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Abstract. Network objects are a simple and natural abstraction for distributed
object-oriented programming. Languages that support network objects, however,
often leave synchronization to the user, along with its associated pitfalls, such as
data races and the possibility of failure. In this paper, we present D-SCOOP, a
distributed programming model that allows for interference-free and transaction-
like reasoning on (potentially multiple) network objects, with synchronization
handled automatically, and network failures managed by a compensation mech-
anism. We achieve this by leveraging the runtime semantics of a multi-threaded
object-oriented concurrency model, directly generalizing it with a message-based
protocol for efficiently coordinating remote objects. We present our pathway to
fusing these contrasting but complementary ideas, and evaluate the performance
overhead of the automatic synchronization in D-SCOOP, finding that it comes
close to—or outperforms—explicit locking-based synchronization in Java RMI.

1 Introduction

Inter-device communication is becoming ubiquitous, and the number of connected de-
vices is growing everyday. With this ubiquity comes an increasing demand for pro-
grammers to be able to write reliable distributed software, yet this is no simple task.
Challenging errors such as data races and deadlocks can arise from subtle mistakes in
synchronization code; and the failure of individual devices can block whole systems in
the absence of appropriate recovery protocols.

Various language abstractions have been proposed to make it easier to write dis-
tributed programs. One such abstraction, natural for the object-oriented paradigm, is
that of network objects [2]: objects whose methods can be invoked over a network. By
handling communication in method calls, network objects allow for local and remote
objects to be treated uniformly, without regard to where they are physically located.
In principle an elegant generalization; in practice, languages supporting them are often
lightweight on synchronization, leaving the user to manage it explicitly, and potentially
exposing them to the aforementioned errors.

Many of these pitfalls of synchronization are not unique to distribution: they occur
in multi-threaded concurrent programming too. Several languages and libraries attempt
to make it easier and safer to write concurrent programs, providing their users with



high-level abstractions as diverse as transactional memory [23], block-dispatching [10],
actors [1], and active objects [14]. Given the many shared synchronization challenges,
a number of these abstractions have been successfully applied across novel distributed
programming approaches, exemplified by languages such as Creol [12], JCoBox [21],
and AmbientTalk [6].

A family of concurrency abstractions that (until the present paper) had not been
generalized to distributed programming were those provided by SCOOP [25], despite
their potential to naturally complement the network objects abstraction and to address
some of its shortcomings. SCOOP is an object-oriented concurrency model that provides
data-race freedom by construction, and strong guarantees about the order in which re-
quests are executed by concurrently running processes. The synchronization provided
by its runtime automatically excludes interfering calls, making it possible to reason
independently about different blocks of code over multiple concurrent objects, almost
as if each block is “sequential”. The ethos of the SCOOP approach—stick to the men-
tal models programmers already know well (in this case sequential programming)—is
aligned with that of the network objects abstraction, and challenged us to explore how
they could complement the strengths of each other.

Our Contributions. The main outcome of this paper is D-SCOOP, a distributed pro-
gramming model resulting from the fusion of the network objects abstraction with the
runtime of the SCOOP concurrency model. The strong reasoning guarantees of the latter
are directly generalized to provide interference-free and transaction-like reasoning on
(potentially multiple) network objects, without the programmer having to worry about
how to achieve it. The basis of this fusion is a message-based protocol for coordinat-
ing remote objects, which includes an efficient and novel two-phase locking algorithm
for establishing the SCOOP order guarantees without prolonged periods of blocking.
Furthermore, we adapt from transactional memory the recovery technique of compen-
sations, in order for D-SCOOP to be able to restore consistency when clients fail mid-
computation. This paper presents our pathway to fusing these independent, but comple-
mentary ideas. We furthermore evaluate a prototype implementation of D-SCOOP to in-
vestigate the performance overhead of its automatic synchronization mechanisms, find-
ing that they come close to—and in some circumstances outperform—explicit locking-
based synchronization in the Java RMI realization of network objects.

For the distributed programming community, this paper presents a programming
model with interference-free and transaction-like reasoning for distributed objects, and
a runtime that effectively handles the synchronization. For the SCOOP community, it
presents a generalization of the classical SCOOP concurrency model to distribution in
a way that maintains the guarantees of the core abstractions. For language designers,
it presents a simple yet effective distributed programming abstraction (and descriptions
of how we realized it) that could be transferred to other object-oriented languages.

Plan of the Paper. After introducing the necessary technical background of network
objects and SCOOP (Section 2), we show how they fuse together in D-SCOOP, our
distributed programming model (Section 3). We go into more depth on how objects are
controlled to avoid interference (Section 4) and how compensation helps in managing
failure (Section 5). Our prototype is then evaluated against Java RMI (Section 6), before
we review some related work (Section 7) and conclude (Section 8).



