
Prototyping a Concurrency Model
Benjamin Morandi, Mischael Schill, Sebastian Nanz, Bertrand Meyer

Chair of Software Engineering, ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch
http://se.inf.ethz.ch/

Abstract—Many novel programming models for concurrency
have been proposed in the wake of the multicore computing
paradigm shift. They aim to raise the level of abstraction for
expressing concurrency and synchronization in a program, and
hence to help developers avoid programming errors. Because
of this goal, the semantics of the models themselves becomes
ever more complex, increasing the risk of design flaws. We
propose a methodology for prototyping concurrency models using
executable formal specifications. The prototype can be used to test
and correct the model at an early stage. Once the development
is completed, the executable formal specification serves as an
unambiguous reference. We apply this methodology to SCOOP,
an object-oriented concurrency model. Using this approach, we
were able to uncover and fix three major flaws in the model.

Keywords-formal specification; prototyping; testing; concur-
rent programming; SCOOP; Maude

I. INTRODUCTION

A variety of concurrency models have been introduced to
improve the development of concurrent programs. Examples
include the Actor model [1], Communicating Sequential Pro-
cesses (CSP) [2], the Join Calculus [3], the Partitioned Global
Address Space (PGAS) model [4], the tuple space model [5],
and SCOOP [6]. These models introduce new programming
abstractions with sophisticated semantics, raising the possibil-
ity of design flaws.

Flaws in a concurrency model can have costly consequences
if discovered after the model has been embedded into a
programming language. It is therefore beneficial to verify the
model prior to developing compiler and runtime support. Static
verification, for example using theorem proving (e.g., [7],
[8]) or model checking (e.g., [9], [10]), can be very time-
consuming or otherwise only applicable to a small subset of
the model.

This paper suggests instead to first develop an executable
formal specification that serves as the prototype of the model.
The model can then be verified dynamically: the designers use
test programs to check whether the formal executions conform
to expectation. This approach preserves on the one hand the
rigor of a formal model but combines it with the simplicity of
a testing approach. It cannot ultimately prove the absence of
design flaws, and does not strive to do so; however, similarly
to the role of testing in software development, we found it to
be essential in debugging a model and as a prototyping tool.

The methodology involves the following sequence of steps:
1) Start with an informal description of the main charac-

teristics of the model.

2) Develop an executable formal specification from the
informal description. This rigorous step provides a first
opportunity to discover and resolve flaws in the model.
Several frameworks support the development of exe-
cutable formal specifications. We use Maude [11], [12]
because of its expressiveness and performance.

3) Use the executable formal specification to test the model:
provide test programs and use the specification to ana-
lyze their executions; address the design flaws directly
in the specification.

Once the development is completed, the executable formal
specification serves as an unambiguous reference, which pro-
vides a starting point for future model extensions as well as
for implementing compiler and runtime support.

This paper demonstrates the proposed methodology on
SCOOP (Simple Concurrent Object-Oriented Programming)
[6], [13], an object-oriented concurrency model. The resulting
executable formal specification has more than 3100 lines of
Maude code that cover the model in its details; it can be
downloaded from [14]. The effort led to the discovery and
elimination of three major design flaws. In follow-up work, the
methodology again proved helpful in extending the SCOOP
model with an asynchronous exception mechanism [15].

While the importance of verifying formal specifications of
programming models is being recognized (see Section VI),
to the best of our knowledge, this paper is the first to use
a comprehensive executable formal specification to test and
improve a concurrency model.

The remainder of the paper traces the steps outlined above.
Section II describes SCOOP informally. Section III presents
the formal specification, and Section IV shows its implementa-
tion in Maude. Section V shows how testing helped to resolve
three flaws in SCOOP. Finally, Section VI discusses related
work, and Section VII concludes with an outlook on future
work.

II. INFORMAL DESCRIPTION OF SCOOP

This section describes the SCOOP concurrency model in-
formally. It also outlines one possible embedding into a pro-
gramming language to support the presentation of the model.
The full description is available in [6], [13], [16].

A. Introduction to SCOOP

The starting idea of SCOOP is that every object is associated
for its lifetime with a processor, called its handler. A processor
is an autonomous thread of control capable of executing

actions on objects. An object’s class describes the possible
actions as features.

A variable x belonging to a processor can point to an object
with the same handler (non-separate object), or to an object on
another processor (separate object). In the first case, a feature
call x.f is non-separate: the handler of x executes the feature
synchronously. In this context, x is called the target of the
feature call. In the second case, the feature call is separate: the
handler of x, i.e., the supplier, executes the call asynchronously
on behalf of the requester, i.e., the client. The possibility of
asynchronous calls is the main source of concurrent execution.
The asynchronous nature of separate feature calls implies a
distinction between a feature call and a feature application:
the client logs the call with the supplier (feature call) and
moves on; only at some later time will the supplier actually
execute the body (feature application).

The producer-consumer problem serves as a simple illustra-
tion of these ideas. A root class defines the entities producer,
consumer, and buffer.

producer: separate PRODUCER
consumer: separate CONSUMER
buffer: separate BUFFER [INTEGER]

The keyword separate specifies that the referenced objects
may be handled by a processor different from the current one.
A creation instruction on a separate entity such as producer
will create an object on another processor; by default the
instruction also creates that processor.

Both the producer and the consumer access an unbounded
buffer in feature calls such as buffer.put (n) and buffer.item.
To ensure exclusive access, the consumer must lock the buffer
before accessing it. Such locking requirements of a feature
must be expressed in the formal argument list: any target
of separate type within the feature must occur as a formal
argument; the arguments’ handlers are locked for the duration
of the feature execution, thus preventing data races. Such
targets are called controlled. For instance, in consume, buffer
is a formal argument; the consumer has exclusive access to
the buffer while executing consume.

