
Concurrent object-oriented programming on .NET

P. Nienaltowski, V. Arslan and B. Meyer

Abstract: The SCOOP model (Simple concurrent object-oriented programming) offers a
comprehensive approach to building high-quality concurrent and distributed systems. The model
takes advantage of the inherent concurrency implicit in object-oriented programming to provide
programmers with a simple extension enabling them to produce concurrent applications with little
more effort than sequential ones. In the paper, the authors discuss the basic concepts of the model,
such as processors and separate objects. They also present SCOOPLI, a library implementation of
SCOOP for the .NET platform. They show how SCOOP concepts are mapped to .NET constructs,
and discuss distributed programming with SCOOPLI, with a focus on .NET Remoting capabilities.
Several programming examples illustrate the discussion.
1 Introduction

Concurrent programming in its many variants from multi-
threading to multiprocessing, distributed computing, Inter-
net applications and Web services, has become a required
component of ever more types of systems, including some
that were traditionally thought of as essentially sequential.
However, the industry is still looking for a good way to
produce concurrent applications. The contrast with sequen-
tial programming is stark: there, a widely accepted set of
ideas (standard control and data structuring techniques,
modularity and information hiding, object-oriented prin-
ciples) have displaced the lower-level concepts that used to
predominate, but the techniques commonly used to produce
concurrent applications are elementary and often haphazard.
Many developers, for example, want to add multithreading
to their systems, but the proper use of multithreading
remains a black art. The continuing discussions about how
multithreading breaks the Java Memory Model is a typical
symptom of this situation. The software field badly needs a
concurrent programming technique enjoying the same
simplicity and inspiring the same confidence as the accepted
constructs of sequential programming.

The SCOOP model is an attempt to provide this simple
basis. SCOOP [1, 2: Chap. 31] takes object-oriented
programming as given, in a form based on the concepts of
Design by contract, and extends them in a minimal way
(one language keyword and a few library mechanisms) to
cover concurrency and distribution. To address such
requirements of concurrent processing as mutual exclusion,
synchronisation and wait conditions, SCOOP gives new
semantics to well known constructs (argument passing,
preconditions) where the standard sequential semantics
could not be applied anyway. The model is applicable to
many different physical setups, from multiprocessing to
multithreading, network programming, Web services and
distributed computation. It takes advantage of the inherent

q IEE, 2003

IEE Proceedings online no. 20030992

doi: 10.1049/ip-sen:20030992

The authors are with the chair of Software Engineering, Swiss Federal
Institute of Technology (ETH), 8092 Zurich, Switzerland

Paper received 29th June 2003
308
concurrency implicit in object-oriented programming to
shield programmers from low-level concepts such as
semaphores, letting them instead produce concurrent
applications along the same lines as sequential ones.

SCOOP has only had prototype implementations so far.
Along with continuing to refine the model, we are building a
production implementation. While intending to support
many different platforms and concurrency mechanisms
thanks to the model’s generality (Fig. 1), we have chosen
Microsoft .NET as our first implementation and reference
platform, taking advantage of specific .NET mechanisms —
provided in particular by the System.Runtime.Remoting and
System.Threading namespaces — which constitute an
excellent basis for SCOOP. For generality the focus of the
implementation is a language-independent library,
described in this paper: SCOOPLI: a library-based
implementation of SCOOP for .NET. Thanks to the multi-
language character of .NET, developers using different
languages can take advantage of the concurrency mechan-
ism provided by SCOOPLI.

2 SCOOP model

SCOOP stands for simple concurrent object-oriented
programming. The extension covering full-fledged concur-
rency and distribution adds a single new keyword to the
Eiffel programming language — separate.

2.1 Generality

SCOOP has a two-level architecture (see Fig. 1). The top
layer of the mechanism is platform-independent. To
perform concurrent computations, applications use the
‘separate’ mechanism implemented at that level. Internally,
the implementation relies on some concrete concurrent
architecture, made accessible through one of the implemen-
tation libraries in the bottom layer. Possibilities listed in
Fig. 1 include:

. an implementation using the .NET platform, especially its
Remoting and Threading mechanisms, described in this
paper
. a thread-based implementation, e.g. with POSIX threads
. a multithreading implementation on a real-time operating
system, e.g. Windows CE .NET with the .NET Compact
Framework.
IEE Proc.-Softw., Vol. 150, No. 5, October 2003

The architecture simplifies the task of application devel-
opers, who only need to use the general concurrency
mechanism implemented in the top layer; the bottom-layer
libraries provide the binding to the actual concurrency
platform [3].

