On Formalism in Specifications—

Bertrand Meyer, University of California, Santa Barbara

A critique of a natural-language specification,
followed by presentation of a mathematical
alternative, demonstrates

the weakness of
natural language
and the strength
of formalism

in requirements
specifications.

1985 IEEE

6 0740-7459/85/0001 /0006501 .00 -

Speciﬁcatiotl is the software life-
cycle phase concerned with precise
definition of the tasks to be performed
by the system. Although software en-
gineering textbooks emphasize its ne-
cessity, the specification phase is often
overlooked in practice. Or, more pre-
cisely, it is confused with either the
preceding phase, definition of system
objectives, or the following phase, de-
sign. In the first case, considered here
in particular, a natural-language re-
quirements document is deemed suf-
ficient to proceed to system design—
without further specification activity.

This article emphasizes the draw-
backs of such an informal approach
and shows the usefulness of formal
specifications. To avoid possible mis-
understanding, however, let's clarily
one point at the outset: We in no way
advocate formal specifications as a
replacement for natural-language re-
quirements; rather, we view them as a
complement to natural-language de-
scriptions and, as will be illustrated by
an example, as an aid in improving the
quality of natural-language specifica-
tions.

Readers already convinced of the
benefits of formal specifications might
find in this article some useful argu-
ments to reinforce their viewpoint.
Readers not sharing this view will, we
hope, find some interesting ideas 1o
ponder.

The seven sins
of the specifier

The study of requirements docu-
ments, as they are routinely produced
in industry, vields recurring patterns of

IEEE SOFTWARE

deficiencies. Table 1 lists seven classes
of deficiencies that we have found to
be both common and particularly
damaging to the quality of require-
ments.

The classification is interesting for
two reasons. First, by showing the pit-
falls of natural-language requirements
documents, it gives some weight (o the
thesis that formal specifications are
needed as an intermediate step be-
tween requirements and design. Sec-
ond, since natural-language require-
ments are necessary whether or not
one accepts the thesis that they should
be complemented with formal specifi-
cations, it provides writers of such re-
quirements with a checklist of com-
mon mistakes. Writers of most kinds

of software documentation (user man-

uals, programming language manuals,
etc.) should find this list useful; we’ll
demonstrate its use through an exam-
ple that exhibits all the defects except
the last one.

A requirements document
The reader is invited to study, in
light of the previous list, some of the
software documentation available to
him. We could do the same here and
discuss actual requirements docu-
ments, taken from industrial software
projects, as we did in a previous ver-
sion of this article.! But such a discus-
sion is not entirely satisfactory; the
reader may feel that the examples cho-
sen are not representative. Also, one
sometimes hears the remark that noth-
ing is inherently wrong with natural-
language specifications. All one has to
do, the argument continues, is to be

January 1985

Specification

Table 1.

The seven sins of the specifier.

Noise:

Silence:

Overspecification:

Contradiction:

Ambiguity:

Forward reference:

Wishful thinking:

The presence in the text of an element that does not
carry information relevant to any feature of the
problem. Variams: redundancy; remorse.

The existence of a feature of the problem that is
not covered by any element of the text.

The presence in the text of an element that cor-
responds not to a feature of the problem but to
features of a possible solution.

The presence in the text of two or more elements
that define a feature of the system in an incompati-
ble way.

The presence in the text of an element that makes it
possible to interpret a feature of the problem in at
least two different ways.

The presence in the text of an element that uses
features of the problem not defined until later in
the text.

The presence in the text of an element that defines
a feature of the problem in such a way that a can-
didate solution cannot realistically be validated
with respect to this feature.

Formaljsm

careful when writing them or hire peo-
ple with good writing skills. Although
well-written requirements are obvious-
ly preferable to poorly written ones,
we doubt that they solve the problem.
In our view, natural-language descrip-
tions of any significant system, even
ones of good quality, exhibit deficien-
cies that make them unacceptable for
rigorous software development.

To support this view, we have cho-
sen a single example, which, although
openly academic in nature, is especial-
ly suitable because it was explicitly and
carefully designed to be a *‘good’’
natural-language specification. This
example is the specification of a well-
known text-processing problem. The
problem first appeared in a 1969 paper
by Peter Naur where it was described
as reproduced here in Figure 1.

Naur’s paper was on a method for
program construction and program
proving; thus, the problem statement
in Figure | was accompanied by a pro-
gram and by a proof that the program
indeed satisfied the requirements.

The problem appeared again in a
paper by Goodenough and Gerhart,
which had two successive versions.
Both versions included a criticism of
Naur’s original specification.

Goodenough and Gerhart’s work
was on program testing. To explain
why a paper on program testing in-
cluded a criticism of Naur’s text, it is
necessary (o review the methodologi-
cal dispute surrounding the very con-
cept of testing. Some researchers dis-
miss testing as a method for validating
software because a test can cover only
a fraction of significant cases. In the

8

words of E. W. Dijkstra,? ““Testing
can be a very effective way to show the
presence of bugs, but it is hopelessly
inadequate for showing their absence.”
Thus, in the view of such critics, tes-
ting is futile; the only acceptable way
to validate a program is to prove its
correctness mathematically.

Since Goodenough and Gerhart
were discussing test data selection
methods, they felt compelled to refute
this a priori objection to any research
on testing. They dealt with it by show-
ing significant errors in programs
whose ““proofs’” had been published.
Among the examples was Naur’s pro-
gram, in which they found seven er-
rors—some minor, some serious.

Goodenough and Gerhart
found seven errors—some
minor, some serious—in
Naur’s program.

Our purpose here is not to enter the
testing-versus-proving controversy.
The Naur-Goodenough/Gerhart prob-
lem is interesting, however, because it
exhibits in a particularly clear fashion
some of the difficulties associated with
natural-language specifications. Good-
enough and Gerhart mention that the
trouble with Naur's paper was partly
due to inadequaie specification; since
their paper proposed a replacement for
Naur’s program, they gave a corrected
specification. This specification was
prepared with particular care and was
changed as the paper was rewritten.

Apparently somebody criticized the
initial version, since the last version
contains the following footnote:

Making these specifications precise is
difficult and is an excellent example of
the specification task. The specifications
here should be compared with those in
our original paper.

Thus, when we examine the final
specification, it is only fair to consider
it not as an imperfect document writ-
ten under the schedule constraints
usually imposed on software projects
in industry, but as the second version
of a carefully thought-out text, de-
scribing what is really a toy problem,
unplagued by any of the numerous
special considerations that often ob-
scure real-life problems. If a natural-
language specification of a program-
ming problem has ever been written
with care, thisisit. Yet, as we shall see,
it is not without its own shadows.

Figure 2 (see p. 11) gives Good-
enough and Gerhart’s final specifi-
cation, which should be read carefully
at this point. For the remainder of this
article, numbers in parentheses—for
example, (21)—refer to lines of text as
numbered in Figure 2.

Analysis of the specification
The first thing one notices in look-
ing at Goodenough and Gerhart’s
specification is its length: about four
times that of Naur’s original by a sim-
ple character count. Clearly, the au-
thors went to great pains to leave noth-
ing out and to eliminate all ambiguity.
As we shall see, this overzealous effort
actually introduced problems. In any
case, such length seems inappropriate

IEEE SOFTWARE

Rococo interior with fashionable pair dancing;
engraving by Gravelot, 1770,

The Bettmann Archive

for specifying a problem that, after all,
looks fairly simple to the unprejudiced
observer.