2 Background: Network Objects and SCOOP

Our work combines networks objects—a distributed programming abstraction—with
SCOOP, a concurrency model that handles synchronization in its runtime and provides
strong reasoning guarantees. We present the necessary technical background of these
concepts in the context of a running example.

Network Objects. A network object is an object whose methods can be invoked over
a network. The abstraction is a simple but natural generalization of standard objects to
distributed contexts: the programmer interacts with their interfaces in the same way as
before, and without regard to where the object is physically located. Communication is
handled in the method calls, and is typically synchronous to mimic regular method calls.
Network objects first appeared in Modula-3 [2], and have since strongly influenced
Java’s Remote Method Invocation (RMI) API as well as the Common Object Request
Broker Architecture (CORBA) standard.

While implementations of network objects vary, the abstraction is typically light-
weight on synchronization, leaving this difficulty to the user, to the point that multiple
clients can concurrently execute the same method (introducing the possibility of data
races). Simple mechanics such as synchronized in Java are not always sufficient to
ensure atomicity. Consider for example the simple bank account transfer method in
Listing 1, which allows some client to transfer an amount (am) of money from a source
(s) account to a target (t) account. If the system is single-threaded and the accounts
are local, then the method is correct. If the accounts can be accessed concurrently, then
locks or other measures are required to ensure the atomicity of transfer. If however
the accounts are remote and can be accessed concurrently as network objects, then we
must adapt again.

transfer (s, t: ACCOUNT;
am: NATURAL)

do
if s.balance >= am then

s.set_balance (s.balance - am)
t.set_balance (t.balance + am)

else -- Notify user
end

end

transfer (s, t: separate ACCOUNT;
am: NATURAL)

do
if s.balance >= am then

s.set_balance (s.balance - am)
t.set_balance (t.balance + am)

else -- Notify user
end

end

Listing 1: Bank account transfer methods: sequential (left) and in SCOOP (right)

One solution is to use locks and expose them as network objects, but this poses risk,
e.g. if a client loses its connection before having a chance to release its locks. Another
solution is to hide the synchronization within additional methods in the account class,
but this is still challenging to implement without introducing concurrency errors such as
races or deadlocks. Either way, the simplicity of the network object abstraction suffers
with the complexity of synchronizing correctly; hence our aim to elegantly integrate it
with a concurrency model that can manage such complexity in its runtime.



SCOOP. SCOOP [25] is a concurrent object-oriented programming model that aims to
preserve the well-understood modes of reasoning enjoyed by sequential programs, such
as pre- and postcondition reasoning over blocks of code. Programmers are provided
with simple abstractions for expressing concurrency, with the runtime itself responsi-
ble for correctly handling synchronization. We describe SCOOP in the context of its
principal implementation for Eiffel [8], but remark that the ideas generalize to other
object-oriented languages (e.g. Java [24]).

In SCOOP, every object is associated with a process (which we call its handler), a
concurrent thread of execution with the exclusive right to call methods on the objects it
handles. In this context, object references may point to objects with the same handler
(non-separate objects) or to objects with distinct handlers (separate objects). Method
calls on non-separate objects are executed immediately by the shared process. To make
a call on a separate object, however, a request must be sent to the handler of that object
to process it: if the method is a command (i.e. it does not return a result) then it is
executed asynchronously, leading to concurrency; if it is a query (i.e. a result is returned
and must be waited for) then it is executed synchronously. Note that processes cannot
synchronize via shared memory: only by exchanging requests.

The possibility for objects to have different handlers is captured in the type system
by the keyword separate. To request method calls on objects of separate type, pro-
grammers simply make the calls within separate blocks: these are the bodies of any
methods that have separate objects as formal parameters. SCOOP provides guarantees
about the order in which calls in these blocks are executed, so as to help programmers
avoid concurrency errors. In particular, method calls on separate objects will be logged
as requests by their handlers in the order that they are given in the program text; fur-
thermore, there will be no intervening requests logged from other handlers. These guar-
antees exclude data races by construction, and allow programmers to apply sequential
reasoning within separate blocks independently of the rest of the program.

Consider the concurrent version of transfer in Listing 1, in which bank account
objects have concurrently running handlers. Suppose that a process calls the method
transfer (acc1, acc2, 100) on separate accounts acc1 and acc2. The body of the
method contains two commands on these separate objects—thus, two asynchronously
executed requests—that transfer the stated amount from the first account to the second.
It also contains balance queries which are executed synchronously. The SCOOP guar-
antees ensure that while the process is inside the body of transfer, no other process
can log intervening requests on acc1 or acc2. As a result, it would not be possible for
another process to observe the balances of the two accounts in an intermediate state,
i.e. when the money has been withdrawn from the former but not credited to the latter.
The body of transfer can thus be reasoned about sequentially and independently of
the rest of the program. This additional control over the order in which requests are
logged (i.e. that requests cannot be interrupted) is the key distinction SCOOP has over
other message-passing-based models such as the actor model, or active objects.