2.2 Processors

In object-oriented computation, the basic mechanism is a
feature call such as x.f(a), with the following semantics
(Fig. 2): the client object calls feature f on the supplier
object attached to x, with argument a. In a sequential
setting, such calls are synchronous, blocking the client
until the supplier has terminated the execution of the
feature.

To support concurrency, SCOOP allows the use of more
than one processor to handle execution of features. Every
object has a handler: a processor in charge of executing
feature calls on the object. If the client and supplier objects
in a feature call have different handlers, the call becomes
asynchronous: in Fig. 2, the computation on Object 1 can
move ahead without waiting for the call on Object 2 to
terminate.

Processors are the principal new concept for adding
concurrency to the framework of sequential object-oriented
computation; while a sequential system is limited to one
processor, a concurrent system may have any number of
processors. A processor is an autonomous thread of control
capable of supporting the sequential execution of instruc-
tions on one or more objects. It does not have to be
associated with a physical processor; it may also be
implemented by a process of the operating system, or a
thread in a multithreading environment. In the .NET
Framework, processors can be mapped to application
domains (see Section 4).

Viewed by the software, a processor is an abstract
concept; the same concurrent application may be executed
on very different architectures without any change to its
source text (see Section 3).

2.3 Separate calls

Since the effect of a call depends on whether the client and
the supplier objects are handled by the same processor or
by different ones, the software text must distinguish

SCOOP
platform-independent

.NET POSIX
.NET

Compact
Framework

…

Fig. 1 Two-level architecture of SCOOP

Object 1

prev_instruction

x.f (a)

next_instruction

processor processor

f(a: A) is

 require

 a /=Void

 ensure

 not a.is_empty

 end

Object 2

Fig. 2 Feature call in SCOOP
IEE Proc.-Softw., Vol. 150, No. 5, October 2003
unambiguously between these two cases. For declarations
of variables or functions, normally appearing as x:
SOME_CLASS, a new form is now possible, x: separate
SOME_ CLASS.The keyword separate indicates that x is
handled by a different processor, so that calls on x will be
asynchronous. With such a declaration, any creation
instruction create x.make(. . .) will use a new processor to
handle calls on x. The declaration does not specify which
processor to use for handling the object. What matters is
that this processor is different from the processor handling
the current object [Note 1].

Rather than an individual variable or function, it is
also possible to declare a class as separate, as in
separate class SOME_CLASS (instead of the usual class
OTHER_CLASS). Then any variable of the corresponding
type will be treated as separate. SOME_CLASS will be called
a separate class [Note 2], and all its instances will be
separate objects. If a target of a call is a separate expression,
i.e. a separate entity or an expression involving at least one
separate entity, such call is referred to as separate call. In
Fig. 2, x is a separate entity, Object 2 is a separate object and
x.f(a) is a separate call.

2.4 Synchronisation and communication

SCOOP addresses the synchronisation and communication
needs of concurrent programming, including mutual exclu-
sion, locking and waiting, through argument passing and
design by contract.

2.4.1 Argument passing: A basic rule of SCOOP
is that a separate call on target x, x.f (. . .), where x is
separate, is only permitted if x itself is an argument of the
enclosing routine, and that calling a routine with such a
separate argument will cause waiting until the correspond-
ing separate object is exclusively available to the caller. So
if you call r (a), or y.r (a), with

r (x: separate SOME_TYPE) is . . .

the call will wait until no other client is using a in this way.
This rule provides the basic synchronisation mechanism.
It also avoids a common mistake of concurrent program-
ming: to misinterpret that in two successive calls on a
separate object, for example

that_stack.push (some_value)
. . .
x := that_stack.top

by assuming that nothing may have happened to the object
in between — so that in the example the object retrieved is
the object previously stored at the top of the stack. In a
concurrent setting, any other clients may interfere with the
object between the two calls. Under SCOOP, both calls
using that_stack as a target must be in routines of which
that_stack is an argument. If these are different routines, no
confusion is likely; if they are the same routine, the rule
guarantees that the routine will hold the object for the entire
duration of every call, to the exclusion of any other clients.

2.4.2 Preconditions: A routine may have a pre-
condition and a postcondition, as in

Note 1: Section 4.1 describes how processors are mapped to physical
resources.