Before embarking on a more de-
tailed analysis of this text, we should
emphasize that the aim of the game is
not to criticize this particular paper;
the official subject matter of Good-
enough and Gerhart's work was test-
ing, not specification, and the pre-
scription period has expired anyway.
We take the paper as an example be-
cause it provides a particularly com-
pact basis for the study of common
mistakes.

Noise. ‘‘Noise’’ elements are identi-
fied by solid underlines in Figure 2.
Noise is not necessarily a bad thing in
itself; in fact, it can play the same role
as comments in programs. Often, how-
ever, noise elements actually obscure
the text. When first encountering such
an element, the reader thinks it brings
new information, but upon closer ex-
amination, he realizes that the element
only repeats known information in
new terms. The reader must thus ask
himself nonessential questions, which
divert attention from the truly difficult
aspects of the problem.

Here, a fraction of a second is needed
torealize that a *‘nonempty sequence”’
of characters (8) is the same thing as
“‘one or more’’ characters (9). These
two expressions appear within a line of
each other; the authors’ aim was, pre-
sumably, to avoid a repetition. One is
indeed taught in elementary writing
courses that repetitions should be
avoided, and no doubt this is a good
rule as far as literary writing is con-

January 1985

Given a text consisting of words separated by BLANKS or by NL (new line)
characters, convert it to a line-by-line form in accordance with the following
rules:

(1) line breaks must be made only where the given text has BLANK or NL;

(2) each line is filled as far as possible, as long as

(3) no line will contain more than MAXPOS characters.

Figure 1. Naur's original statement of a well-known text-processing problem.

References on the Naur-Goodenough/Gerhart problem
Original reference, Naur;
Peter Naur, ““Programming by Action Clusters,”” BIT, Vol. 9, No. 3, 1969, pp.
250-258.
First version, Goodenough and Gerhart:

John B. Goodenough and Susan Gerhart, ““Towards a Theory of Test Data
Selection,™ Proc. Third Int'l Conf. Reliable Software, 1.0s Angeles, 1975, pD.
493-510. Also published in /EEE Trans. Software Engineering, Vol. SE-1, No. 2,
June 1975, pp. 156-173. '

Revised version, Goodenough and Gerhart:

John B. Goodenough and Susan Gerhart, *“Towards a Theory of Test: Data
Selection Criteria," in Current Trends in Programming Methodology, Vol. 2,
Raymond T. Yeh, ed., Prentice-Hall, Englewood Cliffs, N.J., 1977, pp. 44-79.

Another paper that uses the same problem as an example:

Glenford J. Myers, “A Controlled Experiment in Program Testing and Code
Walkthroughs/Inspections,” Comm. ACM, Vol. 21, No. 9, Sept. 1978, pp.
760-768.

Formalism

cerned. In a technical document, how-
ever, the rule to observe is exactly the
opposite—namely, the same concept
should always be denoted by the same
words, lest the reader be confused.

An interesting variant of noise is
remorse, a restriction to the descrip-
tion of a certain specification element
made not where the element is defined
but where it is used, as if the specifier
suddenly regretted his initial defini-
tion. An example here is ‘‘the output
text, if any”’ (20). Up to this point, the
specification freely used the notion of
output text (12,17); nowhere was there
any hint that such a text might not ex-
ist. If the reader wondered about this
problem, the specification did not pro-
vide an answer. Now, suddenly, when
the discussion is focusing on some-
thing else, the reader is ‘‘reminded”
that there might be no such thing as an
output text, but no precise criterion is
given as to when there is and when
there isn't.

Another instance of remorse is the
late definition of the ‘‘line” concepi
(24), to which we will return. We will
meet again the tendency to say too
much, which generates noise, as a
source of contradiction and ambiguity.

Silence. In spite of all his efforts, the
specifier often leaves, along with over-
documented elements, undefined fea-
tures. Commonly, these features are
fairly obvious to a community of ap-
plication specialists, who are close to
the initial customers, but they will be
more obscure to those outside this cir-
cle. An example is the concept of
“line,”’ which is not really defined ex-

10

cept in a parenthetical bit of remorse
toward the end of the text (24), where it
is described as a sequence of characters
“between successive NL characters.”
(By the way, are those characters part
of the line?)

An interesting point here is the cul-
tural background necessary to under-
stand this concept. In ASClI-oriented
environments, ‘‘New Line'’ is a char-
acter; thus, people working on ASCII
environments (DEC machines, for ex-
ample) will probably understand easily
the specification’s basic hypothesis
—namely, that NL is treated as an or-
dinary character upon input but trig-
gers a carriage return upon output.
These concepts are foreign, however,
to somebody working in an EBCDIC
environment, especially on IBM OS
systems, on which files are made up of
a sequence of “‘records’’ (correspond-
ing, for example, to lines), each made
up of a sequence of characters. A per-
son coming from such an environment
would not have written the above speci-
fication and will probably have trouble
understanding it.

Besides, the late definition of line is
plainly wrong. It applies only to lines
that are neither at the very beginning
nor at the very end of the text. In both
these cases, a line is not ‘‘between suc-
cessive NL characters’ but between
the beginning of the file and an NL, or
between an NL and the end of the
file—that is, between an NL and an
ET. If we accept the authors’ defini-
tion, the first and last lines of the out-
put may be of arbitrary length; in fact,
an output containing no NL at allis ac-
ceptable regardless of its length, since

it does not have lines according to the
definition given! This is obviously ab-
surd and not what the authors had in
mind, but the use of natural language
leads naturally to such slips of the pen.

Another interesting silence concerns
the variable Alarm. Line 16 specifies
that this variable should be set to
TRUE in case of an error, but nothing
is said about what happens to it in
other cases. The answer is obvious, of
course; but the matter can only be
brushed aside as minor by program-
mers who have never run into a bug
due to an uninitialized variable. . .

It must be pointed out that Good-
enough and Gerhart corrected a nota-
ble silence in Naur’s original descrip-
tion. Naur’s text does not explain what
should be done with consecutive groups
of more than one break character; this
is one of the seven errors analyzed in
Goodenough and Gerhart’s paper.
Their specification corrects it by re-
quiring that such groups be reduced to
a single break character in the output.
Although something had to be done
about the problem, note that this solu-
tion is, to some extent, obtained at the
expense of simplicity. Eliminating re-
dundant break characters and dividing
atext into lines are two unrelated prob-
lems; merging them into a single specifi-
cation complicates the whole affair.

It is probably better to deal with
these two requirements separately, and
this is what we do in the formal
specification given below. Some of the
current trends in programming meth-
odology emphasize this approach—
most notably under the influence of
the Unix programming environment,

|IEEE SOFTWARE

Ball at the home of a German baron;
engraving circa 1750.

The Bettmann Archive

which, at least in principle, favors
tools that are simple and composable
rather than large and multipurpose.

Contradictions. There is another
problem with the concept of line.
Given a type ¢, one should distinguish
between the types seq[s], whose ele-
ments are finite sequences of objects of
type ¢, and seq [seq [7]], whose ele-
ments are sequences of sequences of
objects of type ¢. Such a confusion can
be found in Figure 2, where we are first
told (1) that the input is a “‘stream,’’ or
sequence, of characters and later (10)
that it *‘can be viewed"’ as a sequence
of words and breaks. As any Lisp pro-
grammer knows, the sequences

<abacca>
[sequence of objects]

and

<<a> <ba> <cca>>
[sequence of sequences of objects]

are not the same. Note that the same
problem with respect to the output is
redeemed only by ambiguity; the type
of the output is not clear:

® [s it seq [CHAR)] as (21-22) seems

to imply?

® Is it seq [WORD]—that is, seq

[seq [CHAR]]—as (12-13) in-
dicates?