SCOOP provides some more advanced concurrency mechanisms beyond the focus
of this paper. Most notable are its generalization of method preconditions to support
condition synchronization on separate objects, and its support for efficient data shar-
ing between processes sharing memory via “passive” data objects that can be accessed
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Figure 1: Three processes (p1, p2, p3) logging requests on another (p0)

directly (i.e. without the overhead of message-passing). We refer to [20] and [18] re-
spectively for more detailed discussions of these concepts.
SCOOP Runtime. The concurrent programming abstractions presented rely on the
existence of a runtime that can correctly and efficiently realize them. At the core of
SCOOP’s runtime is a simple execution model for managing requests that are sent be-
tween processes. Each process is associated with a “queue of queues” [25], that is, a
FIFO queue itself containing (possibly several) FIFO subqueues for storing incoming
requests. Each of these subqueues represents a “private area” for some other process
to log requests, in program text order, and without interference from other processes
(since they have their own subqueues). Figure 1 visualizes three processes (p1, p2, p3)
simultaneously logging requests (green blocks) on another process (p0). The process p0
is handling the subqueues one-by-one in the order that they were created, and handles
the requests within them in the order that they were logged there, hence ensuring the
SCOOP reasoning guarantees.

Consider again the process that calls transfer (acc1, acc2, 100) on two sepa-
rate accounts, acc1 and acc2. Under the current runtime, the handlers of acc1 and acc2
both generate a private subqueue on which the calling process can log requests (i.e. the
balance queries and set_balance commands) without interruption for the duration of
the block. Should another process also need to log requests on an account, then a new
private subqueue is generated for it and its requests can be logged without waiting.

We remark that earlier versions of the SCOOP runtime additionally provided timing
guarantees by not allowing processes to enqueue requests concurrently [17]. A formal
comparison with the current semantics is given in [5].

3 Overview of Distributed SCOOP

In this section we present D-SCOOP (for Distributed SCOOP), which combines net-
work objects and the SCOOP synchronization semantics into a single, distributed pro-
gramming model that maintains the simplicity of the original abstractions. We present
an overview of its architecture and communication protocol, and explain how separate
calls are generalized to potentially remote objects (Sections 4 and 5 describe in more
detail how control of remote objects is achieved in D-SCOOP, and how the system com-
pensates for unresponsive clients).

A prototype implementation of the D-SCOOP model is available online [7]. Our pro-
totype builds upon the SCOOP support for Eiffel in EiffelStudio [8], which implements
the model using threads and shared memory. D-SCOOP generalizes the implementation,
allowing for multiple instances of potentially remote SCOOP programs to communicate,
under-the-hood, by asynchronous message passing.
Architecture. In D-SCOOP, an instance of a SCOOP program is called a node. A node
can open a connection to another node through a network socket, which is then shared



by all of its processes. A node can request the index object of another node, which is a
user-defined object that typically provides the API of the node, or some form of registry.
It is valid for a node to not supply an index object, typically if it is a client in a client-
server style setup. To be able to accept incoming connections from other nodes, a node
must start a server and provide its own index object (or a factory that generates them).
Every node in a D-SCOOP network has a unique identifier (ID), which is independent
of any other IDs such as IP addresses. Object references in D-SCOOP include this node
ID, along with their object and process identifiers (as in classical SCOOP), with the
latter important for determining the number of processes involved in a separate block.

The nodes in D-SCOOP networks communicate, via their connections, using an
asynchronous message-passing scheme. Messages conform to a protocol and can be one
of two types: a request6 or a reply. Requests are sent from a client node to a supplier,
defining work for the supplier to do. Replies are sent back from the supplier to the client
indicating the outcome.

Within nodes, we rely on existing mechanisms of SCOOP for garbage collecting
local objects and processes. D-SCOOP however must also account for objects used by
multiple nodes. To achieve this, we use a distributed garbage collection algorithm sim-
ilar to that of Birrell et al. [3].

Requests and Replies. Messages in the D-SCOOP communication protocol have sub-
jects which convey their intended semantics. Messages that are requests can have one
of many different subjects which we outline in the following. Replies however only
indicate success (

�� ��OK ) or failure (
�� ��FAIL ), sometimes with additional arguments, such as

the result of a query call.
The simplest request subjects are

�� ��HELLO ,
�� ��PING and

�� ��INDEX , which respectively ini-
tialize a connection between nodes, test whether an existing one is still alive, and request
the index object of the supplier node (which typically provides an API of methods for
retrieving more objects).