Condition synchronization relies on preconditions (after the
require keyword) to express wait conditions. Any precondition
makes the execution of the feature wait until the condition
is true. For example, the precondition of consume delays
the execution until the buffer is not empty. As the buffer is
unbounded, the corresponding producer feature does not need
a precondition.

consume (buffer: separate BUFFER [INTEGER])
−− Consume an item from the buffer.

require not (buffer.count = 0)
local consumed item: INTEGER
do consumed item := buffer.item end

During a feature call, the consumer could pass its locks to

the buffer if it has a lock that the buffer requires. This
mechanism is known as lock passing. In such a case, the
consumer would have to wait for the passed locks to return.
In buffer.item, the buffer does not require any locks from the
consumer; hence, the consumer does not have to wait due to
lock passing. However, the runtime system ensures that the
result of the call buffer.item is properly assigned to the entity
consumed item using a mechanism called wait by necessity:
while the consumer usually does not have to wait for an
asynchronous call to finish, it will do so if it needs the result.

B. SCOOP Runtime

The SCOOP concepts require execution-time support,
known as the SCOOP runtime. Each processor maintains a
request queue of requests resulting from feature calls on other
processors. A non-separate feature call can be processed right
away without going through the request queue: the processor
creates a non-separate feature request and processes it right
away using its call stack. When the client executes a separate
feature call, it enqueues a separate feature request to the
supplier’s request queue. The supplier will process the feature
requests in the order of queuing.

Special attention is required in the case of separate call-
backs, which occur for example if the buffer performs a
separate feature call on the consumer, which already has a lock
on the buffer. Enqueuing a feature request on the consumer
could cause a deadlock if the separate callback is synchronous
since the consumer might already be waiting for the buffer.
The solution is to add such feature requests, corresponding to
separate callbacks, ahead of all others in the request queue.
This ensures that the consumer can process the feature request
right away and the buffer can continue.

The runtime system includes a scheduler, which serves as
an arbiter between processors. When a processor is ready
to process a feature request in its request queue, it will
only be able to proceed after the request is satisfiable. In a
synchronization step, the processor tries to obtain the locks on
the arguments’ handlers in a way that the precondition holds.
For this purpose, the processor sends a locking request to the
scheduler, which stores the request in a queue and schedules
satisfiable requests for application. Once the scheduler satisfies
the request, the processor starts an execution step.

Whenever the processor is ready to let go of the obtained
locks, i.e., at the end of its current feature application, it
issues an unlock request to each locked processor. Each locked
processor will unlock itself as soon as it processed all previous
feature requests. In the example, the producer issues an unlock
request to the buffer after it issued a feature request for put.

III. FORMAL SPECIFICATION OF SCOOP

This section outlines the formal specification for the SCOOP
model. For space reasons, it only presents the main idea.
The complete formal specification [17] covers all aspects of
the model including arbitrarily nested feature calls, expanded
types, the deep import mechanism, once routines, contract

evaluations, and explicit processor tags [13], [16]. This com-
prehensive coverage provides a good basis for developing
compiler and runtime support; it also distinguishes this work
from earlier formal specifications for SCOOP [9], [10].

A. Specifying the State

A number of abstract data types (ADTs) [18] model the state
of a SCOOP program. ADTs permit a modular specification
of the state on an abstract level, supporting a wide range of
implementations. An ADT consists of queries, commands, and
constructors. Each of these features can have a precondition
that must be satisfied to call the feature; axioms describe the
effects of the commands and constructors on the queries. For
instance, the ADT REG manages the association between
objects and processors: objects that are handled by the same
processor form a region. The following two queries keep track
of the available processors and the references to their objects:

procs : REG→ SET[PROC]

handled objs : REG→ PROC 9 SET[REF]
k.handled objs(p) require k.procs.has(p)

The query handled objs takes a processor of type PROC
as an argument. The result of the first query is a set of
processors with type SET[PROC]; the second query returns
a set of references with type SET[REF]. The precondition of
the second query makes the feature partial, indicated by 9.

Besides the mapping of objects to processors, regions also
keep track of locks. Developing the formal specification helped
us clarifying this aspect. The informal description defines
one lock per processor. However, this definition leads to a
contradiction with respect to separate callbacks. A separate
callback (see Section II) occurs if a processor p performs a
feature call f to a processor q and q has a lock on p, as shown
in Figure 1.

processor g processor q processor p scheduler

lock q

h lock p

g

f

Fig. 1. A separate callback. Processor g locks q and calls asynchronously.
Processor q locks p and calls synchronously. Processor p calls back syn-
chronously.

To avoid a deadlock, p asks q to process the resulting feature
request right away using its call stack. The separate callback is
only possible if p has a lock on q. However, p does not have
this lock because the lock is in possession of processor g that
locked q. To address this design flaw, the formal specification

differentiates between two types of locks: each processor has a
lock for its request queue and a lock for its call stack. With this
change, separate callbacks can be handled cleanly. At creation,
each processor has its call stack lock. For a separate callback,
processor q must pass its locks to processor p. Processor p can
then use q’s call stack lock to perform a separate callback to q.
At that point, q’s request queue lock is in possession of g, but
this lock is not required by p. During the separate callback,
processor p passes all its locks so that q can process the feature
request. The following queries of REG reflect this change.
The retrieved locks are those that got passed; the obtained
locks are newly acquired. The locks are organized in stacks to
accommodate nested feature applications:

rq locked : REG→ PROC 9 BOOLEAN
k.rq locked(p) require k.procs.has(p)

cs locked : REG→ PROC 9 BOOLEAN
k.cs locked(p) require k.procs.has(p)

obtained rq locks : REG→ PROC 9 STACK[SET[PROC]]
k.obtained rq locks(p) require k.procs.has(p)

obtained cs lock : REG→ PROC 9 PROC
k.obtained cs lock(p) require k.procs.has(p)

retrieved rq locks : REG→ PROC 9 STACK[SET[PROC]]
k.retrieved rq locks(p) require k.procs.has(p)

retrieved cs locks : REG→ PROC 9 STACK[SET[PROC]]
k.retrieved cs locks(p) require k.procs.has(p)

locks passed : REG→ PROC 9 BOOLEAN
k.locks passed(p) require k.procs.has(p)

