
July 1998 97

So
ft

w
ar

e
Re

al
iti

es

W
hen we are asked to
describe something, our
natural impulse is to reach
for an exhaustive defini-
tion. If what we are asked

to describe is a software concept—and if
we are using a programming language—
we will usually start writing a record,
structure, or class definition, and we won’t
come back until we have all the proper-
ties in place. A bank account is the com-
bination of the account holder’s name, a
current balance amount, an account num-
ber, an allowed minimum balance, and so
on; a paragraph (in a text processing sys-
tem) is the combination of a list of words,
a default font, a justification rule, and so
on. But we won’t feel comfortable until
we have removed every single “and so on”
and filled in all the details.

How does object technology affect
this? The first part of the answer is well
known. It’s that the properties used in the
description are no longer confined to
attributes or data members, indicating
what physically constitutes an object:
Now they also include routines or meth-
ods, indicating applicable operations. So
we will not just have a record or struc-
ture declaration, which in a Pascal-like
language would read

type ACCOUNT =
record

holder: PERSON;
... Other attribute

declarations ...
end

but will obtain a true class by adding the
routines, as in the following Eiffel form:

class ACCOUNT feature
holder: PERSON

change_holder
(new_holder: PERSON) is

do .. end

... Other attribute and
routine declarations
end

This example illustrates the principal and
well-known difference, which also
defines why a C++ class is not the same
thing as a C structure.

But there is another difference, no less
important even if it is less obvious. The
first form is explicit; the second is
implicit.

OPEN-CLOSED PRINCIPLE
Implicitness here means that we do not

claim to have listed all the properties—
or care. In any class declaration there
remains a possible “and so on.” We
accept that the description may be
incomplete, yet we can use it as it is.

This is the open-closed principle,
which in my opinion is one of the central
innovations of object technology: the
ability to use a software component as it
is, while retaining the possibility of
adding to it later through inheritance.
Unlike the records or structures of other
approaches, a class of object technology
is both closed and open: closed because
we can start using it for other compo-
nents (its clients); open because we can
at any time add new properties without
invalidating its existing clients.

The open-closed principle helps
address a particularly pressing problem
of software engineering: smooth evolu-
tion. In the situation illustrated in Figure
1, we have a successful module A serving
the needs of some clients. When new
clients such as B1 appear with their own
needs, non-OO approaches might force
us either to change the original, thereby
running the risk of invalidating all the
existing clients (such as B and C), or to
write a new module, causing duplication
of software and probably duplication of
bugs and future maintenance efforts.

In the OO approach, we avoid this
dilemma by writing A so that it is directly
usable by B and other clients, yet is still
open for adaptation through inheritance.
A1, a descendant of A, does not dupli-
cate the properties of A that are still
applicable in the context of A1; it only
defines what is different or new in that
context.

SAYING ENOUGH
Applying the open-closed principle as

a way of life in OO development means

Tell Less,
Say More: The

Power of
Implicitness

Bertrand Meyer, EiffelSoft

Ob
je

ct
 T

ec
hn

ol
og

y

Editor: Bertrand Meyer, EiffelSoft, ISE
Bldg., 2nd Fl., 270 Storke Rd., Goleta, CA
93117; voice (805) 685-6869; ot-
column@eiffel.com

The open-closed
principle is one of the
central innovations of

object technology.

.

98 Computer

Object Technology

that the “and so on” of our lists of prop-
erties is always there, even if not stated
explicitly. We do not need or want to be
exhaustive.

If we later need to refine the concepts
of interest, we can do so without invali-
dating the existing descriptions and—
most importantly, from the viewpoint of
large-scale and long-term software engi-
neering—their clients. This does not
mean, of course, that we should abuse
inheritance and (like some object-ori-
ented designers I have seen) introduce a
new class each time we need a new fea-
ture. A class should always define a
coherent and significant abstraction, and
if we are just adding a property that we
initially forgot, we should simply update
the class definition. But for major adap-
tations and extensions, we can afford to
get the new and keep the old.

