
104 Computer

T
he software industry stands on
feet of clay. However carefully
we may strive to build correct
and reliable software, we have
no way of guaranteeing the

quality of the result. Building correct and
reliable software depends on the quality
of so much else, from the hardware and
the operating system to the compiler and
the runtime libraries. And any significant
software system has so many details and
components of its own that we can
hardly expect to get everything right if
we do it all by ourselves.

None of the commonly suggested
approaches suffices to quell these wor-
ries: “Test, test, and retest,” the implicit
motto of much of the industry, is expen-
sive and wasteful. Yet as any user of PC
software knows all too well, the result of
all this sweat is far from ideal. Software
companies systematically and openly
ship software that has a large number of
known bugs.

On the academic side, much progress
has been made toward formal methods,
through which it is possible (in principle)
to prove the correctness of program ele-
ments using mathematical techniques.
But results from this important field have
had only limited effect on the practice of
the industry for several reasons:

• It is too difficult to build mathemati-
cal models of the most delicate aspects
of “real” programs, from floating-
point computation to pointers.

• There are few powerful tools to
assist this effort.

• Even more fundamentally, it is just
too expensive and difficult to apply
formal techniques thoroughly.

The recent push for reuse and compo-
nentware has raised the hope that by
relying on reusable components we can
gain quality and reliability. But without
excellent techniques to build the compo-
nents themselves, this nirvana is a
mirage. In fact, the spread of less-than-
optimal components could lead to a
worsening of the situation.

At least one major industrial disas-

ter—to the tune of half a billion US dol-
lars—has already been ascribed to the
reuse of an improperly specified compo-
nent. With the progress of incompletely
designed approaches to reuse, more cat-
astrophes are likely to happen, leading to
a broad rejection of the very idea of
reusability, unless the industry takes mea-
sures to guarantee component quality.

Formal methods, because of their cost,
only make sense when applied to widely
reused components, which can recoup
the investment through effects of scale.
(Possible exceptions are the mission-
critical systems for which the stakes are
so high that money is not the issue.)

Widespread reuse is only attractive if
we can be formal enough to guarantee
that the components will be correct,
aiding rather than harming the systems
that will rely on them. (See “The Next
Software Breakthrough,” Computer,
July 1997.)

In this column, we describe an ambi-
tious but realistic project that combines
the ideas of reuse and formality with other
more pragmatic techniques. The goal is to
provide the entire software industry with
a powerful set of reusable components
deserving a high degree of trust.

HOW TO ENSURE TRUST
No single technique can produce com-

pletely trusted components. Trust is in
fact a social phenomenon. Even in math-
ematics, the most formal of all disci-
plines, professionals only believe in a
theorem based on a mix of formal crite-
ria, such as published proofs, and social
ones, such as

• who produced the theorem and its
proof,

• where it was published,
• who reviewed the publication,
• who else already believes it,
• how much the result has already

been applied,
• whether it is consistent with other

results in the same area or others,
• whether it gives the “right feeling,”

and
• whether the theorem and proof are

“elegant.”

Part of the reason is that almost all pub-
lished proofs omit intermediate steps to

Providing Trusted
Components to

the Industry
Bertrand Meyer, EiffelSoft

Christine Mingins and Heinz Schmidt, Monash University

Ob
je

ct
 T

ec
hn

ol
og

y

Editor: Bertrand Meyer, EiffelSoft, ISE
Bldg., 2nd Fl., 270 Storke Rd., Goleta, CA
93117; voice (805) 685-6869; ot-column@
eiffel.com

The goal of this project is
to provide the entire

software industry with
a powerful set of

components deserving
a high degree of trust.

.

May 1998 105

avoid overwhelming the reader with use-
less complexity. The complexity in this
case is not unlike the complexity of a
software system, except that many
industrial systems are far more complex
than the average mathematical proof.

As a result, trust—especially in soft-
ware—will not be a binary proposition:
“blindly trusted” versus “untrusted.”
We may trust Microsoft Word enough
to use it for our next paper, but we
would not bet a year’s salary on the
assumption that it will not crash while
we are writing the paper.