REG has a number of commands to add processors, add
objects, lock or unlock request queues, and pass or revoke
locks. The following two commands add processors and
objects:

add proc : REG→ PROC 9 REG
k.add proc(p) require
¬k.procs.has(p)

axioms
k.add proc(p).procs.has(p)
k.add proc(p).handled objs(p).is empty
¬k.add proc(p).rq locked(p)
k.add proc(p).cs locked(p)
k.add proc(p).obtained rq locks(p).is empty
k.add proc(p).obtained cs lock(p) = p
k.add proc(p).retrieved rq locks(p).is empty
k.add proc(p).retrieved cs locks(p).is empty
¬k.add proc(p).locks passed(p)

add obj : REG→ PROC 9 REF 9 REG
k.add obj(p,r) require

k.procs.has(p)
∀q ∈ k.procs,x ∈ k.handled objs(q) : x.id 6= r.id

axioms
k.add obj(p,r).handled objs(p).has(r)

REG has one constructor that returns empty regions, i.e., in
the beginning, the system has no processors and no objects:

make : REG
axioms make.procs.is empty

The full state [17] consists of three parts: the regions, the
heap, and the store. The main purpose of the heap is to keep
track of objects and to maintain the mapping of references to
objects; the store maintains stacks of environments that map
variable names to references. Each of these parts has its own
ADT along with various smaller ADTs for the basic elements
of the state: objects, references, identifiers, names, processors,
types, and variable environments. The consolidating STATE
ADT offers a convenient interface to these parts. For instance,
STATE has two features rq locks and cs locks that return
all obtained and retrieved locks of a processor. In total, the
state has 50 queries, 38 commands, and eight constructors
distributed over eight ADTs; two more ADTs cover identifiers
and names.

B. Specifying Executions

A structural operational semantics [19] describes the ex-
ecution of a SCOOP program. A computation is a sequence
of configurations; each configuration is an execution snapshot:
the state, i.e., an instance of STATE, and the schedule, i.e., the
call stacks and the request queues of the processors. The call
stack and request queue of a processor are also known as the
action queue of the processor. The elements in an action queue
are statements; they can either be instructions, i.e., program
elements, or operations, i.e., runtime elements. The following
transition rule, as an example of the 41 rules in total, defines
an operation that allows a processor p to issue statements sw
to a processor q during a separate callback.

Issue Operation – Separate Callback

q 6= p∧ (σ .rq locks(q).has(p)∨σ .cs locks(q).has(p))
¬σ .locks passed(p)∧σ .cs locks(p).has(q)

Γ ` 〈p :: issue(q,sw);sp | q :: sq,σ〉 → 〈p :: sp | q :: sw;sq,σ〉

The premise requires that processors p and q are different
(first condition), q has a lock on p (first condition), and p
has q’s call stack lock (second condition). The first condition
characterizes a separate callback; the second condition states
that p needs q’s call stack lock to perform the separate
callback.

The bottom half of the transition rule contains the transition
definition: the start configuration, the result configuration,
and the typing environment Γ with the class hierarchy. The
commutative and associative processor separator | keeps the
processors’ action queues apart. The transition rule at hand
specifies that the issue operation adds the statements sw in
front of q’s action queue; the state σ remains unchanged.

The initial configuration, i.e., the starting point of the
execution, is based on the root procedure of the program. The
transition rules define how the initial configuration evolves into
the final configuration, i.e., the end of the execution.

IV. IMPLEMENTATION OF THE FORMAL SPECIFICATION

This section describes the implementation of the formal
specification in Maude. The full executable semantics can be
downloaded from [14].

A. Background on Maude

Maude [11], [12] is a programming language for theories
in membership equational logic [20], [21] and rewriting logic
[22], [23]. A membership equational logic is a Horn logic
whose basic predicates either express membership assertions,
stating that a term built with operators belongs to a certain
sort, or equations between terms. A rewrite logic has rewrite
rules that express conditional rewrites between terms.

A functional module (fmod) contains a membership equa-
tional theory. It defines the sorts (sort), subsort relationships
(subsort), operators (op and ctor for constructors), and equa-
tions (eq and ceq) for the theory. A system module (mod)
contains a rewrite theory with rewrite rules (rl and crl); it can
also contain a membership equational theory. A module can be
parametrized. To use such a module, each parameter must be
bound to another module, i.e., the parameter module. A theory
defines the sorts, subsort relationships, operators, equations,
and rewrite rules that the parameter module must provide. A
view specifies how the parameter module satisfies that theory.

To inspect rewrite theories, Maude offers a number of
commands. The rewrite command takes a term and an upper
bound for the number of rewrite steps; it then applies fitting
rewrite rules using a rule-fair top-down strategy until it reaches
the upper bound, or it finds no more fitting rewrite rules. The
frewrite command is similar, but it uses a rule- and position-
fair strategy. The search command explores all reachable terms
until it finds a specified term.