This absence of any claim to exhaus-
tiveness gives a Zen-like quality to the
process of OO modeling and design. We
do not pretend that we try to say every-
thing of interest, or even that we could.
We say what we know of the objects of
interest. We say what objects have; we
don’t pretend to have defined what they
are. As we learn more, we say more. And
at some stage we’ll just feel we have
enough—not all, just enough. At least for
the moment.

THE FINITE-
FUNCTION MODELS

Looking at mathematical models can
help you understand what’s going on. (I
know that software people don’t “talk
math” in polite company. But there is
really no reason why in a scientific disci-
pline we couldn’t summon the help of
math to gain some insight into our prob-
lem domain, especially when the math
involved is elementary.)

If we stick for simplicity to classes that
only have attributes—the equivalent of
records—the most tempting model for
something like

class ACCOUNT feature
account_number: INTEGER
current_balance: REAL

end

is a Cartesian product: We can think of

this declaration as representing the set
INTEGER × REAL—that is to say, the
set of pairs <i, r>, where i is an INTEGER
and r is a REAL. Although not wrong in
any formal sense, this Cartesian product
model creates a paradox: We cannot
subclass and subset at the same time!

Under no circumstance can A × B × C
be mapped onto a subset of A × B; it’s
actually the other way around. So if we
are considering adding to ACCOUNT a
new attribute, say address:STRING,
we cannot consider the result a subset
of the original, even though that’s what
we want since an “account with num-
ber, balance, and address” is a special
case of an “account with number and
balance.” Object technology allows
us—through polymorphism and dy-
namic binding—to treat an instance of
the latter as if it were an instance of the
former.

To remove the Cartesian product para-
dox, it suffices to use a different model,
one based on partial functions. Consider
a set T of tags that includes all tags of
interest, such as account_number,
current_balance, address, and a
set V of values, which includes all values
of interest, such as integers, reals, and
strings. Then we can consider a class such
as ACCOUNT as describing partial func-
tions from tags to values with the prop-
erty that every such function must be
defined for a finite set of values including
both the tags account_number and
current_balance. Also, the value for
account_number must be an integer
and the value for current_balance
must be a real number.

AN EXAMPLE
An example is {<account_num-

ber, 9087123>, <current_bal-
ance, 499.95>}, the finite function
defined for exactly the two tags given,
and describing a particular object—a
particular bank account with the two
attributes valued as shown (account
number 9087123 and current balance
$499.95).

Then an instance of ACCOUNT_
WITH_ADDRESS is a finite function
defined for the tags account_num-
ber, current_balance, and address.
By its very construction, this is also an

instance of ACCOUNT as defined.
In the Zen spirit of implicitness, we

never exactly specify the domains of our
functions (the precise set of tags for
which they are defined); we simply list
tags that these domains must include. We
do not say that the domain of ACCOUNT
must be the set {account_number,
current_balance}; we simply re-
quire that it include the two tags given.

This is what makes it possible to con-
sider descendant classes as subsets, even
though they have more features. Like its
software counterparts, this mathemati-
cal model is both open and closed.

U nder these mathematical observa-
tions lies a very practical feature of
OO development, as distinctive as

anything that is routinely considered
part of the definition of the approach—
information hiding, classes, genericity,
inheritance, polymorphism, dynamic
binding, contracts. It’s the constant
refusal to say more than what we strictly
need to say.

The double refusal—refusal to close,
refusal to assert completeness—requires
some intellectual audacity, but yields a
productive development process. In the
end, what resolves the contradiction is
the release of the software. The release
process—the process of closing what was
until now open—is the process of equat-
ing each type with the Cartesian product
of its properties. So when everything has
been said, the objects are indeed what
they have. But only at the end. Until
then, you always leave room for more
properties.

Everything is open until officially
closed; and by telling less now you retain
the possibility of saying more later. ❖

AC B

A1 B1

Figure 1. Reconciling openness and closure
through inheritance.

.