Note 2: Eiffel syntax ensures that a class may be at most one of: separate,
expanded or deferred [2]. The separateness of a class is not inherited: a
class is separate or not according to its own declaration, regardless of its
parents’ status.
309

put (buffer: separate BUFFER [G]; value: G) is
- - Store value into buffer.

require
buffer_not_ full: not buffer.is_ full
value_ provided: value /= Void

do
buffer.put (value)

ensure
buffer_not_empty: not buffer.is_empty

end

A precondition clause involving a call with a separate target,
such as buffer.is_ full, is called a separate precondition. The
other clause appearing here, value /= Void, is not separate.

In sequential programs, preconditions are correctness
requirements that the client object must fulfil before calling
the routine on the supplier object. If one or more
preconditions are not met, the client has broken the contract;
for example, it has tried to store a value into a full buffer.
Since the execution is sequential, the state of the buffer
cannot change (no other client can try to consume an
element from the buffer in the meantime).

In a concurrent context this does not apply any more; the
buffer may be full when the client object is trying to store
a value into it, but nothing prevents another client object
from consuming an element from the buffer later on.
A nonsatisfied separate precondition does not necessarily
break the contract; it just forces the client object to wait until
the precondition is satisfied.

This inapplicability in a concurrent context of the usual
sequential interpretation of preconditions leads to the
SCOOP use of separate preconditions: as wait conditions
rather than correctness conditions. We have seen the basic
synchronisation rule: in the case of a separate argument, any
call will wait until the object is available. To obtain the full
synchronisation mechanism, we add the rule that if the
routine has a precondition clause using such a separate
argument as target, for example not buffer.is_ full — called
a separate precondition — the call will wait until both:

. the object is available

. the separate precondition is satisfied.

The wait semantics only applies to separate preconditions.
Others, such as value /= Void, retain their usual meaning as
correctness conditions.

2.5 Example and comments on the
scheduling policy

The following example (with postconditions omitted for
brevity) applies these concepts to a producer–consumer
scheme. Some objects are producing values and storing
them into the shared buffer buf; others are consuming
elements from that buffer. For both producers and
consumers, buf is a separate object, declared as such in
the source code of both classes. To perform any call to buf, a
client (producer or consumer) must obtain an exclusive lock
on buf. The SCOOP rule then implies embedding all the
calls to buf in routines store and consume_one. Direct calls
to buf.put, buf.item and buf.remove would be invalid.

class PRODUCER
feature

store (buffer: separate BUFFER [G]; value: G) is
- - Store value into buffer.

require
buffer_not_ full: not buffer.is_ full
value_ provided: value /= Void

do
310
buffer.put (value)
end

random_ gen: RANDOM_GENERATOR
buf: separate BUFFER [INTEGER]
produce_n(n: INTEGER) is

- - Produce n integer values and store them into a
buffer.

local
value: INTEGER
i: INTEGER

do
from i :¼ 1
until i > n
loop

value := random_ gen.next
store (buf, value)
- - buf.put (value) is forbidden here
i :¼ i þ 1

end
end

end

class CONSUMER
feature

consume_one (buffer: separate BUFFER [G]) is
- - Consume one element from buffer.

require
buffer_specified: buffer /= Void
buffer_not_empty: not buffer.is_empty

do
value := buffer.item
buffer.remove

end

buf: separate BUFFER [INTEGER]

consume_n (n: INTEGER) is
- - Consume n elements from a buffer.

local
i: INTEGER

do
from i :¼ 1
until i > n
loop

consume_one (buf)
- - buf.item and buf.remove are forbidden here
i :¼ i þ 1

end
end

end

To call consume_one from routine consume_n, a consumer
will pass buf as an argument. In the SCOOP access control
policy, when one or more arguments of a routine are
separate objects, the client must obtain exclusive locks on
all these objects before executing the routine. Here the
consumer object must obtain an exclusive lock on buf
before executing consume_one. If another object is
currently holding the lock, the client must wait until the
lock has been released, then try to acquire it. The default
policy is first-in, first-out. When the client succeeds in
acquiring the lock:

. The separate precondition clauses are evaluated. If they
all hold, the routine will execute, then release the lock.
. Otherwise, the object releases the lock and restarts the
whole process from the beginning: acquiring the locks, then
checking the separate precondition clauses. This allows
other clients to access the supplier object and change its
IEE Proc.-Softw., Vol. 150, No. 5, October 2003

state, so that the wait conditions required by our client may
eventually be met.