® Oris it even seq [LINE] —that is,

seq[seq[seq|CHAR]]]|—if we con-
sider a line as a sequence of words
and breaks?

Thus, a sentence that at first appears
to be only noise (9-11) yields a con-
tradiction within a few lines (13-14):
“The program’s output should be the
same sequence of words as in the in-

January 1985

The program’s input is acstream of characters whose end is
signaled with a special end-of-text character, ET. There is exactly
one ET character in each input stream. Characters are classified

as

1
2
3
4
5 * break characters—BL (blank) and NL (new line);
6 * nonbreak characters—all others except ET;
7 * the end-of-text indicator—ET.
8 A word is a nonempty sequence of nonbreak characters. A
9 break is a sequence of one or more break characters. Thus, the
10 input can be viewed as a'sequence of words Separated by breaks,
11 with possibly leading and trailing breaks; and ending with ET.
12 The program's output should be the same: s’éﬁuénce of words
13 as in the input, with the exception that an ovérsize word (i.e., a
14 word containing more than MAXPOS characters, where MAXPOS
15 is a positive integer) should cause-an error exit from the program
16 (i.e., a variable, Alarm, should have the value TRUE), 'Up to the
17 point of an error; the program'’s output should have the following
18 properties:

19 1. A new line should start only between words and at the be-
20 ginning of the output text, if any.

21 2. A break in the input is reduced to a single break character in
22 in the output.

23 3. As many words as possible should be placed on each line
24 (i.e., between successive NL characters).

25 4. No line may contain more than MAXPOS characters (words
26 and BLs).

Figure 2. Goodenough and Gerhart’s final specification of the original prob-
lem statement in Figure 1. Analysis of this text, overprinted in blue, is accord-
ing to the following key:

Noise Ambiguity
Remorse Overspecification
Contradiction Forward reference

11

Formalism

put.”” This last comment is remarkable
since neither the input nor the output
is a sequence of words. Worse yet,
even if we parse the input into a se-
quence of words, this sequence is not
sufficient to determine the output—
one also needs two binary informa-
tions: whether thereis a leading and/or
a trailing break.

The same sentence (9-11), in its
overzealous effort to leave no stone
unturned, ends up introducing another
contradiction. An unbiased reader
would be puzzled. How can the input
“end with [the character] ET"’ (11)
and at the same time have a “‘trailing
break” (11)? *‘Trailing,” precisely,
means ‘‘at the end’’! What's the last
character if there is a *‘trailing’” break:
ET or a break character?

A more experienced reader, such as
a programmer, will have no difficulty
resolving this contradiction; his experi-
ence will tell him that *‘end’’ markers
follow “‘trailing”” characters. But this
reliance on intuition and knowledge of
the application domain can be par-
ticularly damaging when transposed to
large requirements documents, which
will be handed down to a group of
system designers and implementors of
diverse backgrounds and abilities.

Overspecification. Overspecifica-
tion in requirements can be annoyingly
close to silence. The reader is told too
much about the solution while he is
desperately trying to grasp the problem
and figure out—Dby himself—features
not covered by the text. Overspecifica-
tion is typically, although certainly not
exclusively, found in requirements

12

documents written by programmers.
Psychologically, this is understand-
able. Animplementation-level concept
is good, concrete, technical stuff,
whereas true requirements deal with
much less tangible material. To a com-
puter specialist, a stack is easier to
visualize than, say, the flow of infor-
mation in a company or the needs of a
radar operator. Thus, many specifiers
have a natural tendency to cling to pro-
gramming concepts. There is a price to
pay for this: Implementation decisions
taken too early may turn out to be
wrong, and important problem fea-
tures can be overlooked.

The example text contains an over-
specification right from the first
sentence: the notion of the end-of-text
character ET. The only reason for the
presence of this notion is Goodenough
and Gerhart's desire to correct Naur’s
original program. Input-output facili-
ties of the version of Algol 60 used by
Naur (and, for fairness, by Good-
enough and Gerhart) do not provide
for end-of-file detection when reading,
so one must assume the presence of a
special character at the end of the file
to make up for this deficiency. But ET
is an implementation detail and should
not be included in an abstract specifi-
cation. Conceptually, the input is a fi-
nite sequence of characters; it should
be transformed into an output that is a
sequence of lines or, depending on the
interpretation chosen, a sequence of
characters. It is a programmer’s vice 10
insist that finite sequences be specially
marked at the end.

Why does the ET character receive
such emphasis in Goodenough and

Gerhart’s specification? The reason is
one of the errors in Naur’s original
program, which would go into an in-
finite loop unless the input was incor-
rect (that is, contained an oversize
word). Upon closer examination, how-
ever, a case can be made for Naur’s
solution (without the other errors, of
course). It is not so unrealistic to con-
sider the required program as a poten-
tially infinite process, which takes
characters as input and produces lines
as output, working somewhat like a
device handler (for instance one that
drives a printer) in an operating sys-
tem. Such an interpretation should, of
course, be clearly described in the
specification, which was not the case
with Naur’s text. That decision would
be less arbitrary than the one taken by
Goodenough and Gerhart: their inclu-
sion of ET changes the data structure
at the specification level to accom-
modate the programming language
used at the implementation stage.
The unacceptability of the change is
further evidenced by the fact that the
output does not satisfy the require-
ment on the input. Is it realistic to ex-
pect an existing file to be terminated by
an explicit marker? If it is, the output
produced by the program should satis-
fy that condition; however, examina-
tion of the specification, which is not
completely clear on this matter, and,
as a final criterion, of the proposed
program, shows that ET will not be
passed on to the output file. Assume
that we want to write another pro-
gram, for, say, right-justifying the
text, that will take Goodenough and
Gerhart’s output (in “‘pipe”” mode a la

IEEE SOFTWARE

Dancing the minuet In the open air,
copper engraving by Charles Eisen.

The Bettmann Archive

%

Unix). In designing that program, we
will not be able to make the same
assumption on its input. Thus, the
overspecification has opened the way
to serious inconsistencies.

Another overspecification in the
text is the concept of *‘error exit™’ (16),
which causes a ‘‘variable,”” Alarm, to
have the value TRUE. Clearly, the no-
tion of a variable belongs to the world
of programs, not specifications. This
piece of overspecification would have
been less shocking if the problem had
been defined as the task of writing a
procedure, with Alarm as one of its
parameters, or as one of the “‘excep-
tions’* (in the sense of Clu or Ada) it
might raise. A variable is internal to
the program unit to which it belongs,
whereas the specification of a param-
eter or an exception can be given rela-
tive to the environment of that unit.

The problem of the Alarm variable
is less innocuous than it seems. One
reason for shock at meeting the refer-
ence to this variable in a sequential
reading of the text is that the definition
of the error case (the one in which there
is an oversize word) looks like over-
specification until one sees the /ast sen-
tence (25-26), 10 lines down, which
gives the basic line-size constraint,
MAXPOS. The world is really stand-
ing upside down here. Clearly, the
constraint on word size is a conse-
quence of the constraint on line size,
and the definition of the error case
cannot be understood until the latter
constraint has been introduced.

We see here one of the major defi-
ciencies plaguing requirements docu-
ments of more significant size: early

January 1985

Figure 3. Output requirement (MAXPOS = 10).

inclusion of detailed descriptions of er-
ror handling, interwoven with descrip-
tions of normal cases, which are usual-
ly much simpler. Here the matter is
even worse; error processing is de-
scribed before the reader has had a
chance to recognize the problem—that
is, before gaining an understanding of
normal processing. Failure to clearly
separate normal cases from erroneous
ones makes the document much harder
to understand.