A number of requests are required to realize a separate block involving remote ob-
jects. A

�� ��PRELOCK request announces that a process in a client node wishes to log calls
on one or more processes in a supplier node. When a supplier is ready, the client can
issue a

�� ��LOCK request to announce it is now entering the separate block. Following this,
it can issue requests corresponding to asynchronous method calls (

�� ��CALL ), synchronous
calls (

�� ��SCALL ), and queries (
�� ��QCALL ). To announce leaving the separate block, the client

sends an
�� ��UNLOCK request. (We describe in more detail how these requests establish

control in Section 4.)
Requests with the subjects

�� ��SHARE and
�� ��RELEASE are respectively used for obtaining

and revoking permission for given object references to be shared with third party nodes.
They are used by D-SCOOP for garbage collecting.

Finally,
�� ��AWAIT and

�� ��READY requests are used to implement condition synchroniza-
tion on remote objects. In short: if the condition does not hold, the client process issues
an

�� ��AWAIT request before going to sleep. This instructs the supplier to wake it up with a�� ��READY request once the state of the remote objects changes, so that the condition can
be checked again.

6 Note that these are distinct from the requests used for inter-process communication in SCOOP.



Message Handling. Incoming messages are handled by the request handlers of D-
SCOOP nodes in multiple stages, depending on their subjects. If an incoming message
has the subject

�� ��HELLO ,
�� ��PING ,

�� ��SHARE , or
�� ��RELEASE , then it is handled directly. If a mes-

sage is a reply, then it is relayed to the appropriate process within the node. Messages
addressed to other nodes are relayed.

For messages concerning separate blocks and condition synchronization, a more
careful treatment is required. In D-SCOOP, every node has a special designated proxy
process for handling incoming lock and call requests. Associated with these proxy pro-
cesses are proxy objects, which are surrogates (or placeholders) for actual remote ob-
jects, holding references to them. This additional layer is used to catch special contexts
in which calls are treated differently. For lack of space we do not go into detail, but
mention two of the most important: callbacks (see [20]), and a SCOOP extension for
passive data objects (see [18]).

To minimize the overhead of proxy processes and objects, they are created only
when needed and removed when they are not. For example, if not existing already,
receiving a

�� ��LOCK request with some given object identifiers will trigger the creation of
a proxy process on that node and proxies for those objects. And when no longer in use
by local processes, they can be collected by the local SCOOP garbage collector.
Remote Calls in Separate Blocks. The communication protocol presented is ulti-
mately the glue that allows for network objects to be used within the SCOOP framework.
Our aim was to make the fusion of these concepts as seamless as possible: programmers
should not need to be aware of the communication protocol for network objects, and
the core abstractions of SCOOP should not need to be fundamentally reinvented to ac-
commodate the extension.

In D-SCOOP we were able to maintain the original abstractions provided by separate
blocks, while also providing a natural generalization to support objects residing on other
nodes. When a process needs to make a call on a separate object, there are now three
possible cases to distinguish. If the target object shares the same process (and thus,
obviously, the same node), the call is executed immediately—as in SCOOP. If the target
object has a distinct process but on the same node, the process logs a request in a private
subqueue for the caller (see Section 2)—as in SCOOP. If the target object has a distinct
process on a remote node, however, the D-SCOOP communication protocol comes into
play, and a

�� ��CALL message is sent to to the remote node.

4 Controlling Remote Objects

We have presented an overview of the D-SCOOP architecture, its messaging protocol,
and its generalization of separate blocks to support calls on remote objects. In this
section, we describe how control of remote objects and thus distributed separate blocks
are achieved.

In D-SCOOP, separate blocks are handled in three phases: (i) the prelock phase,
for ensuring a correct ordering; (ii) the issuing phase, for enqueuing calls; and (iii)
the execution phase, for executing calls. The issuing phase happens strictly after the
prelock phase. While the execution phase cannot start before the issuing phase, the two
can otherwise overlap due to asynchronicity.
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Figure 2: Prelock phase: a process on node C is entering a separate block involving
separate objects on remote nodes N1, . . . Nn

Prelock Phase. In standard SCOOP, if a process enters a separate block, the processes
handling the separate objects generate private subqueues for logging calls (see Sec-
tion 2 and Figure 1). In D-SCOOP however, if a process enters a separate block involv-
ing separate objects on remote nodes, messages must be sent to trigger the generation
of subqueues in a way that preserves the usual reasoning guarantees. We refer to this
messaging phase as the prelock phase.