The locking policy facilitates building correct concurrent
programs and reasoning about them:

. No interference between client objects is possible since at
most one client may hold a lock on a supplier object at any
time. This helps find which object is responsible for possible
breaches in the contract, such as breaking the supplier’s
invariant.
. The precondition rules ensure that correct calls do not
violate the integrity of the supplier object.

2.6 Synchronisation and wait by necessity

Thanks to the asynchronous semantics of separate calls, a
client executing separate calls is not blocked and can
proceed with the rest of its computation. Later on, however,
it may need to resynchronise with the supplier. Rather than
introducing a specific language mechanism for this purpose,
SCOOP relies on ‘wait by necessity’ [4], which causes the
client to wait on the result of calls to queries (in particular
functions), since it needs the result to proceed, whereas
commands (procedures) do not require waiting. This
mechanism is automatic and does not require programming
the resynchronisation.

2.7 Interrupts

If a client is holding a lock on a supplier object for too long,
at the detriment of another client judged more important,
SCOOP allows interrupting the current holder through a call
to the library routine demand. A successful call will cause
an exception in the current holder, which must have
accepted the possibility in advance, and handle the
exception (usually by trying again later on). If the interrupt
fails, the exception will happen in the ‘challenger’ object.
This mechanism provides added flexibility without violating
the requirements of design by contract and the ability to
reason statically about programs and their correctness. It
makes it possible in particular to program timeouts as
illustrated by examples in [2].

3 SCOOPLI

The two-level architecture of SCOOP (see Fig. 1) suggests
that the general concurrency mechanism (top layer) should
be implemented in a platform-independent style. The key
concepts at that level are processor, separate object and
separate call. Only their mapping to platform-dependent
constructs will differ from one platform to another. This
section describes the top layer, SCOOP proper; the mapping
of SCOOP concepts to .NET constructs will be considered
in Section 4.

3.1 Library approach

We decided to begin the implementation of SCOOP with an
Eiffel library rather than by extending the compiler. This
provides several advantages, in particular the ability to ‘play’
with the model by trying out various refinements and exten-
sions, and to implement it on several platforms without
getting bogged down in compiler issues. The final implemen-
tation will be integrated as an extension to the Eiffel compiler.

3.2 Basic concepts

SCOOPLI relies on the concepts of separate client and
separate supplier. The underlying basic notions ‘client’ and
‘supplier’ are taken in the following sense:

Let S be a class. A class C which contains a declaration of
IEE Proc.-Softw., Vol. 150, No. 5, October 2003
the form x: S is said to be a client of S. S is then said to be a
supplier of C.

Following this definition, a separate client is a class
that contains a declaration of the form x: separate S
[Note 3]. S is then said to be a separate supplier. A
separate client object is handled by a processor different
from those of each of its separate suppliers [Note 4].
Therefore, any call of a feature on the separate supplier
by the separate client object (separate call) is executed
asynchronously, i.e. the separate client object can move
to the next instruction without waiting for the current call
to terminate.

The criteria for the design of the SCOOPLI interface
were to make it as simple and easy to use as possible, and
to maintain a clear correspondence with the SCOOP
syntax.

3.3 Declaring a separate supplier

In SCOOP, one may declare separate supplier as either:

(a) x: separate S
(b) separate class S … end

x: S

SCOOPLI uses multiple inheritance to provide the same
facility (see Fig. 3). All separate suppliers must inherit from
the class SEPARATE_SUPPLIER:

class SEPARATE_S
inherit

SEPARATE_SUPPLIER
S
. . .

end
x: SEPARATE_S

3.4 Declaring a separate client

In SCOOP, there is no need to declare a class to be a
separate client; any class can potentially become a separate
client by using one or more separate entities (separate
suppliers):

class MY_CLASS
feature

x: separate S
. . .

end

SCOOPLI requires an explicit separate client declaration.
Once again, the solution uses multiple inheritance: every
separate client class must inherit from SEPARATE_
CLIENT.

S SEPARATE_SUPPLIER

SEPARATE_S

Fig. 3 Use of multiple inheritance for declaration of separate
entities

Note 3: This is expressed in the SCOOP syntax. The actual SCOOPLI
interface is slightly different (see Section 3.4).