B. Implementing ADTs

Two functional modules implement one ADT. The ADT
sort module defines a sort that represents the ADT in Maude;
it also defines subsort relationships. The ADT module then
includes the ADT sort module to implement the ADT features
with operators and equations. The two functional modules are
necessary so that the ADT module itself can use instances of
the ADT in parametrized collections; a single ADT module
would create a circular dependency between the ADT module
and the collection module. If instances of the ADT can become
members of a parametrized collection, then the ADT has a
view to facilitate this. REG from Section III-A leads to the
following two functional modules; a view is not necessary for
REG:

fmod REGIONS−SORTS is sort Regions . endfm
fmod REGIONS is including REGIONS−SORTS endfm

The ADT module of an ADT defines one constructor that
determines the internal structure of an ADT instance; this
structure reflects the data of an ADT instance as defined by
the queries. A number of variables relate to an ADT instance

and its data. For REG, the internal structure holds the handled
objects ho as a map Map{Proc, RefSet}; this map also keeps
the available processors in the key set of the map. Next, the
internal structure remembers which request queues and call
stacks are locked using two maps rql and csl of type Map{
Proc, Bool}. The next four items orq, ocs, rrq, and rcs manage
the obtained and retrieved locks. Finally, lp remembers which
processors passed locks.

op regions : Map{Proc, RefSet} Map{Proc, Bool} Map{
Proc, Bool} Map{Proc, ProcSetList} Map{Proc, Proc}
Map{Proc, ProcSetList} Map{Proc, ProcSetList} Map{
Proc, Bool} −> Regions [ctor] .

var k : Regions . var p : Proc . var r : Ref .
var ho : Map{Proc, RefSet} .
var rql csl lp : Map{Proc, Bool} .
var orq rrq rcs : Map{Proc, ProcSetList} .
var ocs : Map{Proc, Proc} .

The ADT module then defines operators and equations for the
ADT’s features. Each query leads to one operator and one
equation. The operator reflects the structure of the query: the
syntax along with the sorts for the ADT instance to operate on,
the formal arguments, and the result. The equation links the
query to the internal structure of the ADT instance. If the query
has a precondition, then the equation has a corresponding
condition. The following code shows the first three queries
of REG; for space reasons, precedence values and formatting
specifications are omitted:

op .procs : Regions −> Set{Proc} .
eq regions(ho, rql, csl, orq, ocs, rrq, rcs, lp)

.procs = ho .keys .

op .handledObjs() : Regions Proc −> Set{Ref} .
ceq regions(ho, rql, csl, orq, ocs, rrq, rcs, lp)

.handledObjs (p) = ho[p] .values
if ho .keys .has(p) .

op .isRqLocked() : Regions Proc −> Bool .
eq regions(ho, rql, csl, orq, ocs, rrq, rcs, lp)

.isRqLocked (p) = rql[p] .
if ho .keys .has(p) .

Each command also leads to one operator and one equation.
However, the structure of a command is different because
the result of a command is an updated ADT instance. The
equation reflects the axioms of the command: it defines how
to rewrite a command call on an ADT instance into an
updated ADT instance. The equation can define auxiliary terms
in the condition. As before, the condition also contains the
precondition of the command. The following code shows the
two commands to add processors and objects; in there, the
auxiliary operator refIdUnique returns whether the regions

already contain a given reference or not.

op .addProc() : Regions Proc −> Regions .
ceq k .addProc (p) =

regions((ho .insert(p −−> empty)), (rql[p] ::= false),
(csl[p] ::= true), (orq[p] ::= nil), (ocs[p] ::= p),
(rrq[p] ::= nil), (rcs[p] ::= nil), (lp[p] ::= false))

if regions(ho, rql, csl, orq, ocs, rrq, rcs, lp) := k ∧
not k .procs .has(p) .

op .addObj(,) : Regions Proc Obj −> Regions .
ceq k .addObj (p, r) =

regions((ho .insert(p −−> (ho[p] U {r}))),
rql, csl, orq, ocs, rrq, rcs, lp)

if regions(ho, rql, csl, orq, ocs, rrq, rcs, lp) := k ∧
k .procs .has(p) ∧ k .refIdUnique(r) .

A constructor is similar to a command with the difference that
it does not operate on an ADT instance. The constructor of
REG is very simple:

op new REGIONS.make : −> Regions .
eq new REGIONS.make =

regions(empty, empty, empty, empty,
empty, empty, empty, empty) .

With the ADT modules, Maude can reduce feature call chains.
These feature call chains can be built because constructors and
commands always return a new or updated ADT instance that
can then be used by a subsequent command or query call to
operate on.

C. Implementing Transition Rules

To implement transition rules in Maude, some basic support
is necessary. A number of functional modules model a SCOOP
program using sorts and operators for programs, classes,
features, expressions, instructions, and types; other functional
modules model operations. Instructions and operations are
subsorts of statements. Views ensure that they can be stored
in parametrized collections.

A new system module defines sorts and operators for
action queues and configurations. A list of action queues
is partitioned by the associative and commutative processor
separator; it also has an identity element.

sorts ActionQueue ActionQueueList Configuration .
subsort ActionQueue < ActionQueueList .

op { } :: : Nat Proc List{Statement} −>
ActionQueue [ctor] .

op nil : −> ActionQueueList [ctor] .
op | : ActionQueueList ActionQueueList −>

ActionQueueList [ctor assoc comm id: nil] .
op |− , , : Program ActionQueueList Nat State −>

Configuration [ctor] .

By comparing this implementation to the configuration in
Section III-B, one can notice three deviations. First, an action
queue has an additional natural number to associate a priority
to each processor; this priority is used for scheduling (see
Section IV-D). Second, the configuration has an additional
natural number to count the number of steps in the execution.
This counter provides a continuous stream of numbers and
is used to create fresh identifiers; this link between the step
numbers and the identifiers helps in debugging because one
can easily determine in which step Maude created an identifier.
Third, each configuration has a program associated with it; this
program implements the typing environment. In Section III-B,
the typing environment only occurs as part of the transition
definition. With this deviation, Maude does not have to add
the typing environment to each configuration before executing
a transition rule. With this basic support, the system module
can implement transition rules. First, it defines a number of
variables:

var p q : Proc . var qs : Set{Proc} . var σ : State .
var f : Feature . var sw sp sq : List{Statement} .
var a : Channel . var i j ic : Nat .