A client node seeking to enter a separate block involving remote objects must first
announce its intention by sending

�� ��PRELOCK requests to the nodes they reside on. This
is done in a fixed order (a global order based on node IDs) to avoid deadlocks, and
one-at-a-time; an

�� ��OK reply must be received before the next
�� ��PRELOCK is sent. Once the

last such request is successful, the client node announces that it is entering the separate
block and will start issuing calls. This announcement is made via

�� ��LOCK requests, which
can be sent asynchronously in any order. By replying with

�� ��OK , the supplier nodes are
acknowledging that the involved processes have created private subqueues and are ready
to enqueue calls from the client. Figure 2 exemplifies this phase for a client node C that
wishes to enter a separate block involving remote objects on supplier nodes N1, . . . Nn.
Here, an arrow denotes the transmission of a message, with its subject given at the end
(additional parameters are not visualized).

When multiple nodes are entering prelock phases involving common supplier nodes,
blocking must occur in order to maintain the separate block order guarantees. In par-
ticular, if a

�� ��PRELOCK message is sent but the supplier is already involved in the prelock
phase of a competing node, then the system blocks on that message. Instead of block-
ing for the whole of the competing node’s separate block, D-SCOOP permits a more
fine-grained and efficient solution. In particular, it only blocks until the competing node
leaves its prelock phase and starts issuing calls. That is to say, D-SCOOP only blocks
while “setting up” the subqueues in a correct order; competing issuing phases can oth-
erwise safely run concurrently.

Issuing and Execution Phases. The prelock phase ends and the issuing phase begins
when the final

�� ��LOCK request is successful. At this point, the processes handling all the
involved remote objects are ready to enqueue calls. In most circumstances, commands
on remote objects are requested via asynchronous

�� ��CALL messages, and queries are re-
quested via synchronous

�� ��QCALL messages. The supplier nodes enqueue commands and
immediately reply with an

�� ��OK . When a query is received however, the supplier node en-



withdraw (s: separate ACCOUNT; am: NATURAL)
do

if s.balance >= am then
s.set_balance (s.balance - am)

else -- Notify user
end

end

Listing 2: Bank account withdrawal method in D-SCOOP
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Figure 3: All three phases: a process on C1 calls transfer on A1 and A2; a process on
C2 concurrently calls withdraw on A1

queues it, but only replies once it has been executed (passing the result in an additional
parameter of the

�� ��OK message).
The execution phase begins with the execution of the first logged call. If all the calls

are asynchronous, it can take place strictly after the issuing phase. The issuing phase
ends on sending the

�� ��UNLOCK message; the execution phase ends on processing it.

Example Communication. We return to our running bank account example, which
we extend with a simple method withdraw (Listing 2) for withdrawing a given amount
from a given account that we assume to be remote. The method first synchronously
queries the remote object to check that the balance is sufficient, before asynchronously
decreasing the balance.

Suppose we have a running D-SCOOP system with two bank accounts on different
nodes (A1, A2). Suppose now that a client node (C1) is trying to transfer an amount



from A1 to A2, while another client node (C2) is trying to withdraw an amount from
A1. Recall that the bodies of both methods are separate blocks (involving, respectively,
separate accounts on A1, A2 and A1). Figure 3 visualizes the messages exchanged in
one possible behavior.

Observe that both clients initially send a
�� ��PRELOCK request to A1. The request from

C2 is received first and is therefore answered immediately; meanwhile, C1 blocks. Since
C2 only seeks control over a process on A1, it proceeds to send a

�� ��LOCK request, thus
completing its prelock phase and generating its private subqueue on A1. This allows C1

to unblock and its first
�� ��PRELOCK request finally succeeds.

Since the prelock phase of one client can take place in parallel to the issuing and exe-
cution phases of another, C2 already starts issuing calls before C1 concludes its prelock
phase. In particular, it requests the balance query (via

�� ��QCALL ) which is executed syn-
chronously (and the balance amount returned). Following this, C1 requests a

�� ��PRELOCK

on A2 (which is uncontended), before completing its prelock phase by sending
�� ��LOCK

requests to A1 and A2.
At this point, both C1 and C2 issue balance queries (

�� ��QCALL )—the former is eval-
uating its conditional guard, and the latter is evaluating the expression in the input of
s.set_balance (s.balance - am). Since C2 completed its prelock first, its private
subqueue on A1 is ahead of the subqueue for C1, and so its call is executed first. Fol-
lowing this, C2 requests an asynchronous command (

�� ��CALL ) to update the balance, and
then exits its separate block via an

�� ��UNLOCK request. Once acknowledged, C2 knows
that the whole transaction (balance and then set_balance) was successful, and its ef-
fects become visible to other clients. Once the

�� ��OK corresponding to its earlier
�� ��QCALL

arrives, C1 can resume issuing the remaining calls in its separate block before exiting
via

�� ��UNLOCK requests to A1 and A2.
Note that the reasoning guarantees of the separate blocks have been maintained.