Note 4: In fact, SCOOP allows attaching a nonseparate object to a separate
entity, so that both client and supplier objects are handled by the same
processor. Our library does not allow such attachments.
311

class MY_CLASS - - separate client
inherit

SEPARATE_CLIENT
feature

x: SEPARATE_S - - separate supplier
. . .

end

3.5 Separate procedure calls

As noted, SCOOP requires that any call x.f(a), where x is
separate, must be embedded in a routine:

- - In class MY_CLASS
r (x1: separate S; a: SOME_CLASS) is

- - Apply f to x1.
do

x1.f (a) - - here, a separate call is allowed
end

. . .
r (x, a) - - here, a direct call to x.f(a) is prohibited

The routine may contain several separate calls to one or
more separate suppliers, all accessed through formal
arguments. As we have seen (Section 2.4), the locking
mechanism obtains exclusive locks on all the corresponding
objects prior to executing the routine. SCOOPLI follows
these rules, with an appropriate interface:

- - In class MY_CLASS
r (x1: SEPARATE_S; a: SOME_CLASS) is

- - Apply f to x1.
do

separate_routine (x1, agent x1.f (a))
- - corresponds to x1.f (a)

end
. . .
separate_execute ([x], agent r (x, a), Void)

- - corresponds to r (x, a)

The calls x.f (a) and r (x, a) are wrapped in calls to
separate_routine and separate_execute, respectively. Both
routines are declared in the SEPARATE_CLIENT class. Let
us have a closer look at them.

separate_routine (supplier: SEPARATE_SUPPLIER;
operation: PROCEDURE[])

Formal arguments:

† supplier
Denotes the separate supplier object on which the separate
call to operation is made.
† operation
Denotes the routine to be called on the separate supplier
object.

In the example above, separate_routine is called with
arguments x1 (for supplier) and agent x1.f (a) [Note 5]
(for operation). Such a call correspond to x.f (a) in SCOOP.

separate_execute (requested_objects: TUPLE [];
action: PROCEDURE [];
wait_condition: FUNCTION [])

Note 5: agent x.f (a) is an object representing the operation x.f (a). Such
objects, called agents, are used in Eiffel to ‘wrap’ routine calls [5]. One can
think of agents as a more sophisticated form of .NET delegates.
312
Formal arguments:

† requested_objects
Denotes the (tuple of) objects on which exclusive locks
should be acquired before calling action.
† action
Denotes the routine to be called on the separate client
object. action corresponds to the routine that ‘wraps’
separate calls.
† wait_condition
Denotes the Boolean function representing the wait
condition [Note 6] for the call.

In the example, separate_execute is called with
arguments [x] (for requested_objects), agent r (x, a)
(for action), and Void (for wait_condition). Such a call
corresponds to r (x, a) in SCOOP.

3.6 Wait conditions

In the example above there is no wait condition for
routine r, since we assume that r has no precondition
involving the separate object x. Should r have such a
precondition, the part involving x would be extracted
from the precondition and passed as wait_condition to
separate_execute, e.g.

r (x1: SEPARATE_S; a: SOME_CLASS) is
require

x_not_empty: not x.is_empty
a_positive: a > 0

do
separate_routine (x1, agent x1.f (a))
- - corresponds to x1.f (a)

end
. . .
r_wait_condition: BOOLEAN is

do
Result := not x.is_empty

end
separate_execute ([x], agent r (x, a),

agent r_wait_condition)
- - corresponds to r (x, a)

3.7 Separate function calls

Direct application of features on separate supplier objects is
prohibited (see Sections 2.3 and 3.5). This rule applies not
only to procedures but also to functions.

If some_value is a function (of type T) defined in the
class SEPARATE_S, and x is a separate supplier object
of type SEPARATE_S, then every evaluation of
x.some_value must be embedded in a routine that takes x
as argument.

– in class MY_CLASS
y: T
. . .
r (x1: separate S) is

- - Assign x1.some_value to y
do

y := x1.some_value
end

. . .
r (x)

Note 6: The wait condition is the part of a routine precondition that involves
separate objects.
IEE Proc.-Softw., Vol. 150, No. 5, October 2003

In SCOOPLI, calls to x1.some_value and r (x) are
wrapped in calls to separate_value and separate_execute,
respectively:

- - In class MY_CLASS
y: T
. . .
r (x1: SEPARATE_S) is

- - Assign x1.some_value to y
do

y ?= separate_value (x1, agent x1.some_value)
end

. . .
separate_execute ([x], agent r (x), Void)
- - corresponds to r (x)

In the interface for separate_value:
separate_value (supplier: SEPARATE_SUPPLIER;

function: FUNCTION []): ANY
the formal arguments have the following role:

† supplier
Denotes the separate supplier object on which the separate
call to function is made.
† function
Denotes the function to be evaluated.

