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! - The Three Levels 

When talking about data structures, whether local 
to a program or persistent over time, three diffe- 
rent viewpoints are equally important. The first 
one is that of the user, who is interested in the 
external properties of a certain structure, more 
precisely, its noticeable behavior in response to 
outside effects (queries, requests for modifica- 
tions, etc.). The second viewpoint is that of the 
language designer, who is in search of a small 
number of basic objects and building mechanisms 
which will allow for the description of complex 
objects in terms of simpler ones. The last view is 
that of the implementor, who must find efficient 
representations for the constructs thus described. 

Based on this remark, a three-level description of 
data structures has been used by the author in 
previous work [6, 7, 8]. The three levels may be 
called : 

- f u n c t i o n a l  ; 
- c o ~ t r u U 6 i v e ,  o r  
- p h y s i c a l .  

l o g i c a l  ; 

The functional specification is an entirely 
implicit characterization of the structure at 
and by functions and properties of these 
functions. This "algebraic approach", as des- 
cribed by Liskov, Zilles, Guttag and others is 
now classical. 

The logical description, on the other hand, is 
explicit : it provides a means to construct the 
structure, or instances of it, starting with a 
set of base objects and constructors. This 
mechanism remains, however, representation- 
independent, since the objects and constructors 
are purely mathematical entities, not computer- 
related elements. A logical description may thus 
be considered as an abstract implementation. 
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Several suitable frameworks exist for expressing 
such logical descriptions : 

- Set theory, with constructors such as cartesian 
product and disjoint union ; this is basically 
Hoare's proposal in [3], and quite close to the 
type construction mechanisms in Algol 68 or Pascal; 

- Codd's relational model ; 

- recursive functions, as suggested by McCarthy [5] 
and more recently by Lehmann [4], also embodied in 
Gedanken. 

- a single base type (product of zero types) with 
union and cartesian product as operators, and 
recursive definitions, as in [2]. 

Lastly, physical representation is concerned with 
the layout of objects in memory in accordance with 
the descriptions at the previous levels. It is 
only there that such concepts as flags, bytes, 
words, addresses, offsets, and so forth, appear. 

In this approach, it should be noted that several 
functional specifications may be associated with 
with the same logical description, corresponding 
to various user views, protection levels, etc. ; 
and that a given logical description may produce 
many physical representations. This situation is 
pictured on Figure I. 
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Figure | : Levels of Representation 

Although not identical, and developed for different 
reasons, the three-level decomposition described 
here has much in common with the notion of the 
three "schemata" (external, conceptual, and inter- 
nal) as used in Data Bases. 
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2 - Some notation 

Several problems arise when trying to deal with 
the preceding view of data structures. One is to 
find a convenient notation at every level. Another 
is to devise means to obtain the "logical" and 
"physical" descriptions in a systematic way, 
starting form the functional specification. 

For both purposes, the Z specification language 
[I] seems to be a useful tool. This formal 
language, whose detailed description falls outside 
the scope of this position paper, offers abstra- 
ction facilities which help in the stepwise 
description of data structures, and a framework 
for expressing complementary approaches. 

The basic structuring mechanism is the class. A Z 
class describes some structure, e.g. a mathemati- 
cal structure or an abstract data type, defined 
by elements of one or more of the following kinds: 

- p r i m a r y  ~bute4, or components which must 
be provided to build any instance of the class ; 

p r e d i c a t e s ,  which must be satisfied by these 
components ; 

- derived ad6tcgbu;teda, which are also possessed by 
any instance of the class, but are deducible from 
the primary attributes. 

In addition, most class definitions are generic, 
i.e. relative to some formal set parameters. 

As an example, a "group" structure on some set 
X may be defined as a class having a generic 
parameter representing X ; two primary attributes, 
the internal operation and the neutral element ; 
predicates representing the group conditions ; 
and a derived attribute which is the inverse ope- 
ration (minus). The definition in Z might look 
like the following : 

G~oup[X]  ~.  

c £ ~ s  w i t h  

Opf)~ : X * X + ,,.v ; 

Z e r o  : X ; 
m i n u s  : X * X ÷ X 

w h e r e  

a : o p e r  c ASSOCIATIVE IX] ; 
n : z e r o  c NEUTRAL IX] ( o p e r )  ; 
i : o p ¢ ¢  c INVERSIBLEEX] ( z e r o )  

d e f  

m i m ~  ~ i n v e r s e  ( o p e r ,  z e r o )  
e n d  ; 

All the attributes appear in the with clause, 
which plays the rSle of a type declaration. 
The de~ clause introduces the derived attributes. 
Here we assume that A S S O C I A T I V E [ X ] ,  the set of 
associative binary operators on X, as well as 
NEUTRAL[X] , INVERSIBLE IX], i n v e r s e ,  are defined 
elsewhere ; this is indeed done easily in Z (see 
the "basic chapters" in [|] ). 

An important property of classes is the existence 
of "derive/synthesize" relationships between 

different class definitions. In particular, a pre- 
viously defined class A can be used as a prefix 
to a new class B which will inherit its attributes 
and properties, much in the same way as in the 
programming language SII~LA 67. The notation is 
a slight refinement of the preceding one : 

B ~ 

c l a ~ s  A w £ t h  

w h e r e  

. . . . .  

d e f  

e n d  

In the process of defining such subclasses, some 
primary attributes may become derived (by being 
included in the d~ clause at some lower level). 
This is known as partial binding. 

This mechanism is very useful for the top-down 
description of complex systems or data structures. 
In particular, it allows for a more systematic 
description of abstract data types than the 
ones which have been published, which contain much 
repetition between slightly different structures. 
This point is developed at length in [9]. 

Classes may also be combined in a bottom-up fashion 
by union and join operations. However, the top-down 
approach seems to be of particular interest for our 
matter. The process of designing and describing a 
data structure could be viewed as starting with the 
construction of a class ; then refining into 
subclasses, all this being at the "functional" 
level and mostly implicit ; the part of Z which 
is of use here is the "class sublanguage" which 
has been sketched above. 

Then at some point one must stop throwing in new 
attributes, and freeze the functional design. The 
problem of devising a compatible abstract 
representation, or logical description, arises 
then. This can be done entirely within the 
framework of Z by using its more classical "set 
sublanguage", which is essentially the language 
of set theory (with sets, functions, relations etc. 
as objects, and cartesian product, composition etc. 
as operations) and has implicitly been used above. 

It may be noted that once the functional specifi- 
cation has thus been frozen, then in theory a 
logical description may be obtained in a straight- 
forward way by takingthe cartesian product of the 
types Of the primary attributes in the correspon- 
ding class definition, or rather a subset of it in 
order to take the predicates into account. That is, 
the logical description corresponding to 

c & ~ s  w i t h  
p l  : PI ; p2 : P2 ; . . . . .  
d l  : DI ; d2 : D2 ; . . .  

w h ~ e  
p r e d  ( p l ,  p 2 ,  . . . . .  } 

d l  ~ . . .  ; d2 ; . . .  ; . . .  
e n d  
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will be 

s e t  x for x : PI . P2 , . . . . .  where 

pred (proj7 (x), proj2 (x) . . . . . .  ) 
end 

proj l  being the l-th projection. 

3 - Conclusion 

Two related points are developed in this position 
paper : the need for a description of data 
structures using three different levels, seen as 
complementary rather than competitive ; and the 
use of Z to serve as a vehicle for expressing such 
descriptions. Z, which has been used much in the 
same way to model the dual concept - programs - 
[10] appears to be a powerful framework for expres- 
sing and transforming formal specifications. 
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