The calls are executed in program text order and without intervening calls from other
nodes: within a separate block, multiple balance calls in sequence thus always return
the same result. The combination of the prelock phase and the underlying queue of
queues semantics prevents the possibility of interleavings that break this.

5 Compensating for Failure

Our presentation of D-SCOOP has thus far focused on the challenge and intricacies of
combining the network objects abstraction with a concurrency model and runtime. In
this section, we turn our attention to a topic that cannot be ignored in the setting of
distributed computing: coping with failure.

While failure can often be managed simply—a fixed timeout is used, for example,
to manage it in prelock phases—failure in the middle of a separate block, when only
some of the side-effecting commands have been issued, needs a more elaborate solution.
We introduce compensation, D-SCOOP’s mechanism for reacting to such failure, and
demonstrate its use on our running example.
Compensation. In D-SCOOP, upon failure of a supplier, the client is informed using
exceptions, and can react to it appropriately in a rescue-clause. However, the suppliers
in separate blocks are in general oblivious to the status of the client. Our solution is



(a) Client-defined compensation

...
t.compensate (agent

t.set_balance (t.balance))
t.set_balance (t.balance + am)

...

(b) Supplier-defined compensation

set_balance (nb: NATURAL)
do

compensate (agent
set_balance (balance))

balance := nb
end

Listing 3: A set_balance method together with possible compensation

to introduce compensation, a supplier-side mechanism for reacting to client nodes that
become unresponsive or disconnect prematurely. The technique registers user-provided
closures on suppliers that, before releasing objects controlled by disconnected clients,
are executed to restore consistency.

The basic technique is adapted from well-established usage in transactions, in par-
ticular, for recovering from long-running transactions or transactions with side effects.
It fits naturally with the D-SCOOP model, given that separate blocks are transaction-
like in the sense that other clients cannot observe the separate objects in intermediate
states. One can think of a

�� ��LOCK and
�� ��UNLOCK pair as being the beginning and end of a

transaction; after
�� ��UNLOCK is acknowledged, all changes become visible.

The scope of compensation is the issuing phase, and encompasses all executed calls
on processes that have been acquired during the prelock phase (and only those pro-
cesses). In the case of nested separate blocks, the outer block has to take into account
that the effects of the inner block are already visible if an

�� ��UNLOCK was issued. This
is different to most definitions of nested transactions, in which the inner transaction
always finishes together with the outer transaction.

Defining Compensation. Compensation closures are provided by the user as the input
of special methods for registering compensation. (We remark that closures are given
with the Eiffel keyword agent, and can refer to existing methods.) It is possible to define
them in the client or the supplier. A client-defined compensation closure is registered
before the call to the method to be compensated (and is ignored by the supplier if no
request follows). A supplier-defined compensation closure is provided within the called
method. The latter comes with the advantage that compensation is defined together with
the method, but the former allows for more flexibility: different compensations can be
defined depending on where the call is made, which is particularly useful for methods
that do not always need compensation.

Consider the simple method set_balance for bank account objects (Listing 3)
which sets the balance of an account to some provided input. The listing also in-
cludes examples of how to make it compensable. On the left is a snippet of the body
of transfer, now annotated with client-defined compensation before the call. On the
right is supplier-defined compensation, provided at the beginning of the method body.
In both cases, the balance argument to the closure (agent) is evaluated to the original
balance, so it will restore the old balance if called.
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Implementing Compensation. Upon receiving a
�� ��LOCK request, a supplier node stores

the IDs of the newly requested processes in a stack. This stack is mainly used to iden-
tify which processes need to be released upon

�� ��UNLOCK . Each of the process entries
also contains a reference to a set of compensation closures, extracted from the pro-
gram text. These closures are accompanied by relative timestamps, so that within all
the sets for this client each number is unique and a later registration has a strictly higher
number than an earlier one. Whenever a process is unlocked normally (i.e. not due to
premature disconnection) the respective set is cleared. However, if a client node discon-
nects prematurely, all sets associated with the client are merged and then ordered by the
timestamps. The execution of the compensation closures is done in reverse order.

Figure 4 shows the call stack caused by a remote client calling the method a and then
h. The targets of a, b, c, d and h are owned by process P1, while the targets of the calls
e, f, and g are owned by process P2. During the execution of c, P1 acquires control over
P2 to execute. After a is finished, the client sends another request to execute h before
releasing P1.