The return value is of type ANY (the most general type).
In the example, separate_value is called with arguments

x1 (for supplier) and agent x1.separate_value (for function).
The example uses an assignment attempt [Note 7] (?=,

instead of standard assignment :=) because separate_value
returns a result of type ANY, which we need as an object
of type T (corresponding to the left-hand side of the
assignment).

If the function returns an object of an expanded type
[Note 8], a dedicated routine is used instead of separate_
value, e.g. separate_boolean_value for BOOLEAN,
separate_integer_value for INTEGER, etc. No assignment
attempt is needed in such cases.

separate_execute is used in the same way as for separate
procedure calls (see Section 3.5).

4 SCOOP on .NET

The previous descriptions are platform-agnostic. Our
current implementation, as noted, targets .NET. This section
describes how to map logical processors of the SCOOP
model (Section 2.2) to .NET ‘Appdomains’, and how the
implementation takes advantage of the multithreading
model of the Microsoft .NET Framework.

4.1 Processes, application domains and
threads on .NET

In most operating systems, processes provide isolation
between several applications running on the same computer.
In the .NET Framework a process consists of one or more
application domains or Appdomains. Application domains
can be considered as managed logical subprocesses. They
provide isolation, unloading and security boundaries for
managed .NET code. Using several application domains
within a process increases server scalability [6]. Application
domains can also be located on different computers.

Note 7: An assignment attempt is similar to a dynamic cast, with the rule
that if the assignment is impossible, the target receives the value Void.

Note 8: Expanded types, including the basic types BOOLEAN, INTEGER,
REAL, DOUBLE, CHAR, and any other based on an expanded class, denote
values rather than references [2].
IEE Proc.-Softw., Vol. 150, No. 5, October 2003
A .NET thread is a path of execution within an
application domain. An application domain can have one
or more threads, and any thread can be executed on different
application domains at different times, since threads can
cross application domain boundaries. But at any given time
every thread is executed in one application domain. Cross-
domain calls are allowed between application domains in
one process as well as between application domains on
different computers [7], thanks to the remoting capabilities
of the .NET Framework [8].

4.2 Distributed execution

The basic rule of SCOOPLI for .NET, permitting distributed
execution, is to use application domains as processors.

In the example of Fig. 4, the separate client object o2,
located in AppDomain 1 on Computer 1, calls x.f, where x is
attached to the separate supplier object o3, which itself
resides in AppDomain 2 on Computer 2. As soon as the call
x.f is initiated, o2 can proceed without waiting for the
termination of the call. Object o3, which now plays itself the
role of a separate client object, calls y.g, where y is attached
to the separate supplier object o7. Since o7 resides in a
different application domain located on a different computer
than o3, call y.g has also separate (asynchronous) semantics.

Since processors are mapped to application domains, they
can run as threads on the same machine, run on different
machines, or use a combination of both solutions.

4.3 Specifying processor mapping

To preserve the generality of SCOOP programming,
programs do not need to know about the precise mapping
of processors to application domains and other physical
resources. This is the role of a separate specification, the
Concurrency Control File or CCF, such as the following
example:

create
local_nodes:

system
“Lincoln” (2): “c:\prog\appl1\appll.exe”
“Roosevelt” (4): “c:\prog\appl2\appl2.dll”
Current: “c:\prog\appl1\appl1.exe”

end
remote_nodes:

system
“Sinatra”: “c:\prog\appl3\appl3.exe”

Computer 3

Computer 2

Computer 1

AppDomain 1
o1 o2

AppDomain 2
o3 o4

AppDomain 3
o5 o6 o7

x.f

y.g

Fig. 4 Distributed execution in SCOOPLI for .NET
313

“Hemingway” (2): “c:\prog\appl4\appl4.exe”
end

end
external

Database_handler: “Warhol” port 9000
ATM_handler: “Presley” port 8001

end
default

port: 8001; instance: 10
end

The create part specifies which physical resources to use for
creating separate objects in instructions create x.f, where x
is separate. The next two parts, called local_nodes and
remote_nodes, deal with the mapping of processors to
application domains. In the example above, the local_nodes
entry specifies that:

. Two separate objects will be created in the application
domain represented by the application appl1.exe on the
computer Lincoln.
. The next four separate objects will be created in the
application domain appl2.dll on the computer Roosevelt.
. The following ten will be created on the computer where
the creation instruction is executed. The value 10 comes
from the instance entry in the default part of the CCF.