Mathematically, a program that
performs an input-to-output transfor-
mation often corresponds to the im-
plementation of a partial function,
which is not defined for some argu-
ments of the input domain. Error pro-

cessing then consists in ‘‘completing’’
the function with alternate results,
such as error messages, for those
arguments. This completion should
not be confused with the definition of
the function in its normal cases. Here,
as we'll see later in a formal specifica-
tion, failure to accommodate words
larger than MAXPOS is a conse-
quence of the requirements for normal
processing, which can be proved, as a
theorem, from the definition of the
function.

Ambiguities. Error processing raises
an ambiguity in the example text (Fig-
ure 3). The requirement that the out-
put text satisfy properties 1 to4 “‘up to

13

Formalism

the point of an error’ is susceptible to
at least two interpretations.

The text says that up to (and pre-
sumably including) the point of the er-
ror, the program’s output should cor-
respond to the input. But where is the
“‘point of the error’’ in Figure 37 Is it
[line 4, column 10], last acceptable let-
ter, or [3, 7], end of the last acceptable
word? Nothing in the text allows the
reader to decide between these two in-
terpretations.

Another interesting ambiguity is
connected with the basic constraint on
acceptable solutions (23): **As many
words as possible should be placed on
each line.”” If we have, say, MAXPOS
= [0 and the input text

WHO WHAT WHEN

there are two equally correct two-line
solutions (WHAT may be on either the
first or second line). This ambiguity
may be acceptable since neither solu-
tion appears superior to the other; the
specification as such is nondeter-
ministic. We suspect (perhaps wrong-
ly) that this nondeterminism was not
intentional and that there was an im-
plicit overspecification in the authors’
minds: they considered it obvious that
the input would be processed sequen-
tially, so any ambiguity, as in the ex-
ample above, would be solved by plac-
ing as many words as possible on the
earlier line (giving line WHO WHAT
followed by line WHEN), In this inter-
pretation, property 3 (23-24) actually
means, ‘‘As many words as possible
should be placed on each line as it is
encountered in the sequential con-
struction of the output.”’ 1f this is the

14

case, the specification should state it
precisely.

Another potential source of am-
biguity is the use of imprecise or poorly
defined terms—for example, the use
of “‘stream’’ (1) rather than the more
standard ‘‘sequence.”” The expression
“error exit’ (15), stemming from the
overspecification seen above, is am-
biguous, and the reader is not com-
forted by the explanation that follows
it (*‘i.e., a variable, Alarm, should
have the value TRUE"); the notion of
assigning a value to a variable does not
by itself imply the idea of an “‘exit,"”
which also means that the program
stops in some fashion. We have seen
that the concept of ““line” is not well
defined (24). Also note that the expres-
sion “‘new line” is to be parsed as a
single entity (the new /ine character) in
its first appearance (5) and as separate
words (“*a new fine should start. . .”")
in its second (19).

Forward references. In a require-
ments document, not all forward
references are bad. Some, corre-
sponding to a top-down presentation
of the concepts (‘‘the notion of . . .
will be studied in detail in sec-
tion . . .""), might even be considered
good practice, provided there are not
too many. But implicit forward refer-
ences (that is, uses of a concept that
come before the proper definition of
the concept, without particular warn-
ing to the reader) can present much
more of a problem. They make a docu-
ment extremely hard to read, especial-
ly in the absence of the technical ap-
paratus (index, glossary, etc.) that

should be a part of all requirements
specifications and other software
documents.

Here, of course, the text is very
short, so the annoyance caused by
forward references is nowhere near
what it can be with full-size docu-
ments. Note, however, that ET is used
three times (2, 3, 6) before it is defined
(7), that the notion of line, defined not
quite satisfactorily (24), has been used
earlier (19-20), and that MAXPOS is
used just before its definition (14).

So what? In dissecting Goodenough
and Gerhart’s specification, we iden-
tified a significant number of prob-
lems in a text that may seem innocuous
to a superficial observer. Not all the
problems were equally serious, and the
reader may have felt that we were a bit
pedantic at times. We submit, how-
ever, that one must be pedantic in deal-
ing with such matters. Inconsistencies,
ambiguities, and the like may not war-
rant the gallows when the problem is to
split up a sequence of characters into
lines. But keep in mind how the above
defects transpose to more serious mat-
ters—a nuclear reactor control system,
a missile guidance system, or even just
a payroll program. The computer that
executes the code resulting from a faul-
ty specification is more pedantic than
any human referee could ever be,

Thus, we should consider Good-
enough and Gerhart’s specification
not only as an object of study in itself
but also, and more importantly, as a
miicrocosm for conveniently observing
deficiencies typical of more mean-
ingful requirements documents. Al-

IEEE SOFTWARE

Two people doing the minuet;
copper engraving by Nilsson.

The Bettmann Archive

though the text was written with great
care, we have witnessed how the au-
thors, who started out to improve
upon Naur’s terse but simple text,
sentence after sentence became a little
more entangled in their own rosary of
caveats. This says a lot about why in-
terminable manuals occupy so much
shelf space in programmers’ offices
and computer rooms.

In our opinion, the situation can be
significantly improved by a reasoned
use of more formal specifications. But
again, let’s emphasize that such speci-
fications are a complement (o natural
language documents, not a replace-
ment. In fact, we’ll show how a detour
through formal specification may
eventually lead to a better English de-
scription, This and other benefits of
formal approaches more than com-
pensate for the effort needed to write
and understand methematical nota-
tions.

We will now introduce such nota-
tions, which will allow us to give a for-
mal specification of the Naur-Good-
enough/Gerhart problem.

Elements for a
formal specification

Many formal specification lan-
guages have been designed in recent
years (see box). Choosing one of these
languages would force the reader to
learn its particular notation and would
obscure the essential fact—namely,
that their underlying concepts are, for
the most part, well-known mathemat-
ical notions like sets, functions, rela-
tions, and sequences. We thus prefer
to use a more-or-less standard mathe-

January 1985

matical notation. The style of exposi-
tion will be similar to that found in
mathematical texts; translation to a
specific formal specification language
should not be hard, provided the lan-
guage supports the relevant concepts.

Overview. Perhaps the only difficult
part of the Naur-Goodenough/Ger-
hart problem is that the processing to
be performed on the text involves three
aspects: reducing breaks to a single
break character, making sure no line
has more than MAXPOS characters,
and filling lines as much as possible. If
these three requirements are sepa-
rated, things become much simpler.
Consequently, we will define the prob-
lem formally by considering two sim-
ple binary relations, called shorr_

breaks and limited_length, and a
function called FEWEST _LINES.
(Throughout the discussion of the for-
mal specification, the reader may wish
to refer to Figure 4 for a picture of the
overall structure of the relations and
functions involved.)

Relation short_breaks holds be-
tween two sequences of characters a
and b if and only if b is identical to a,
except that breaks in a (i.e., successive
break characters) have been reduced to
single break characters in b.

Relation limited_length holds be-
tween two sequences of characters b
and ¢ if and only if ¢ is a “‘limited
length version™ of b: that is, no line in
¢ has length greater than MAXPOS,
and cis identical to b except that some
blanks may have been replaced with

15

Formalism

new lines and/or some new lines with
blanks.

By applying these two relations suc-
cessively, we associate with any se-
quence of characters a all sequences of
characters that are **made of the same
words,”” separated only by single
breaks, and fit on lines no longer than
MAXPOS. Given such a set of se-
quences, say, SSC, then FEWEST _
LINES (SSC) is the subset of SSC
containing those sequences that con-
sist of a minimum number of lines and
thus are acceptable outputs for the

program.