We now take a look at three failure scenarios, all of them due to a premature dis-
connect by the client. If the client disconnects before a is executed, nothing happens.
The client’s control over P1 is simply lifted. The second case is more complex: if the
client disconnects while a is executing, the calls a, b, . . . g are all executed as requested.
Since P1 is issuing the

�� ��UNLOCK request to P2 before finishing itself, the changes done
by e, f, g are visible. The disconnect then causes the compensation closures of d, c, b,
a to be executed before control over P1 is released. Consequently, the compensation of
c has to deal with the fact that the changes due to e, f, g are already visible.

If the client issued the call to h but got lost before sending the
�� ��UNLOCK request, the

situation is similar, with the one difference being that the compensation of h is executed
before the others.

6 Evaluation

We evaluated D-SCOOP against Java RMI to gauge its performance against a well-
established and widely used approach based on network objects. We sought to collect
evidence towards answering two questions. First, is there a performance overhead asso-
ciated with the automatic synchronization in D-SCOOP, and does it become incommen-
surate with the effort to manually write synchronization code? Second, do the language
abstractions of D-SCOOP facilitate simpler code?
Example Selection. D-SCOOP and Java RMI have many differences: not only in the
model, but also in terms of the underlying programming languages (Eiffel and Java)
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Figure 5: Benchmark results: each run involved several thousand iterations (see [7])

which have many points of variation regarding performance and compilers. In this con-
text, we devised a set of four microbenchmarks isolated to comparing the performance
of calls: (i) command call, in which a single client sends a series of command calls
to the supplier; (ii) query call, analogous, but with query calls; (iii) locking and com-
mand call, in which a few clients compete to control a supplier object and send a single
command call; and (iv) locking and query call, analogous, but with a single query call.

In addition to microbenchmarks, we also evaluated D-SCOOP against Java RMI on
three larger examples. First, dining philosophers, a classical example where multiple
objects (forks) are repeatedly controlled. For this benchmark, all philosophers and forks
reside on different nodes, and we assume that eating, using the fork, and thinking take
no time. Second, a more practical example: a log server, in which various events are
logged. Here, there are multiple log servers for redundancy, meaning that copies of
logs can still be retrieved if one fails. To ensure a consistent ordering across servers, a
client must control all of them before adding the entries. In our benchmark, three clients
repeatedly generate a simple log message, gain control across the servers, and then
place it. Third, a pipeline representing distributed services. Each stage waits until the
previous stages are ready before retrieving data and processing it. Each stage provides
one operation of the well known formula

√
a2 + b2. We measured the time the final

stage needed for a specific number of calculations.
For Java RMI, explicit locking was used to establish a comparable flexibility in the

clients. Furthermore, the Java code explicitly orders the locks so as to avoid deadlocks.
The source code of the examples and of D-SCOOP itself can be found on our supple-
mentary material webpage [7].

Performance. Overall, we found that despite the potential overhead of automatic syn-
chronization, D-SCOOP’s performance is competitive with—and can be superior to—
explicit locking-based synchronization in Java RMI. The results of the performance
evaluation are listed in Figure 5 and are the averages of 30 runs; we used two off-
the-shelf laptops connected by an ethernet cable. The microbenchmarks show that the
performance of both D-SCOOP and Java RMI is similar when just issuing commands or
queries. D-SCOOP commands are a bit quicker than D-SCOOP queries due to them be-



Table 1: Code complexity
Classes Features Instructions

RMI D-SCOOP RMI D-SCOOP RMI D-SCOOP

Microbenchmarks 3 2 8 6 19 13
Dining philosophers 3 2 6 3 18 10
Logging 6 3 16 9 23 10
Pipelines 2 1 10 16 62 42

ing asynchronous, whereas in RMI both are synchronous. When it comes to the control
microbenchmarks, the built-in synchronization in D-SCOOP allows for a more signifi-
cant improvement in speed, both for synchronous and asynchronous calls. However, the
synchronization overhead prevents the asynchronous advantage of Control/Command
translating into faster performance than Control/Query.

For both the dining philosophers and the logging example, the fact that the prelock
phase can be done in parallel with the issuing and execution phase of another client
proves to be a significant advantage in comparison to RMI. In addition, the logging
example shows the advantage of asynchronous calls in D-SCOOP. The underlying se-
mantics make it possible to ensure control over multiple nodes and have multiple clients
issuing asynchronous calls at the same time. The pipeline example has less congestion
around the protected objects; here, the advantage of D-SCOOP lies solely in slightly
fewer messages sent due to more powerful synchronization mechanics.
Simplicity. Our second question asked whether the language abstractions also yield
simpler code. For our seven benchmarks, we recorded: (i) the number of classes in-
volved, excluding primitive types, classes, and strings, and ignoring the RMI remote
interface; (ii) the number of features (i.e. attributes and methods), ignoring the Java
“getters” in RMI since they just return an otherwise counted attribute; and (iii) the num-
ber of written instructions, excluding boilerplate code. This ensures that the differences
are only due to synchronization. Table 1 lists the results.

