
A
s this is the final installment of
the Component and Object
Technology column, I will try
to come back to the source,
object-oriented development,

and reflect on its contribution and future.
Wise people have at various times pre-

dicted or even announced the end of
objects. As early as 1989 (see Scott
Guthery, “Are the Emperor’s New
Clothes Object-Oriented?” Dr. Dobb’s
Journal, Dec. 1989, p. 80), articles were
appearing on the “object winter” theme,
patterned after the “AI winter” reported
to have followed the initial excitement
over artificial intelligence. The theme has
gained new vigor in the past few months.

In Software Development (July 1999,
p. 33), a review by Alan Zeichik of
Clemens Szyperski’s Component Soft-
ware book states: “Whether we like it or
not, in most situations object-oriented
programming has not succeeded in fos-
tering code reuse, except in the most lim-
ited way.”

Recently, IEEE Software has been the
place of choice for death notices, with
such pronouncements by former editor-
in-chief Al Davis as “We are all now wit-
nessing the fall of the Object era”
(“Predictions and Farewell,” July/Aug.
1998, pp. 6-9). In his final interview (“A
Golden Thread in Software’s Tapestry,”
Nov./Dec. 1998, pp. 18-21) he says,
“When I started consulting ten years ago,
all my customers wanted to hear the

word ‘object.’ Now, none do, and I find
that clients are much happier when they
don’t.” He follows this with a final blow:
“I think ‘object’ has now gone the way
of ‘structured.’”

The comparison with structured pro-
gramming is appropriate: In the case of
structured programming, too, a set of
simple but profound conceptual princi-
ples enjoyed partial success, a passage of
some of the ideas into the fabric of daily
software development to the point of
becoming so obvious that many practi-
tioners do not realize that the ideas were
once new and controversial; in addition
to this success, these conceptual princi-
ples suffered a form of degradation, com-
ing in part from the transfer of the name
“structured” to denote mere graphical
conventions for describing system struc-
tures, useful in themselves but a far cry
from the intellectual discipline of the
original ideas.

We should not underestimate the suc-
cess. David Taylor wrote in “Software
[R]evolution: A Roundtable” (Computer,
May 1999, p. 50) that “by the year 2000
no one would talk about objects any more
because the technology would be so thor-
oughly absorbed into the mainstream that
no one would think to mention it.” His
time frame may be premature by a few
years but absorption is definitely the trend.

All major developments in the software
world integrate OO aspects or at least
claim to do so. Almost all recent pro-
gramming languages are OO in some
ways; even good old Fortran, in its latest
version, has some timid support for data
abstraction. This may be what Al Davis’s
consulting clients really mean: We know
all about objects, don’t bother us with this.
But it’s a sign of success, not rejection.

IT’S THE ONLY GAME IN TOWN
Whatever reservations anyone may

have about some or another aspect of
current object technology, it is still true
that, as Grady Booch noted a few years
ago, we don’t really know any better;
when it comes to building complex, evo-
lutionary, mission-critical systems, OO
solutions are our best bet. Nothing else
has come to challenge them.

Nothing, not even component-based
development. As has been clear in this
column, with all my enthusiasm for com-
ponent-based development, leading in
particular to the column’s broadening of
scope last year (from “Object Tech-
nology” to “Component and Object
Technology”) and to the special section
on CBD (co-edited with Christine
Mingins, in last July’s issue of Com-
puter), I find absurd the claim that (in
Alan Zeichik’s phrase) “objects are tired,
components are wired.” Components, to
misquote Clausewitz, are just the pursuit
of objects through other means. Com-
ponents assume object technology, they
use object technology, and they promote
object technology.

Every one of the currently prominent
CBD approaches is directly rooted in
objects, be it CORBA, Enterprise Java-
Beans, or COM with its direct reliance
on the Vtables of C++.

One can understand the buzz-of-the-
year phenomenon, if only as a way for

A Really
Good Idea

Bertrand Meyer, ISE

144 Computer

Co
m

po
ne

nt
 a

nd

Ob
je

ct
 T

ec
hn

ol
og

y

Editor: Bertrand Meyer, Interactive
Software Engineering, ISE Bldg., 2nd Fl.,
270 Storke Rd., Goleta, CA 93117; voice
(805) 685-6869; ot-column@eiffel.com

Don’t blame OO
programming in general

for the limitations of
those who don’t know

how to apply the
principles.

consultants to renew their claims to exper-
tise. We in the software field don’t have
preseason sales and postseason discounts,
so we need ever new ways to drum up
business. There’s nothing wrong with that;
let’s just not take it too seriously.