Each SCOOP operation leads to a sort, a subsort relationship,
and an operator. The following code implements the issue
operation from Section III-B; as before, precedence values and
formatting specifications are omitted:

sort Issue .
subsort Issue < Operation .
op issue(,) : Proc List{Statement} −> Issue [ctor] .

Each transition rule leads to a conditional rewrite rule. The
condition of the rewrite rule contains the premise of the
transition rule. The label contains the name of the transition
rule. The rewrite arrow => separates the start configuration
from the result configuration. For instance, the transition rule
for the issue operation becomes:

crl [issueSeparateCallback] :
Γ |− {i} p :: issue(q, sw) ; sp | {j} q :: sq, ic, σ =>
Γ |− {i} p :: sp | {j} q :: sw sq, ic + 1, σ

if
q =/= p and

(σ .rqLocks(q).has(p) or σ .csLocks(q).has(p)) ∧
not σ .areLocksPassed(p) and σ .csLocks(p).has(q)

Using the transition rules, one can then execute a SCOOP
program by providing an initial configuration that captures
the starting point of the program. One can then ask Maude to
find one possible terminal configuration using the rewrite or
frewrite command; one can also ask Maude to search for a
specified configuration using the search command.

D. Scheduling

Without priorities in action queues, the rewrite command
becomes problematic when a sequence of transitions leads to
a result configuration that is equal to the start configuration.
Maude would apply the same transition rules using the same
action queues over and over again instead of continuing with
other action queues. The solution takes advantage of the fact
that Maude brings configurations into a canonical form before
applying transition rules. During this reduction, Maude orders
the action queues since the processor separator | is com-
mutative and associative. The priorities in the action queues
influence how Maude orders the action queues; consequently,
the priorities also influence which action queues Maude uses
next.

For example, the formal specification has a transition rule
for an operation that locks a set of request queues and evaluates
a precondition. If the precondition is satisfied, the operation
is done; otherwise, the operation unlocks the request queues,
removes the locks from the stack, and starts from scratch.
Without priorities, the result configuration would be equal
to the start configuration in the latter case. With priorities,
the operation can decrease the priority in its action queue
after determining that the precondition is not satisfied, causing
Maude to focus on another action queue. The following code
shows this in more detail:

crl [checkPreAndLock] :
Γ |− {i} p :: checkPreAndLock(qs, f) ; sp, ic, σ =>
Γ |− {i} p :: lock(qs) ; eval(a, f .pre) ; wait(a, p) ;

provided not a .data then
nissue(qs, unlockRq ;) popObtainedLocks ;
yield ; checkPreAndLock(qs, f) ;

end ; sp, ic + 1, σ

if a := fresh(ic, 1) .

In this code, yield decreases the priority. The channel a carries
the result of the precondition evaluation in eval, and wait
blocks until the result is available. The nissue operation issues
to a set of processors, and popObtainedLocks removes the top
set from the stack of obtained request queue locks.

The priorities are not just useful to ensure progress in
Maude; they are also useful to implement and test different
scheduling algorithms: a scheduler can use the priorities to
influence which action queues Maude uses for the next transi-
tion. The current scheduler is deterministic (just as the built-
in Maude scheduler), ensuring that each execution is repro-
ducible. To observe a variety of program executions, one can
use the priorities to implement a nondeterministic scheduler
that maximizes coverage or generates random schedules.

V. TESTING THE FORMAL SPECIFICATION

This section demonstrates how testing with the executable
formal specification helped to discover and fix three flaws in
the SCOOP model. It describes each flaw using a simplified
test program and then shows the corrections in the formal

specification. For readability, it presents the test programs in
regular SCOOP syntax instead of the equivalent Maude form
used for testing.

We distilled these test programs from a larger test suite [14]
with (1) programs that use different combinations of SCOOP
aspects and (2) programs that cover real-world scenarios (par-
allel searching, share market simulation, pipeline computation,
producer-consumer, concurrent linked list). We fed each of
these programs along with the executable formal specification
to Maude. We then used the rewrite command with progressive
upper bounds of rewrite steps to explore various executions.
The resulting sequences of configurations, with complete
schedule and state, provided enough information to identify
design flaws. One behavior was particularly helpful: Maude
stops when it can no longer simplify ADT feature calls or
find a fitting transition rule. This can be caused by a failed
precondition in an ADT feature, a failed premise of a transition
rule, or a start configuration in a transition rule that does not
fit.

A. Separate Callbacks

A separate callback is characterized by the following con-
dition: at the moment of a feature call, the supplier has a lock
on the client. While this condition adequately captures simple
scenarios with only two processors, it fails to capture more
complex scenarios as shown in the following listing:

class A create make feature
b: separate B
c: separate C
make

do
create b; create c; f (b)

end
f (b: separate B)

do b.g (c, Current) end
k: separate D

do
create Result

end
end

class B feature
g (c: separate C; a: separate A)

do c.h (a) end
end

class C feature
h (a: separate A)

local t: separate D
do t := a.k end

end

class D end

For space reasons, this section does not show the full schedule
and state; instead, it uses an abstract form of the Maude output
that only shows the obtained request queue locks (orq), the
retrieved request queue locks (rrq), the retrieved call stack
locks (rcs), whether a processor’s request queue is locked, and
whether a processor passed its locks.