16

We'll now define these notions for-
mally, but a few simple conventions
are needed first.

Basic form of the specification. As a
general convention, we use uppercase
for sets and for functions whose results
are sets and lowercase for other func-
tions, elements of sets (except for
MAXPOS, which we write in upper-
case as in the original specification),
sequences, and relations.

The program to be written is the im-
plementation of a function

sol: INPUT — OUTPUT

where INPUT and OUTPUT are the
sets of possible inputs and outputs,
which we will describe below as sets of
sequences. Function so/ must satisfy
certain constraints, which it is the role
of the specification to express.

As noted above, there may be more
than one correct output for a given in-
put; in other words, a truly general
specification of the problem should be
nondeterministic. We will represent
this fact by defining a binary relation
between sets INPUT and OUTPUT.
We call goal this binary relation; then a
function sof will be a correct solution if
and only if the following two condi-
tions are satisfied (readers who are not
so sure about functions and relations
are referred to the refresher in the ad-
jacent box):

* function sol is defined wherever
relation goal is defined—that is,
sol (i) exists for any 7 in the do-
main of goal,

¢ for any i for which goal is defined,
then sol (i) yields a **solution”’ to
goal—that is, goal (i, sol (i))
holds.

This definition is expressed in math-

ematical notation by writing that solis
an acceptable function if and only if

vi € dom (goal),
i € dom(sol) and goal (i, sol (i))

where dom (sol) is the domain of
function sel/. Note that there may be
some inputs for which there is no ac-
ceptable solution (those not in the do-
main of goal), so sol may be a partial
function. Also, in more concise nota-
tion, the above property can simply be

IEEE SOFTWARE

Le Bal Paré: Typical Louis XVI
court scene of the 18th century.

The Bettmann Archive

expressed by writing that the domain
of sol is at least as large as the domain
of goal, and that so/is included in goal/
(both being defined as sets of pairs):

dom (goal) C dom (sol)
and sol C goal

This way of presenting a specifica-
tion is of very general applicability for
programs performing input-to-output
transformations. Such a program may
be viewed as the implementation of a
certain function (so/) which must en-
sure that a certain relation (goal) is
satisfied between ils argument and its
result; in mathematical terms, the
function is included in (is a subset of)
the relation. To specify the problem is
to define the relation; to construct the
program is to find an implementable
function so/ satisfying the above con-
ditions. 3

Characters and sequences. The
principal set of interest in our problem
is the set of characters, which we de-
note by CHAR. The only property of
CHAR that matters here is that
CHAR contains two elements of par-
ticular interest, blank and new_line.
We call BREAK _CHAR the subset of
CHAR consisting of these two ele-
ments:

BREAK CHAR = |blank, new_line|

The basic concept in this problem is
that of sequence. If X is a set, we
denote by seq [X] the set whose ele-
ments are finite sequences of elements
of X. Such a sequence is written, for
example, as

<o b,gcclds>

January 1985

fr O\ limited_length () FEWEST_LINES

[v®~)_ TRIMMED(F) _

vy —

L]

> ® =5

»> >0
/le

A]

short__breaks (r)
COMPACTED (F)

o
< (acceptable
tr(r) outputs)

e PR A NS FF) J

L goal—!
Figure 4. Overall structure of the specification: (r) indicates a relation, (F) a
function.

Basic set and logic notations

The definitions marked (*) introduce predicates, that is, expressions
which may have value “‘true”” or *‘false.”

la, b, ¢, ...): the set made up of elements @, b, ¢, . . .

X€A: x is an element of A(*).

X€A: xis not an element of A (*).

A C B: A is a subset of B (all elements of A are elements of B) (*).

|x€A | P(x)}: The (possibly empty) subset of A made up of those
elements x which satisfy property P.

vx€eA, P(x): All elements x of A, if any, satisfy property P (or: no ele-
ment of A violates P); holds in particular whenever A4 is empty (*).

axeA, P(x): There s at least one element xin A which satisfies property P;
may only hold if A is nonempty (*).

a=b: a implies b.

a..b: the integer interval containing all the integers i such thata<i<b;
emply if @>b. This notation is borrowed from Pascal.

The symbol = means ““is defined as.”

Formalism

and has a length that is a nonnegative
integer; thus, lengthis a function from
seq [X] to the set of natural numbers.
Elements are numbered starting at 1;
the i-th element of a sequence s (for
| =i=<length(s)) is written s(/). A
subsequence of s is a sequence made of
zero or more of the elements of s, in
the same order as in s; for example, if s
is the above sequence, then some of its
subsequences are

<a, b, c, d>
<D, 0>

On the other hand, <b, d, c> isnota
subsequence of s because the original
order of its elements in s is not pre-
served,

The set of subsequences of s will be
written SUBSEQUENCES (s).

The concept of sequences is well
known, and we rely on the reader’s
understanding here. A formal defini-
tion of sequences and of the above no-
tions is given in the box on the adjacent

page.

Minima and maxima. If X is a set,
and fis a function from X to the set of
natural numbers,

MIN_SET (X,)
denotes the subset of X consisting of
the elements for which the value of f
is minimum. For example, if X is the
following set, containing four se-
quences
X=|<acba>, <a b>,
<b a.b>, <c >

and f is the length function on se-
quences, then MIN_SET (X, f) will
be the set consisting of the shortest of

18

these sequences, namely, the second
and last.

In the same fashion, we denote by
MAX_SET (X, f)

the subset of X consisting of the ele-
ments for which the value of fis max-
imum; thus, in the above case, MAX _
SET (X, f) istheset | <a, ¢, b, a> |,
containing just one sequence.

MAX_SET, however, is not always
defined; we have to be careful to apply
it only to sets X which are finite; other-
wise, there might be no maximum
value for f. Note that the results of
MIN_SET and MAX_SET are a
subset of X rather than a single ele-
ment, since there may be more than
one element with minimum or max-
imum f value. These subsets are non-
empty if and only if X is nonempty.

We will also need a way to denote
the minimum and maximum elements
of a set of natural numbers SN. They
will be written, in the usual fashion,
min (SN) and max (SN). Thus, if SN
is the set

SN = (341, 7, 3, 654]

then min (SN) is 3 and max (SN) is
654. Note that min and max, contrary
to MIN_SET and MAX_SET, yield a
natural number, not a set. Also in con-
strast to MIN_SET and MAX_SET,
which are defined for empty sets (they
yield an empty result), both min and
max are defined only if the set SN is
not empty; max further requires that
SN be finite. It is essential to check for
these conditions whenever using these
functions.

Input and output sets. In the prob-
lem at hand, the input is a sequence of
characters; we choose to describe the
output as a sequence of characters as
well, Thus, we define the two sets:

INPUT = seq [CHAR]
OUTPUT = seq [CHAR]

Note that, as mentioned above,
another interpretation could have
defined the set of possible outputs as
seq [LINE], with LINE itself being
defined as seq [CHAR] (or possibly
seq [WORD] with WORD = seq
[CHAR], plus information on leading
and trailing breaks).

We will now define the relations
short_breaks and limited_length and
the function FEWEST _LINES.