For further separate object creations the allocation scheme
is repeated, starting again with two separate objects on the
computer Lincoln, four on Roosevelt, and so on.

We can also use application domains specified in
remote_nodes and benefit from computers Sinatra and
Hemingway to create separate objects. In the software text,
we can choose between both groups by using a feature of the
library class CONCURRENCY [1].

The external part specifies which physical resources to
use for separate objects created outside the control of the
program. In the example, we can get a reference to a
separate database object from the computer Warhol on port
9000 by using a function

server (name: STRING; . . .): separate DATABASE

with the argument database_handler.
The semantics of SCOOP and the compilation of a

SCOOP or SCOOPLI application do not require a CCF; in
its absence, a default scheme will determine the mapping of
processors to application domains.

5 State of implementation and future work

The use of .NET Remoting has been a valuable asset to
the current implementation of SCOOPLI, providing
314
considerable simplification over the previous thread-based
version.

The following features of SCOOP have been
implemented so far:

. declaration and instantiation of separate objects

. call of procedures on separate objects

. exclusive locking of single separate objects

. argument passing (expanded and reference types)

. evaluation of functions implemented as routines

. evaluation of functions implemented as attributes

. assignment to nonseparate targets

. wait conditions

. wait by necessity.

The following mechanisms remain to be implemented:

. exclusive locking of multiple separate objects

. support for distributed execution

. CCF handler

. duel mechanism (interrupts).

The results achieved so far let us hope that the full
implementation of SCOOP will provide the robust, trustable
basis that will make concurrent programming as natural to
programmers as its sequential variant.

6 Acknowledgments

The research work presented in this paper is part of the
project ‘SCOOP: Environment for dependable distributed
and reliable object-oriented computing, based on the
principles of Design by Contract’. We gratefully acknowl-
edge the financial support of the Hasler Foundation (Berne,
Switzerland). The project has also benefited from a
Microsoft Rotor grant and is currently supported by a
grant from the Swiss National Science Foundation.

7 References

1 Meyer, B.: ‘Systematic concurrent object-oriented programming’,
Commun. ACM, 1993, 36, (9), pp. 56–80

2 Meyer, B.: ‘Object-oriented software construction’ (Prentice Hall, Upper
Saddle River, NJ, 1997, 2nd edn.)

3 Nienaltowski, P., and Arslan, V.: ‘SCOOPLI: a library for concurrent
object-oriented programming on .NET’. Presented at the 1st Int.
Workshop on C# and .NET Technologies 2003, Plzen, Czech Republic,
5–7 February 2003

4 Caromel, D.: ‘Towards a method of object-oriented concurrent
programming’, Commun. ACM, 1993, 36, (9), pp. 90–102

5 Meyer, B.: ‘Eiffel: the language’ (Prentice Hall, 3rd edn.), to be
published

6 ‘NET Framework SDK documentation’ (Microsoft, 2002)
7 Dennis, A.: ‘NET multithreading’ (Manning, Greenwich, CT, 2003,

1st edn.)
8 Rammer, I.: ‘Advanced .NET remoting’ (Apress, Berkeley, CA, 2002,

1st edn.)
IEE Proc.-Softw., Vol. 150, No. 5, October 2003

	Concurrent object-oriented programming on .NET
	Introduction
	SCOOP model
	Generality
	Processors
	Separate calls
	Synchronisation and communication
	Example and comments on the scheduling policy
	Synchronisation and wait by necessity
	Interrupts

	SCOOPLI
	Library approach
	Basic concepts
	Declaring a separate supplier
	Declaring a separate client
	Separate procedure calls
	Wait conditions
	Separate function calls

	SCOOP on .NET
	Processes, application domains and threads on .NET
	Distributed execution
	Specifying processor mapping

	State of implementation and future work
	Acknowledgments
	Bibliography
	References