To start, the system creates an object of type A on a new
root processor a; processor a then creates two objects on two
new processors b and c and executes feature f. Maude reports
accordingly:

a :: orq : ({},{b}) rrq : ({},{}) rcs : ({},{}) locked
b :: orq : () rrq : () rcs : () locked
c :: orq : () rrq : () rcs : () unlocked

Processor a then calls processor b. The call is synchronous
as it involves lock passing triggered by the reference to the
current object as an actual argument. Processor a passes both
the request queue lock on b and its own call stack lock.
Processor b then obtains the request queue lock of c:

a :: orq : ({},{b}) rrq : ({},{}) rcs : ({},{}) locked passed
b :: orq : ({c}) rrq : ({b}) rcs : ({a}) locked
c :: orq : () rrq : () rcs : () locked

Processor b then passes all its locks to processor c during
a synchronous call with lock passing:

a :: orq : ({},{b}) rrq : ({},{}) rcs : ({},{}) locked passed
b :: orq : ({c}) rrq : ({b}) rcs : ({a}) locked passed
c :: orq : ({}) rrq : ({c,b}) rcs : ({a,b}) locked

Finally, processor c synchronously calls processor a, which
is waiting for its synchronous call to return. However, the
feature call does not qualify as a separate callback because
processor a does not have a lock on processor c. Therefore,
processor c performs a regular separate feature call and adds
its feature request to the end of processor a’s request queue.
At this point, all processors wait. Maude cannot process any of
the wait operations because no processor completes its feature
request. This design flaw can be resolved by fixing the separate
callback condition:

Issue Operation – Separate Callback

q 6= p∧σ .locks passed(q)∧¬σ .locks passed(p)∧
σ .cs locks(p).has(q)

¬σ .locks passed(p)∧σ .cs locks(p).has(q)

Γ ` 〈p :: issue(q,sw);sp | q :: sq,σ〉 → 〈p :: sp | q :: sw;sq,σ〉

A separate callback is now characterized as: the supplier
has passed its locks, and the client has the supplier’s call stack
lock (first condition). This condition implies that the supplier is
waiting because it passed its locks over a chain of feature calls
all the way to the client. In this situation, it is necessary for
the supplier to process a feature request right away; otherwise,
a deadlock would occur. In addition to the simple scenarios
with only two processors, this condition also captures more
complex scenarios such as the one shown here. The change
triggered a number of similar changes in other transition rules,
not shown here for space reasons.

B. Separate Once Functions

A once function gets executed at most once in a context.
Once functions declared as separate have a once per system
semantics; non-separate once functions have a once per proces-
sor semantics. The result from the first execution in a context
becomes the result of all future executions in the same context.
If a once function has been executed in a context, it is non-
fresh in that context; otherwise it is fresh.

Two transition rules describe how to process a feature re-
quest for a once function; the feature request comes in the form
of an apply operation. The first transition rule has a condition
σ .is fresh(p, f) and only applies to once functions f that are
fresh in the context p. The apply operation immediately sets
f to non-fresh with the void result. It then updates the once
result during the execution. The second transition rule has a
condition ¬σ .is fresh(p, f) and only applies to once functions
f that are non-fresh in the context p. In this case, the apply
operation returns the previous result on p.

This specification is problematic when a once function is of
separate type, and two processors execute the once function
concurrently. The following program shows this design flaw
in more detail:

class A create make feature
make

local b1, b2: separate B
do

create b1; create b2; f (b1, b2)
end

f (b1, b2: separate B)
do

b1.g; b2.g
ensure b1.c = b2.c
end

end

class B feature
c: separate C
g

do c := h end
h: separate C

once
create Result

end
end

class C end

A new root processor a creates two objects on two new proces-
sors b1 and b2; it then asks both processors to asynchronously
execute g, causing both of them to assign the result of the
separate once function h to c. One of the processors, say b1,
is first and sets h to non-fresh with the void result, as can be
seen in the abstract Maude output: all :: {B}.h→ void. When
processor b2 begins, it cannot execute h again because h is

already non-fresh. Consequently, b2 just queries the current
value, which is void. Processor b1 then updates the result with
a reference r to a new object: all :: {B}.h→ r. When processor
a evaluates its postcondition and compares the two results of
the same once function, it finds the results to be different. This
finding contradicts the idea of once functions.

This design flaw can be fixed with a new status sequence for
once functions: initially, a once function is fresh in a context;
just after its first execution in the context, it becomes non-
fresh and not stable; finally, it becomes non-fresh and stable
when the first execution is over. The processor that executes
the once function for the first time in a context is the stabilizer.
With this new status sequence, a processor different from the
stabilizer can now be prevented from getting the result too
soon. The condition of the transition rule for non-fresh once
functions becomes: ¬σ .is fresh(p, f) ∧ (σ .is stable(p, f) ∨
σ .stabilizer(p, f) = p). It still allows the stabilizer to recur-
sively call the once function without blocking, in which case
the result is the last computed value.

C. Lock Passing for Queries

A client only passes its locks when it performs a separate
callback or when it has a lock that the supplier requires
directly. Consequently, it does not pass its locks in a regular
query call without arguments. This is an issue when the
supplier requires one of the client’s locks in a later call, as
can be observed in the following code:

class A create make feature
b: separate B
c: separate C
make

do
create c; create b.make (c); f (b, c)

end

f (b: separate B; c: separate C)
local t: separate D
do t := b.g; c.k end

end

class B create make feature
w: separate C
make (c: separate C)

do w := c end
g: D

do h (w); create Result end
h (c: separate C)

do c.k end
end

class C feature
k do end

end

class D end

A new root processor a creates two objects on two new
processors b and c. It then starts executing the feature f and
locks the two request queues, as can be seen in the following
Maude output:

a :: orq : ({},{b,c}) rrq : ({},{}) rcs : ({},{}) locked
b :: orq : () rrq : () rcs : () locked
c :: orq : () rrq : () rcs : () locked

In f, processor a performs a query call to processor b. This
query call is synchronous due to wait by necessity; however, it
does not involve lock passing as processor b does not require
any locks from processor a to execute g:

a :: orq : ({},{b,c}) rrq : ({},{}) rcs : ({},{}) locked
b :: orq : ({}) rrq : ({}) rcs : ({}) locked
c :: orq : () rrq : () rcs : () locked

Processor b then tries to obtain processor c’s request queue
lock as it executes h (w). However, since processor a still holds
on to this lock while waiting for its query call to return, the
system deadlocks. Maude stops because it cannot satisfy the
premise of the lock operation.