The formal specification

Short breaks. Let @ be a sequence
of characters. We define SINGLE_
BREAKS (a) as the set of subse-
quences of a such that no two con-
secutive characters are break charac-
ters:

SINGLE BREAKS (a) =
|s € SUBSEQUENCE (a) |
vi € 2..length (5),
s(i—1) € BREAK CHAR
= 5(i) ¢ BREAK CHAR)

Note that we use the Pascal notation,
a. .b, to denote the (possibly empty)
set of integers i such that a<i<b,

Next, we define COMPACTED (a)
as the subset of SINGLE _BREAKS (a)
containing those sequences of maxi-
mum length:

COMPACTED (a) = MAX_SET
(SINGLE_BREAKS (a), length)

|IEEE SOFTWARE

As stated above, MAX_SET (X, f)
may be be undefined if X is an infinite
set. This cannot occur here, however,
since SINGLE BREAKS (a) is a
subset of SUBSEQUENCES (a)
which, for any sequence of characters
a, is finite.

Note that any sequence b in COM-
PACTED (a) must have retained
from a all nonbreak characters (if such
a character had been omitted, it could
be inserted into b and yield a longer
clement of SINGLE BREAKS (a)),
and has a single break character where
a had one or more consecutive break
characters.

Thus, the relation short_breaks (a,
b), which holds between @ and bif and
only if @and b are made of the same se-
quences of words and breaks but the
breaks in b consist of a single break
character, can be expressed simply by

short_breaks (a, b) =
b € COMPACTED (a)

Limited length. The relation /lim-
ited_length (b, c¢) holds between se-
quences b and ¢ if and only if

* cis the same sequence as b, except

that it may have a new_line wher-
ever b has a blank, or conversely;
and

* the maximum line length of ¢,

defined as the maximum number
of consecutive characters none of
which is a new_line, is less than or
equal to MAXPOS.
- This is expressed more precisely as
follows:
limited_length (b, ¢) =
¢ € TRIMMED (b)

January 1985

19

Formalism

where

TRIMMED (b) =
[s € EQUIVALENT (b) |
max_line_length (s) = MAXPOS |

EQUIVALENT (b) =
fs € seqCHAR] |
length (s) = length (b) and
(vié€l. . length (b),
s(i) # b(i) =
5(i/) € BREAK_CHAR and
b(i) € BREAK_CHAR) |

max_line_length (s) =
max (|j—il
O<i<j=<length (s) and
(Vkei+l. ./,
s(k) # new_line) |)

A few explanations may help in
understanding these definitions. If s is
a sequence of characters, max_line_
length (s) is the maximum length of a
line in s, expressed as the maximum
number of consecutive characters,
none of which is a new line. In other
words, it is the maximum value of j—1{
such that s(k) is not a new line for any
kin the interval i+ 1.. /. (We will have
more to say about this definition
below.) EQUIVALENT (b) is the set
of sequences that are ‘‘equivalent” to
sequence b in the sense of being iden-
tical to b, except that new_line charac-
ters may be substituted for blank
characters or vice versa. Finally,
TRIMMED (b) is the set of sequences
which are *‘equivalent” to b and have
a maximum line length less than or
equal to MAXPOS.

Fewest lines. Let SSC be a set of se-
quences of characters. These se-

20

quences can be interpreted as con-
sisting of lines separated by new_/line
characters. We define the set FEW-
EST _LINES (SSC) as the subset of
SSC consisting of those sequences that
have as few lines as possible:

FEWEST _LINES (SSC) =
MIN_SET (SSC,
number_of _new_lines)

where the function number_of new._
lines is defined by:

number_of _new_lines (5s) =
card ([i € 1..length (5) |
s(i) = new_line|)

and card (X)), defined for any finite
set X, is the number of elements (car-
dinal) of X.

The basic relation. The above defi-
nitions allow us to define the basic re-
lation of the problem, relation goal,
precisely. Relation goal (i,0) holds be-
tween input / and output o, both of
which are sequences of characters, if
and only if

0 € FEWEST_LINES (TRANSF (i))

TRANSF (i) is the set of sequences
related to 7 by the composition of the
two relations short_breaks and lim-
ited_length:

TRANSF (i) = |s € seq [CHAR)] |

ir(is))

with

tr = limited_length e short_breaks

The dot operator denotes the composi-
tion of relations (see box). A look at

Figure 4 may help explain the role of
the various functions and relations in
the above specification.

Existence of solutions. Once we
have a formal specification, what can
we do with it? Relying on the specifica-
tion as a basis for the next stages of the
software life cycle—program design
and implementation (e.g., translating
vs into loops) is the most obvious use.
However, we'd like to emphasize two
others. One use, studied in the next
section, is as a starting point for better
natural-language requirements. The
other, to which we now turn, is query-
ing the specification to learn as much
as possible about properties of the
problem and valid solutions,

What can the given specification
teach us about the Naur-Goodenough
/Gerhart problem and its solution?
First, let’s determine when solutions
do exist. It is trivial to prove that, given
a sequence of characters @, there is
always at least one sequence b such
that relation short_breaks (a, D)
holds. Given b, however, the necessary
and sufficient condition for the ex-
istence of at least one sequence ¢ such
that limited_length (b, c) holds is that
b contains no word (i.e., contiguous
subsequence of non-break characters)
of length greater than MAXPOS. This
follows from the definitions of
TRIMMED and max_line_length used
in the definition of limited length.
Thus, the domain of definition of the
relation fr, which is also the domain of
the function TRANSF and thus of the
relation goal, is the set of input texts
containing no word longer than MAX-

IEEE SOFTWARE

“The Compleat Figure of the Minuet,"

an engraving from George Bickhams's
An Easy Introduction to Dancing,

shows the basic spatial shapes

used in the minuet; 1738

From the library of Christena L. Schiundt,
University of California, Riverside

POS. This can be formulated as a
theorem:

dom (goal) =
{s € seq [CHAR] |
vi € 1..length(s) —MAXPOS,
3j€i .i+MAXPOS,
5(j) € BREAK_CHAR)|

The property expressed by this
theorem is that the domain of relation
goal consists of sequences such that, if
a character cis followed by MAXPOS
other characters, at least one character
among ¢ and the other characters must
be a break.

An important problem, not ad-
dressed here, is how the specification
deals with erroneous cases—that is,
with inputs not in the domain of the
goal relation—like sequences with
oversize words. Clearly, a robust and
complete specification should include
(along with goal) another relation, say,
exceptional_goal, whose domain is /V-
PUT—dom (goal) (set difference);
this relation would complement goal
by defining alternative results (usually
some kind of error message) for er-
roneous inputs. Formal specification
of erroneous cases falls beyond the
scope of this article, but a discussion of
the problem and precise definitions of
terms such as *‘error,”” **failure,”” and
“exception’’ can be found in a paper
by Cristian.*

Discussion. What we have obtained
is an abstract specification—this is, a
mathematical description of the prob-
lem. It would be difficult to criticize
this specification as being oriented
toward a particular implementation: if

January 1985

omposition of relations

Let rand ¢ be two relations; ris
from Xto Yand 7is from Y10 Z
(see figure). |

The composition of these two
relations, written fer (note the
order), is the relation w between
sets X and Z such that w (x, 2)
holds if and only if there is (at
least) one element yin ¥ such that
both 7 (x, y) and ¢ (x, ¥) hold.

Thus, in the example illus-
trated, w holds for the pairs <.,
7>, <x, 2>, and <xg, ;>
(and for these pairs only).

W=lar

21

Formalism

followed to the letter, the specification
would lead to a program that (as illus-
trated in Figure 4) would first generate
all possible distributions of the input
over lines of length less than or equal
to MAXPOS and then search the re-
sulting list for solutions with minimum
number of new_line characters—nol a
very efficient implementation!

An element that does seem to point
toward a particular implementation
technique is the composition of rela-
tions short_breaks and limited _length,
which seems to imply a two-step pro-
cess (first remove break characters,
then cut into lines). A first design
could indeed use a two-step solution.
The steps could then be merged using
coroutine-like concepts, such as the
Unix notion of pipe or the “‘program
inversion' idea of Jackson's program
design method.