As can be seen, the solutions in D-SCOOP are much more compact across the three
measurements. In the case of advanced techniques such as condition synchronization—
an in-depth discussion is omitted for brevity—the complexity of RMI increases further
still. Note that not included in the RMI examples are compensation and the automatic
releasing of locks, since they are difficult to achieve in that framework. Also, although
the usage of a lock or semaphore is counted as a class, its features are not counted
in the feature column since they are already provided by the library. We remark that
these numbers only indicate that D-SCOOP programs are more compact than their RMI
counterparts. What we leave to future work is a study of users themselves to determine
whether the D-SCOOP abstractions are easier to read and program with, regardless of
their compactness. (An existing SCOOP study is encouraging [19].)

7 Related Work

There is a wide selection of work addressing concurrency and distribution in the object-
oriented paradigm. Here, we highlight some work that is closest to our own.



The active object [14] design pattern (which inherits from the actor model [1]), like
SCOOP, decouples method calls from method executions. Such objects are associated
with their own processes, which can send messages to each other asynchronously, intro-
ducing concurrency. Despite the similarity to SCOOP, active objects lack the guarantee
of interference-freedom when multiple objects are involved. Furthermore, non-active
objects have to be protected manually, and there is no built-in support for condition
synchronization (although it is possible to use the observer pattern to actively notify
waiting processes). SCOOP can be seen as an advanced form of active objects: objects
are by default active, but multiple objects can share the same process. In addition, the
SCOOP synchronization mechanisms ensure the absence of intervening calls and also
protect non-active objects [18]. Condition synchronization is simple (via method pre-
conditions) and does not require signaling.

There have been some successful attempts to generalize ideas from active objects
and the actor model to distributed programming frameworks, with some prominent
examples including Creol [12], AmbientTalk [6], and JCoBox [21]. The latter parti-
tions the object space into “coboxes”, each with a common thread of control to im-
prove safety; an approach similar to the processes of SCOOP and D-SCOOP. Caromel
et al. [4] consider a way of unifying threads and objects to support simpler reasoning
about distributed computing, and provide a formal calculus. An important distinction
of D-SCOOP in comparison to other frameworks is the impossibility of interrupting re-
quests sent to multiple (potentially distributed) objects controlled by different threads,
giving the model its transaction-like semantics.

Network objects [2] share some similarities with active objects, although calls to
them are traditionally synchronous to mimic standard method calls, and calls to local
network objects are usually handled by the calling process. Creol exemplifies different
synchronization approaches possible with active objects, and their natural extension to
network objects. Some languages, such as E [16], avoid blocking entirely to ensure
deadlock-freedom. This, in our view, can lead to complex behavior that is difficult to
understand from the point of view of classical sequential programming. By making
synchronization simpler to use, D-SCOOP potentially reduces (but does not eliminate)
the risk of deadlocks.

For dealing with failures, the programming language Argus [15] supports “atomic
objects” that can be used in a transaction. In contrast, our compensation approach is not
limited to pure data-objects.

8 Conclusion

This paper made a case for combining network objects with synchronization models.
We presented D-SCOOP, a distributed programming model obtained by combining the
network objects abstraction with the runtime semantics of the object-oriented concur-
rency model SCOOP. We presented an efficient two-phase locking protocol that gen-
eralized the strong reasoning guarantees of SCOOP to network objects, allowing for
interference-free and transaction-like reasoning on (potentially multiple) remotely lo-
cated objects, without the programmer having to explicitly manage their synchroniza-
tion. Furthermore, we proposed a compensation mechanism by which D-SCOOP pro-



grams can recover from failure. The evaluation of our prototype implementation [7]
suggested that D-SCOOP remains competitive against—and can outperform—explicit
locking-based synchronization in Java RMI, a well-established realization of network
objects, with the automatic synchronization mechanisms also allowing for more com-
pact code.

In future work, we plan to improve the efficiency of D-SCOOP with respect to intra-
object parallelism [11, 13]. We will investigate concepts such as slicing [22], and the
possible integration of software transactional memory [9]. We will also investigate
whether performance can be improved, by (safely) relaxing the requirement that one
node communicates with another via a single connection. Finally, we want to formalize
the D-SCOOP semantics using [5] to test extensions, and provide a formal proof that
the protocol and algorithms correctly generalize the SCOOP guarantees.
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