This design flaw can be addressed by always passing locks
during a query call. This is not harmful because the client
must wait anyway. The small change also facilitates separate
callbacks where the feature call chain involves query calls (see
Section V-A).

D. Coverage

Testing concurrent programs is known to be difficult be-
cause of the nondeterminism in their execution, which causes
some faults to be exposed only for certain schedules. Testing
concurrency models on the other hand seems to be a much
easier problem. The reason for this is that testing a model
amounts to probing the correctness of the transition rules, and
most schedules will still cause the same transition rules to be
applied.

Indeed, the scheduler used in the tests is deterministic but
was successful in exposing flaws in the model. When creating
test programs for testing concurrency models, it is therefore
important to maximize coverage of the transition rules – rather
than maximizing coverage of states in the execution traces, as
in the testing of concurrent programs.

VI. RELATED WORK

Brooke, Paige, and Jacob [9] present a CSP model of a
SCOOP subset and use a model checker to test the model
with example programs. They explore different lock passing
mechanisms and different strategies to release locks. They
conclude that a supplier can unlock as soon as its client
stops using it. Compared to our formal specification, which
comprehensively models SCOOP, the CSP model focuses on
a number of core SCOOP concepts. Ostroff et al. [10] also
present a formal specification for a SCOOP subset and use it
in a model checker to verify SCOOP programs. In contrast, our

approach focuses on discovering flaws in the SCOOP model
and not on program verification.

Ellison and Rosu [24] also combine formal specification
and testing. They use K [25] to describe an executable formal
specification of C and gain confidence in their specification by
testing it against a GCC test suite. Their approach is similar
to our approach, with the major difference that our approach
deals with a concurrency model. The importance of testing
executable formal specifications of programming models is
also emphasized by Klein et al. [26].

Several works [27], [28] present tools to explore memory
models using formal specifications and concurrent test pro-
grams. These tools exhaustively find all executions allowed by
the specified memory model and then check these executions
for failures. These works do not comprehensively capture a
concurrency model as they focus on the memory model; hence,
they are not suited to study full-fledged concurrent programs.

Verdejo and Martı́-Oliet [29] describe various executable
formal specifications implemented in Maude. Some of those
specifications have intricate features, which make the im-
plementation challenging, but they are still very compact
compared to SCOOP. Previously, Thatia, Sen, and Martı́-
Oliet created an executable formal specification [30] of an
asynchronous version of the π-calculus.

The maturity of reasoning frameworks has also led to a
growing interest in large formal specifications of program-
ming language semantics and the compilation process. For
example, Leroy [7] uses the Coq proof assistant to program
the compiler for a C-like imperative language and to prove
its correctness. This approach of a fully formal proof of
compilation correctness has also been applied in the context of
concurrent languages. Lochbihler [8] presents a formalization
of concurrent Java and proves the correctness of the source to
bytecode compilation using Isabelle/HOL. Batty et al. [31]
provide models for the revised standards of C and C++
which add concurrency to the languages. They are able to
prove, using the theorem prover HOL4, the correctness of the
proposed compilation schemes. Our approach emphasizes the
value of an executable semantics in order to perform testing,
which arguably gives a faster feedback on the model than fully
formal proofs.

A number of semantic frameworks other than Maude enable
work into large formal specifications. K [25] is a rewrite-based
executable semantic framework that builds on top of Maude.
Its rewrite rules generalize over traditional ones by being able
to specify which parts of a term they read, write, or do not
care. PLT Redex [32] is a language designed for specifying
and debugging operational semantics, requiring a grammar
and reduction rules as the only input. It allows to visualize
reductions and to check subject reduction theorems. Ott [33]
provides a metalanguage and a tool to express semantics
and to compile them into code that can be interpreted by
proof assistants. Since our primary focus was on deriving an
executable semantics in order to facilitate testing rather than
proofs, we did not consider using Ott.

VII. CONCLUSION

We presented a development methodology for concurrency
models that relies on executable formal specifications to
conduct testing prior to developing compiler and runtime
support. We applied this methodology to SCOOP, resulting
in a formal specification based on structural operational se-
mantics and ADTs, implemented in Maude. We managed to
find and resolve three major design flaws: an insufficient
separate callback condition, faulty separate once functions,
and an insufficient lock passing condition. Having successfully
demonstrated the methodology on an extensive concurrency
model, we believe that it can also be beneficial to developers
of other models.

One of the unexpected results is that nondeterministic
execution, which complicates the testing of concurrent pro-
grams, does not turn out to be a significant issue for testing
concurrency models. The results reported here suggest that
executable specifications, which suffer from the same criticism
of principle as program tests (in both cases the approach
can at best give partial reassurance, never a full guarantee),
are, in practice, a realistically usable and fruitful path to the
verification of semantic models.

These results open up several directions of future work:
generating test programs automatically; evaluating different
scheduling algorithms; running conformance tests of the
SCOOP compiler and runtime system with respect to the
specification; using the executable specification as a SCOOP
interpreter for teaching purposes; and applying the approach
to other models.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) /
ERC Grant agreement no. 291389, the Hasler Foundation, and
ETH (ETHIIRA).

REFERENCES

[1] R. S. Carl Hewitt, Peter Bishop, “A universal modular ACTOR for-
malism for artificial intelligence,” in International Joint Conference on
Artificial Intelligence, 1973, pp. 235–245.

[2] C. A. R. Hoare, Communicating Sequential Processes. Prentice Hall,
1985.