David Taylor, in the roundtable cited
above, noted that “Even Object Magazine
changed its name to Component Software
to maintain its cutting edge.” That was
quite amusing, since a couple of months
after Taylor’s article Component Software
announced that it was merging with
Application Development, retaining the
latter’s title. Does this mean that compo-
nents are out and we are now back to
applications? Probably not. A marketing
strategy is not a technology trend.

TEACHING THOSE
WHO ALREADY KNOW

The “we know all about objects so
what else is new” attitude cited by Al
Davis is indeed widespread. In my expe-
rience it is largely unjustified. While
many engineers and managers are famil-
iar with the basic goals of object tech-
nology, only a minority has really
understood the deeper concepts and
started to apply them thoroughly. This
can make life tough for object technol-
ogy consultants and instructors: As every
parent and educator knows, it is impos-
sible to teach people something when
they think they already know it.

I find that general intellectual sympa-
thy with the principles of information
hiding, data abstraction, taxonomy,
reuse, systematic software construc-
tion—an attitude found fairly universally
today—is not a good predictor of
whether the person will actually apply
these principles in software development.

To anyone who has the opportunity of
peeking at the way companies large and
small routinely write software these days,
the myth that object technology is now
passé sounds absurd. Not that the pic-
ture is doom and gloom; I disagree with
those (often vocal in the pages of IEEE
Software) who claim that we have made
no progress at all in the past 30 years. We
have better tools, better practices, a gen-
erally more serious attitude. But most of
the industry is far from having integrated
in its daily practice the deeper principles

of object technology, and, more gener-
ally, many of the principles of modern
programming methodology.

THE NEXT 99 SOFTWARE DISASTERS
Perhaps the most striking example of

what we still have to learn is the success
of the so-called windowing Y2K tech-
nique. I don’t have any actual statistics,
but informal inquiries suggest it’s one of
the most commonly used “solutions” to

the Y2K issue. Windowing means that
you don’t touch files and databases using
two-digit dates; you just choose a pivot
date, say 1960, and hack the programs
so that whenever they use a 2-digit date
code xy they do something like

if xy < 60 then
Understand this as the
date 20xy

else
Understand this as the
date 19xy

end

There can be no universal pivot date, so
“60” is just an example. An airline’s fre-
quent flyer system doesn’t need to go
back any earlier than 1970, but the air-
line’s pension program may have to deal
with people born in 1910.

Now this is really clever. First we make
the programs even more complicated
than before, with all kinds of spurious
tests, not to mention the possibility of
added bugs. Second, we have just pushed
the problem further, creating potential
Y2K-like disasters for the next 99 years:
Since there is no universal pivot, every
system has its own time bomb, ticking
down to its own specific self-destruction
deadline. Every year from now on (well,
maybe not the next two or three, or has

anyone chosen 02 as a pivot?) will be the
opportunity for a mini-Y2K.

There is no excuse for such nonsense.
It passes on to our successors the same
calamity that our predecessors (in some
cases ourselves) inflicted on us. But they
at least had the excuse that it was the first
time, that no one knew, and that we were
all learning. This time there is no such
excuse; we should know better.

LESSON NOT HEEDED?
The Y2K mess as a whole is evidence

that, for all the talk about objects having
become mainstream, we still have a long
way to go, and not only regarding the
more advanced parts of object technology.

In this department’s column about the
topic (Christopher Creele, Bertrand
Meyer, and Philippe Stephan, “The Op-
portunity of a Millennium,” Computer,
Nov. 1997, pp. 137-138), we pointed out
that the millennium problem was the
opportunity for a generalized opening-up
and cleaning-up of major software sys-
tems. All signs indicate that this has hap-
pened only in a minority of enlightened
companies. Others have simply patched
their code and are hoping for the best
(including hoping that the patching
process will not have introduced too
many new bugs). For all these companies,
object technology is still in the future.

What object technology? This is where
we must again take a serious look at the
supposed arguments against object tech-
nology. (You can find a set of links in the
“pros and cons” section of the Cetus OO
links at http://www.cetus-links.org/oo_
infos.html#oo_general_info_general_
articles.) Although the criticism is offi-
cially directed at object technology, what
it really addresses in many cases is C++.
In an early article about object technol-
ogy, Bjarne Stroustrup mocked the pseu-
dosyllogism “Ada is good; Ada is OO;
therefore OO is good.” What we have
seen more recently is more “C++ is OO;
C++ is bad; therefore OO is bad.”

This was very much the assumption
behind an indictment of objects by Les
Hatton (“Does OO Sync with How We
Think?” IEEE Software, May/June 1998,
pp. 46-54), which Richard Wiener criti-
cized in the same issue, taking Hatton to
task for equating OO and C++: “With

December 1999 145

While many engineers
and managers are familiar

with the basic goals of
object technology, only

a minority has really
understood the deeper

concepts and started to
apply them thoroughly.