A striking example of the power of
social processes exists in software: the
success of free source code, notably the
tools developed for GNU and Linux.
These tools, some quite ambitious, have
been developed by volunteers under the
international scrutiny of a network of
enthusiasts who, relying on all the tools
of the Internet, scrutinize the source
code of every new version, test it, report
defects, and suggest improvements. This
process leads to collective work of
unprecedented scope outside of any for-
mal organization or commercial frame-
work.

Some of the results are of astounding
quality, leading many commercial com-
panies to select, for example, the free
GCC compiler over commercial C/C++
compilers, or Linux—initially the work
of a student—over commercial versions
of Unix, which are the result of tens of
thousands of collective years of develop-
ment in industry hotbeds. Such examples
illustrate the power of this recent phe-
nomenon: volunteer scrutiny as a form
of free, global quality assurance.

BUILDING TRUST
The Trusted Component Project pro-

poses to apply a mix of formal and infor-
mal approaches. It rests on six principal
techniques:

Design by contract. This approach to
software construction is meant to ensure
software is reliable from the start, by
building it as a collection of elements that
cooperate on the basis of precise defini-
tions of mutual obligations—contracts.

Formal validation. Use modern tech-
niques and tools such as B or Object-Z
in connection with the principles of
design by contract.

OO and reuse techniques. Thoroughly
apply object-oriented techniques and the
strict principles of reusable library design.

Global public scrutiny. Make the com-
ponents freely available in source form;
seek contributions as well as criticism
from the worldwide Internet community.

Extensive testing. Take advantage of
design by contract and focus on compo-
nent reuse.

Metrics efforts. Track component
properties in a controlled fashion.

None of these ideas by itself will do the
job. But by combining technical and
social processes, we can hope to build
a set of components the industry can
really trust.

TASKS
The Trusted Components Project has

its initial home—in collaboration with
Interactive Software Engineering (Eiffel-
Soft)—at Monash University. But it is
beyond the scope of any single institu-
tion and can only succeed as a long-term
collaborative project between many
organizations in academia and industry.

The results will be of many kinds—
publications and standards as well as
trusted software components. The
major areas of effort include:

• Choosing areas for component
development. Starting with the
most humble areas, we can replace
the feet of clay with more solid
material.

• Developing base components. The
base versions will be developed in
Eiffel, which has the proper sup-
port for design by contract. The
Eiffel Kernel Library can serve as a
starting point.

• Adapting language-specific com-
ponents. Versions of the compo-
nents will be needed by other
widely used languages, such as C,
C++, and Java. Interface versions
will have to be produced in IDL
and Microsoft COM.

• Adapting verification technology.
Existing tools (such as those for B)
may be appropriate, but both the
tools and the techniques will need
to be adapted to the proof of
reusable components.

• Developing testing technology for
reusable components, including
standards describing the test cases
and test procedures.

• Developing assertion language and
other conceptual tools for proving
practical components.

• Developing and applying effort
metrics.

• Developing reuse-based teaching
curricula and applying them to
actual courses.

• Identifying interesting application
areas and developing application-
specific libraries on the same princi-
ples as the general-purpose libraries.

• Identifying further techniques and
tools for building quality compo-
nentware.

There are many ways to get involved.
(A Web page is forthcoming at http://
www.trusted-components.org; you can
subscribe to a mailing list by writing to
trusted-request@eiffel.com.) This list
includes practical tools as well as theo-
retical themes; research projects for uni-
versities as well as product development
by companies; possible contributions by
institutions as well as dedicated individ-
uals. We hope that it will operate as a
truly cooperative endeavor in the tradi-
tion of the Internet.

T he Trusted Objects Project offers
the prospect of a joint effort that
may have a major impact on the

evolution of the software industry. We
view it as a collective, international effort
and hope that many people will be inter-
ested in joining it. The aim—providing
a solid foundation for the software
industry—is worth it. ❖

Bertrand Meyer is editor of the Object
Technology department.

Christine Mingins is a senior lecturer and
associate head of school at Monash Uni-
versity, Melbourne, Australia. Contact her
at cmingins@insect.sd.monash.edu.au.

Heinz Schmidt is associate dean of re-
search of the Faculty of Information Tech-
nology and head of software engineering
at Monash University. Contact him at
heinz.schmidt@fcit.monash.edu.au.

.