[3] C. Fournet and G. Gonthier, “The reflexive CHAM and the join-
calculus,” in Symposium on Principles of Programming Languages,
1996, pp. 372–385.

[4] G. Almasi, “Partitioned global address space (PGAS) languages,” in
Encyclopedia of Parallel Computing, D. A. Padua, Ed. Springer, 2011,
p. 1465.

[5] D. Gelernter, N. Carriero, S. Chandran, and S. Chang, “Parallel pro-
gramming in Linda,” in International Conference on Parallel Processing,
1985, pp. 255–263.

[6] B. Meyer, Object-Oriented Software Construction, 2nd ed. Prentice-
Hall, 1997.

[7] X. Leroy, “Formal certification of a compiler back-end or: programming
a compiler with a proof assistant,” in Symposium on Principles of
Programming Languages, 2006, pp. 42–54.

[8] A. Lochbihler, “Verifying a compiler for Java threads,” in European
conference on Programming Languages and Systems, 2010, pp. 427–
447.

[9] P. J. Brooke, R. F. Paige, and J. L. Jacob, “A CSP model of Eiffel’s
SCOOP,” Formal Aspects of Computing, vol. 19, no. 4, pp. 487–512,
2007.

[10] J. S. Ostroff, F. A. Torshizi, H. F. Huang, and B. Schoeller, “Beyond
contracts for concurrency,” Formal Aspects of Computing, vol. 21, no. 4,
pp. 319–346, 2008.

[11] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer, “Principles of Maude,”
Electronic Notes in Theoretical Computer Science, vol. 4, pp. 65–89,
1996.

[12] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and
C. Talcott, All About Maude – A High-Performance Logical Framework.
Springer, 2007.

[13] P. Nienaltowski, “Practical framework for contract-based concurrent
object-oriented programming,” Ph.D. dissertation, ETH Zurich, 2007.

[14] ETH Zurich, “SCOOP executable formal specification
repository,” http://bitbucket.org/bmorandi/scoop-executable-formal-
specification/src/, 2013.

[15] B. Morandi, S. Nanz, and B. Meyer, “Who is accountable for asyn-
chronous exceptions?” in Asia-Pacific Software Engineering Conference,
2012, pp. 462–471.

[16] B. Morandi, S. S. Bauer, and B. Meyer, “SCOOP – a contract-based
concurrent object-oriented programming model,” in Advanced Lectures
on Software Engineering, ser. Lecture Notes in Computer Science,
P. Müller, Ed. Springer, 2010, vol. 6029, pp. 41–90.

[17] B. Morandi, S. Nanz, and B. Meyer, “A formal reference for SCOOP,”
in Empirical Software Engineering and Verification, ser. Lecture Notes
in Computer Science. Springer, 2012, vol. 7007, pp. 89–157.

[18] B. Liskov and S. Zilles, “Programming with abstract data types,” ACM
SIGPLAN Notices, vol. 9, no. 4, pp. 50–59, 1974.

[19] G. D. Plotkin, “A structural approach to operational semantics,” The
Journal of Logic and Algebraic Programming, vol. 60–61, pp. 17–139,
2004.

[20] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer, “Specification and proof
in membership equational logic,” Theoretical Computer Science, vol.
236, no. 1-2, pp. 35–132, 2000.

[21] J. Meseguer, “Membership algebra as a logical framework for equational
specification,” in Workshop on Algebraic Development Techniques, 1997,
pp. 18–61.

[22] ——, “Conditional rewriting logic as a unified model of concurrency,”
Theoretical Computer Science, vol. 96, pp. 73–155, 1992.

[23] R. Bruni and J. Meseguer, “Generalized rewrite theories,” in Interna-
tional Colloquium on Automata, Languages and Programming, 2003,
pp. 252–266.

[24] C. Ellison and G. Rosu, “An executable formal semantics of C with
applications,” in Symposium on Principles of Programming Languages,
2012, pp. 533–544.

[25] G. Roşu and T. F. Şerbănuţă, “An overview of the K semantic frame-
work,” Journal of Logic and Algebraic Programming, vol. 79, no. 6, pp.
397–434, 2010.

[26] C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flatt,
J. A. McCarthy, J. Rafkind, S. Tobin-Hochstadt, and R. B. Findler, “Run
your research: on the effectiveness of lightweight mechanization,” in
Symposium on Principles of Programming Languages, 2012, pp. 285–
296.

[27] E. Torlak, M. Vaziri, and J. Dolby, “MemSAT: Checking axiomatic
specifications of memory models,” ACM SIGPLAN Notices, vol. 45, pp.
341–350, 2010.

[28] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber, “Mathematizing
C++ concurrency,” ACM SIGPLAN Notices, vol. 46, pp. 55–66, 2011.

[29] A. Verdejo and N. Martı́-Oliet, “Executable structural operational seman-
tics in Maude,” Journal of Logic and Algebraic Programming, vol. 67,
no. 1-2, pp. 226–293, 2006.

[30] P. Thati, K. Sen, and N. Martı́-Oliet, “An executable specification of
asynchronous Pi-calculus semantics and may testing in Maude 2.0,”
Electronic Notes in Theoretical Computer Science, vol. 71, pp. 261–
281, 2004.

[31] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell, “Clarifying
and compiling C/C++ concurrency: from C++11 to POWER,” in Sym-
posium on Principles of Programming Languages, 2012, pp. 509–520.

[32] J. Matthews, R. B. Findler, M. Flatt, and M. Felleisen, “A visual
environment for developing context-sensitive term rewriting systems,”
in Conference on Rewriting Techniques and Applications, ser. Lecture
Notes in Computer Science, vol. 3091, 2004, pp. 301–311.

[33] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and
R. Strniša, “Ott: effective tool support for the working semanticist,” in
International Conference on Functional programming, 2007, pp. 1–12.