146 Computer

j++ is j+1, except that evaluating this
expression also increases the value of j
by one, but only afterwards, in contrast
with j++. *(str + i) = *(str +
++j) is an assignment of what comes
after = to what comes before, so it re-
places the i-th value of the string; but it
is also an expression whose value is what
is being assigned, so that the whole
enclosing expression actually returns true

if and only if this newly assigned value is
not equal to '\0' which, as every
kindergarten student knows by now, is
the special character marking the end of
any well-behaved C++ string. Wow!

To me, this can’t have anything to do
with object technology. That the example
is “in the small” doesn’t matter: The in-
the-large aspects of programming rely on
the lower level parts, and you can’t get
them right unless you get the small things
right too. The obsessive use of side-effect-
producing functions (totally unnecessary
in this example) and pointer-based object
access pervades an entire software cul-
ture that is at odds with the OO view of
quality software construction.

CASES THAT GIVE
EVERYONE A BAD NAME

This may be the most serious problem
of assessing the contributions of object

extreme discipline programmers can use
C++ as an OO language, but more often
than not they use it as an extended C”
(“Watch Your Language,” IEEE Soft-
ware, May/June 1998, pp. 55-56).

The point here is not to start a language
war, especially since I am associated with
another OO language, Eiffel (more ap-
propriately characterized as a method).
But it is legitimate for those of us who
have been pushing full-fledged object
technology to refuse to let that approach
be blamed for limitations, perceived or
real, of others whose applications of OO
principles is highly debatable.

IF THIS IS OO ...
Figure 1 is a function—from one of the

most frequently used C++ introductory
textbooks (Ivor Horton, Beginning
Visual C++ 6, Wrox, 1998, p. 227, com-
ments removed)—for removing blanks
from a string. If this is what OO devel-
opment is, then I am ready to enlist in the
anti-object battalion.

I also start believing Hatton’s reports
of unchanged or decreased productivity
and reusability. But of course this kind of
style is the opposite of all that a serious
object-oriented developer would do: It
uses pointers and side effects throughout,
mixes queries and commands (asking a
question shouldn’t change the answer!),
and shows no attempt at abstraction. A
Boolean expression like ((*(str +
i) = *(str + j++)) != '\0') is
an open invitation to bugs and mainte-
nance nightmares.

If you haven’t been initiated in the
great secrets of life, here’s what the
expression means: str is the start of the
chain. str + i is its i-th position.
*(str + i) is the value at position i.

technology: making sure that we indeed
judge the technology—not partial,
incomplete, or even flawed implementa-
tions that can give the whole field a bad
name. The problem is not just C++.
While recognizing the major contribu-
tions of UML and Java, I have described
elsewhere (http://www.eiffel.com/doc/
manuals/technology/bmarticles/uml/ and
http://www.elj.com/eiffel/bm/mistake/)
some of the problems I see in both
approaches; I have also discussed the
dangers of mixing the object paradigm
with foreign ideas (such as entity-rela-
tionship modeling or the C style of devel-
opment) that, although respectable on
their own, clash with object technology.

My own work has been based on a
more systematic application of OO prin-
ciples. Let me illustrate the contrast
through two examples, both of which I
discuss in Object-Oriented Software
Construction (Prentice Hall, 1997).

Many approaches still allow a direct
field assignment of the form x.field =
value. This is fine in non-OO develop-
ment, in which you are dealing with
structures, but is completely incompati-
ble with the OO view that we are build-
ing little machines, each with its official
control panel (the class interface) serving
as the obligatory path to the internals.
Direct field assignment means that users
of the machine can circumvent that inter-
face and start rearranging the innards of
the machine directly. This is simply not
acceptable in modern software technol-
ogy. The management solution—forcing
all attribute declarations to be private—
is unrealistic since it would lead to lots
of useless get functions.

This brings us to the second example:
the Uniform Access Principle. It’s at first
a small notational issue, but (like many
other problems related to data abstrac-
tion and information hiding) can take up
gigantic proportions if not observed
properly. The principle simply states that
if a module, the client, is accessing a
property managed by another module,
the supplier, it should not matter to the
client whether the supplier keeps the
property stored or computes it on
demand.

So if I write my_house_loan.
monthly_interest I should not have

Component and Object Technology

To anyone who has the
opportunity of peeking
at the way companies

write software these days,
the myth that object
technology is passé

sounds absurd.