We chose to model the problem’s

object and operations with very simple.

mathematical notions (sets, relations,
functions, sequences). Because of the
specific nature of this problem, an-
other approach would have been to re-
ly on a more advanced theory, such as
the theory of regular languages. As
emphasized below, a realistic specifi-
cation system should permit reuse of
existing theories. ®

Starting from the above definition,
the specification should of course be
refined, taking into account the physi-
cal form of the data structure (in-
cluding, for example, the end-of-file
marker) and the particular response
that should be given by the program in
case of erroneous input.

22

Conclusion

Although natural language is the
ideal notation for most aspects of
human communication, from love let-
ters to introductory programming lan-
guage manuals, there are cases” where
it is not appropriate. Software specifi-
cations, for example, require more rig-
orous formalism.

The use of formal notation does
not, however, preclude that of natural
language. In fact, mathematical speci-
fication of a problem usually leads to a
better natural-language description.
This is because formal notations
naturally lead the specifier to raise
some questions that might have re-
mained unasked, and thus unan-
swered, in an informal approach.

Mathematical definition. Formal
specifications help expose ambiguities
and contradictions because they force
the specifier to describe features of the
problem precisely and rigorously. The
problem studied in this article contains
many examples of this, For example,
let us try to redefine the function
max_line_length using the definition
of “line’”’ taken from Goodenough
and Gerhart’s specification (line 24:
“*between successive NL characters™).
Writing this definition mathematical-
ly, we obtain someshing like

max_line_length (5) =
max ({line_length (s, i) |
| <i<length (s) and
s(i) = new _line))

where line_length (s, i), the length of
the line beginning after the new_[ine at

position / in sequence s, may be de-
fined as a minimum:

line_length (s, i) =
min({k|
O<k<length (s—i) and
s(i+k+1) = new_line])

However, as mentioned above, the
maximum or minimum of a set of
natural numbers is defined if and only
if this set is nonempty and, in the maxi-
mum case, finite; so using mathemati-
cal notation prompts us to check for
these conditions. Finiteness presents
no problem, but we see immediately
that the set whose maximum is sought
in the definition of max_fline_length
will be empty if the sequence s does not
contain any new_line character. Even
if it contains one, line_length (s, i),
itself a minimum, will not be defined if
there is no other new_line further in
the sequence. This prompts us to look
for a better definition.

A fairly natural reaction at this
point is to see that we really don’t need
to define the concept of “‘line,”” only
that of maximum line length. Once we
have noticed this, it's easy to come up
with a correct definition: the max-
imum number of consecutive char-
acters, none of which is a new line.
This is the definition that was given
above:

max_line_length (s) =

max ([j—1i|
O<i<j< length(s) and
(Vkei+l.
s(k) # new_line) |)

Note that we have been careful to
apply max to a set that always contains
at least one value (zero, obtained for

|IEEE SOFTWARE

i =j = 0),evenif sis an empty se-
quence (see box).

Natural language definition. Once
such a mathematical definition has
been produced, it may in return in-
fluence the natural language defini-
tion. In this example, the formal
definition suggests that we should
refrain from trying to define the con-
cept of “‘a line in the text”” which,
although intuitively clear, is slightly
tricky when one attempts to specify it
precisely, as Goodenough and Ger-
hart’s text shows. Instead, we should
focus on the notion of ““maximum line
length,"” which is always defined, even
for a text consisting of new_line
characters only. Once we have ob-
tained the specification of max_line_
length, we can build on it and include it
in the English problem definition a
sentence such as

The maximum number of consecutive
characters, none of which is a new_line,
should not exceed MAXPOS.

This sentence, a direct translation
from the formal definition, is not, ad-
mittedly, of the most gracious sytle;
but it is easy to remove the double
negation, yielding
Any consecutive MAXPOS + | charac-
ters should include a new_line.

The main advantage of natural
language texts is their understandabili-
ty. One should concentrate on this
asset rather than trying to use natural
language for precision and rigor,
qualities for which it is hopelessly in-
adequate, Understandability is seri-

January 1985

Formalism

ously hindered when natural language
requirements become ridiculously long
in a vain attempt to chase away silence,
ambiguity, contradiction, etc. Such at-
tempts, as shown by the text studied
here, only make matters worse. The
length of many requirements docu-
ments found in actual industrial prac-
tice, often extending over hundreds or
even thousands of pages, is due to such
misuse of natural language. Natural
language descriptions should remain
reasonably short; the exact description
of fine points, special cases, precise
details, etc., should be left to a formal
specification.

The advantages of brevity cannot be
overemphasized. It could even be ar-
gued that Naur's specification, once
the problems of termination and con-
secutive break characters are tackled
properly, is preferable to Goodenough
and Gerhart’s because it is shorter and
doesn’t fuss unnecessarily.

New specification. It would be fair
game for the reader at this point to ask
what natural-language specification
we have to offer in lieu of both Naur’s
and Goodenough and Gerhart’s texts.
To answer such as request, we'd try to
capitalize on the lessons gained from
writing the mathematical definition.
We'd propose something like the text
in Figure 5, which is directly deduced
from that definition (see in particular
its relation to Figure 4).

No doubt this text deserves some
criticism of its own. In particular, it
still needs to be refined. For example,
the implementor must know how to
“‘report the error’’ before embarking

24

upon detailed design and coding; he
must know what the allowable charac-
ters are apart from blank and new_
line, etc. Also note that this text avoids
defining specific concepts (e.g., line
length, word) explicitly; rather, it
substitutes the definition for the con-
cept when needed. Although this de-
vice can lead to interesting literary ex-
periments,® it is certainly not recom-
mended for large requirements docu-
ments where one must repeatedly refer
to the same basic concepts.

It seems to us, however, that the
above statement of the requirements
embodies the essential elements of the
problem and achieves a reasonable
tradeoff between the imprecision of
Naur’s and the verbosity of Good-
enough and Gerhart’s specifications,
(Tts length is in fact slightly more than
double the former’s and half the
latter’s.) Its most important feature is
that it draws heavily from the lessons
gained in writing the formal specifica-
tion, while retaining (we hope) clarity
and simplicity.

End-users. An objection that is
often voiced against formal specifica-
tions relates to the needs of end-users,
who request easily understandable
documents. Such an objection, we
think, is based on an incorrect assess-
ment of what specification is about.
There is a need for requirements docu-
ments that must be read, checked, and
discussed by noncomputer scientists,
but there is also a need for technical
documents used by computer profes-
sionals. The difference is the same as
that between user requirements and

engineering specifications in other
engineering disciplines. Of course,
there must be a way to communicate
back the contents of technical specifi-
cations (for example, in the case of
changes). As we have seen, the exist-
ence of a good mathematical specifica-
tion is a great asset for improving a
natural-language description.

Other ways can be found for
translating formal elements into forms
that are more easily understood. Many
people like graphical descriptions,
which play a basic role in such (non-
formal) specification methods as
SADT? or SREM. 1? A picture may be
worth a thousand words at times, but
it can also be dangerously misleading.
On the other hand, a pictorial explana-
tion of a well-defined concept certainly
does no harm. If the picture

A B
S

is considered more understandable
than the function definition

fA—B

then why not have graphics tools
generate the picture from the formula
for the benefit of those who want it?
There is certainly a great need for soft-
ware tools of this kind in specification
systems.

