~se, Hanipulation et
Transformation de Programmes, Saint-R@my de
Provence, 1978.

[9] B. Meyer : ~{~thode et Notation pour ~es Types
abstraits ; AFCET-GROPLAN, Lamoura, 1980.

[10] B. Meyer : A Bas7~ for the Constru~ve
Approach to Progr~ng ; IFIP World Computer
Congress, Tokyo, 6-9 October 1980 (to appear).

166