//function to eliminate blanks from a string
void eatspaces (char * str) {

int i=0; /* copy to offset within string */
int j=0; /* copy from offset within string */
while ((*(str + i) = *(str + j++)) != '\0')

if (*(str + i != '-') i++;
return;

}

Figure 1. Removing blanks from a string in C++. Can this be called object-oriented?

to know whether monthly_interest
is an attribute, stored with every instance
of the HOUSE_LOAN class, or a function,
computed from some formula associated
with the class. The purpose is obvious:
to keep modules independent from each
other’s implementation decisions and
hence from variations in each other’s
implementations. Yet most current
approaches force a separate notation for
field access and attribute call. (This point
is discussed further in the January 2000
Eiffel column of JOOP.)

THE IMPORTANCE
OF BEING DOGMATIC

These comments may appear dog-
matic. After all, one may ask, does every
detail matter? Do we have to apply every
tenet of the OO canon, chapter and
verse? I would tend to answer yes. It pays
to be dogmatic here. It’s hard to be “a lit-
tle bit object-oriented.” Little violations
beget huge disasters. Y2K is the most vis-
ible example.

As was pointed out in the November
1997 column, the Year 2000 “bug” is
not about the alleged stupidity of coding
dates on two digits—a mere implemen-
tation choice similar to countless ones
that programmers make all the time. It is
about information hiding, or rather the
lack thereof, which spread the conse-
quences across millions (globally, bil-
lions) of lines of code. Like many other
OO principles, information hiding is,
fundamentally, a very simple idea. No
rocket science required; just seriousness,
professionalism, care, and thoroughness.

Remember this the next time you feel
the urge to use a direct field assignment
x.field = value. You may think that
in the case at hand there’s nothing wrong:
You know exactly what you are doing,
there is no possible precondition or
invariant violation, and it’s a mere assign-
ment that doesn’t have to notify any
observers. And you may even be right—
for the moment.

But that’s not an excuse. Think of the
consequences of that violation, magni-
fied by the number of cases in which the
matter arises, the size of the project, its
duration, the number of people who may
have to use or take over your work. And
apply the rules. Better yet, use an envi-

ronment that’s not just OO in name, and
forces you to apply the rules.

T he rules are not everything, but they
are part of the approach. Object
technology has, in Isaiah Berlin’s

metaphor, a little of the fox and a little
of the hedgehog: The hedgehog knows
one big thing; the fox knows many
things. Like the fox, we must know and
apply many small things: all the rules. We
also know not one big thing but in fact a
few big things, from data abstraction to

inheritance to Uniform Access to Com-
mand-Query Separation to Design by
Contract—the simple yet profound intel-
lectual principles that this column has (I
hope) occasionally been able to touch on
and which, more than anything else,
define the approach.

Like structured programming before
it, and in spite of being (like structured
programming) subject to the phenome-
non of vulgarization and watering down
that inevitably goes with hype and suc-
cess, object technology is defined by a
few seminal ideas—a dozen or two alto-
gether—that radically change one’s view
of software development. And it is
defined, too, by the patient and obstinate
application of little rules.

Successful object technology is a mix
of the two. We must understand the intel-
lectual principles for all their worth, let-
ting them permeate our entire approach
to software development, never losing
sight of the bigger challenges. And we
must also be foxes, never relenting in our
application of the rules, however ele-
mentary and mundane.

All the evidence of my and my col-
leagues’ work over the past two decades,
reinforced by the observation of large
projects developed by our customers in
the most demanding mission-critical con-
texts, is here to reinforce the view that if
you do follow this strategy you will

indeed get the advertised benefits. As
Roger Osmond put it in a TOOLS USA
keynote a few years ago, “Object tech-
nology brings you more than the hype
would have you believe.” Productivity,
extensibility, reuse, and reliability can all
be achieved. But only a minority of the
industry has tried seriously and without
compromise. The experience of others—
those who went at it half-heartedly—is
not a good argument to discredit the
technology.

So my answer to the OO critics, which
will also serve as a conclusion to the
Component and Object Technology col-
umn, can only be the application to
object technology of Gandhi’s retort
when he was asked for his thoughts
about Western civilization: It would be a
good idea. ❖

December 1999 147

When it comes to building
complex, evolutionary,

mission-critical systems,
OO solutions are our

best bet.

Check us
out . . .

Each time IEEE Internet Computing
magazine goes to press, an issue of
IC Online also goes live to the Web.
We’re working to become your
resource for Internet technologies.

◆ tutorials ◆ interviews ◆

standards ◆ protocols
◆ resource links ◆ news ◆

new products ◆ industry
◆ reports ◆ roundtables ◆

and lots more all the time.

For engineering and applying Inter-
net technologies, you’ll always find
more at . . .

on the on the
eb eb

http://computer.org/internet/