Techniques. The last point we want
to emphasize is that formal specifica-
tion is not necessarily difficult. The
reader who is familiar with specifica-
tion techniques will have noted that the

IEEE SOFTWARE

Minuet at dress ball given by Louis XV,
February 24, 1745, in the armory of the

Royal Stables at Versailles; from an engraving
by C-N Cochin, **L'ancienne France,'' in book
by the Duke of La Valliere, Louis César de |a
Baume-le Blanc (1708-1780), Ballets, Opera,
and Other Musical Works, Ch. J. Baptiste
Bauche, Paris, 1760.

From the library of Christena L. Schiundt,
University of California, Riverside

"

example did not rely (at least explicitly)
on such notions as abstract data types,
finite-state machines, and attribute
grammars. In fact, it used only very
simple notions from elementary set
theory and logic. These notions are no
more difficult than the basic core of
college calculus, even if most of today’s
university students are regrettably less
at ease dealing with such concepts as
sets, relations, partial functions, com-
position, and predicate calculus than
with other mathematical objects and
operations that are better established
in the traditional curriculum,

Of course, the example studied here
isasmall problem. Experience with the
Z language'''12 and subsequent work
prompted by this experience!'*!5 shows,
however, that the same basic concepts
can be carried through to the descrip-
tion of much more complex systems.
The main limitation of the problem
studied here is that it is defined by a
simple input-to-output relation, where-
as most significant programs can be
characterized, in our view, as systems
that offer various services in response
to possible user requests, We are cur-
rently working on methods, notations,
and tools for the modular specification
of such systems.!6

Reuse. An essential requirement of
a good specification formalism is that
it should favor reuse of previously
written elements of specifications. For
example, the notion of sequence and
the associated operations should be
available as predefined specification
elements. Languages Z and Affirm,

January 1985

ing conditions:

Given are a nonnegative integer MAXPOS and a character set in-
cluding two “break characters” blank and new__line.

The program shall accept as input a finite sequence of characters
and produce as output a sequence of characters satisfying the follow-

* it only differs from the input by having a single break character
wherever the input has one or more break characters;

* any MAXPOS + 1 consecutive characters include a new__line;
* the number of new__line characters is minimal.

If (any only if) an input sequence contains a group of MAXPOS + 1
consecutive nonbreak characters, there exists no such output. In this
case, the program shall produce the output associated with the initial
part of the sequence, up to and including the MAXPOS-th character of
the first such group, and report the error.

Figure 5. Yet another statement of the requirements.

among others, provide for such li-
braries of basic specifications, More
work is needed to share and reuse the
work of formal specifiers. Along with
the availability of simple and efficient

software tools, this is one of the condi-
tions that must be met before formal
specifications become for software en-
gineers what, say, differential equa-
tions are for engineers in other fields. O

25

Formalijsm

References

Bertrand Meyer, **Sur le Formalisme
dans les Spécifications,” Globule,
Newsletter of the AFCET (French
Computer Society) Working Group
on Software Engineering, No. 1, 1979,
pp. 81-122.

. Edsger W. Dijkstra, “The Humble

Programmer,"” Comm. ACM, Vol.
15, No. 10, Oct. 1972, pp. 859-866.

Bertrand Meyer, “A Basis for the
Constructive Approach to Program-
ming,"”’ in Information Processing 80
(Proc. IFIP World Computer Con-
gress, Tokyo, Japan, Oct. 6-9, 1980),
S. H. Lavington, ed., North-Holland,
Amsterdam, 1980, pp. 293-298,

Flaviu Cristian, **On Exceptions, Fail-
ures and Errors,” Technology and
Science of Informatics, Vol. 4, No. 1,
Jan. 1985,

Michael O. Jackson, Principles of
Program Design, Academic Press,
London, 1975.

Rod M. Burstall and Joe A. Goguen,
‘‘Putting Theories Together to Make
Specifications,” Proc. Fifth Int'l Joint
Conf. Artificial Intelligence, Cam-
bridge, Mass., 1977, pp. 1045-1058.

L. D. Hill, *“Wouldn’t It Be Nice If We
Could Write Computer Programs In
Ordinary English—Or Would 11?7
BCS Computer Bulletin, Vol. 16, No.
6, June 1972, pp. 306-312.

Oulipo, Ouvroir de Littérature Poten-
tielle, Gallimard, Paris, 1967,

Douglas T. Ross and Kenneth E.
Schoman, Jr., “Structured Analysis
for Requirements Definitions,” JEEE
Trans. Software Engineering, Vol.
SE-3, No. 1, Jan. 1977, pp. 6-15.

Mack W. Alford, “A Requirements
Engineering Methodology for Real-
Time Processing Requirements,”’
IEEE Trans. Software Engineering,
Vol. SE-3, No. 1, Jan. 1977, pp. 60-69.

11. Jean-Raymond Abrial, Stephen A.
Schuman, and Bertrand Meyer, “A
Specification Language,” in On the
Construction of Programs, R. Mc-
Naughten and R.C. McKeag, eds.,
Cambridge University Press, 1980.

12. Jean-Raymond Abrial, ‘“The Specifi-
cation Language Z: Syntax and
Semantics,"" Oxford University Com-
puting Laboratory, Programming
Research Group, Oxford, Apr. 1980.

13. Jean-Raymond Abrial and Stephen A.
Schuman, “Specification of Parallel
Processes,"” in Semantics of Concur-
rent Computation (Proc. Int'l Symp.,
Evian, France, July 24, 1979), Gilles
Kahn, ed., Springer-Verlag, Berlin-
New York, 1979.

14. Carroll Morgan and Bernard Sufrin,
*“Specification of the Unix File Sys-
tem," [EEE Trans. Software Engi-
neering, Vol. SE-10, No. 2, Mar. 1984,
pp. 128-142.

15. Bernard Sufrin, “Formal Specifica-
tion of a Display-Oriented Text Edi-
tor,” Science of Computer Program-
ming, Vol. 1, No. 2, May 1982,

16. Bertrand Meyer, “A System Descrip-
tion Method," in Int'l Workshop on
Models and Languages for Software
Specification and Design, Robert G.
Babb I1 and Ali Mili, eds., Orlando,
Fla., Mar. 1984, pp. 42-46.

Acknowledgments

I learned most of what I know about
specification from Jean-Raymond Abrial.
Much of the material was contained in an
earlier article, written in French and
published in 1979 in a newsletter.! I am
grateful to Axel van Lamsweerde for
reminding me of the existence of that arti-
cle and suggesting that it might be of in-
terest to a wider audience (and to him and
Jean-Pierre Finance for some heated dis-

Bertrand Meyer is a visiting associate pro-
fessor at the University of California, San-
ta Barbara, on leave from Electricité de
France, where he was division head in the
research and development branch. He is
interested both in doing research and in
making the results of research useful to
practitioners. He has published papers on
programming methodology, software
tools and environments, specification, in-
teractive systems and user interfaces, algo-
rithms, programming languages, and su-
percomputer programming, as well as a
compendium on programming methodol-
ogy and techniques, Méthodes de Pro-
grammation (Eyrolles, Paris, 1978, with
Claude Baudoin). He is the editor-in-chief
of the French computer science journal
Technology and Science of Informatics, a
member of ACM, AFCET and the IEEE,
and a former member of the AFCET
council,

Meyer's address is Department of Com-
puter Science, University of California,
Santa Barbara, CA 93106.

cussions on specification). 1 also thank
Flaviu Cristian for important comments on
a previous version. The referees’ comments
were also useful.

This article also benefited from the in-
voluntary contributions made by the au-
thors of all the system requirements and
other software documentation I have had
to struggle with over a number of years.

IEEE SOFTWARE

