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I - INTRODUCTION 

. .From our experience in solving POE's for 
englneerlng problems, we feel confident that the 
following statements will generally be agreed upon 

- There is a noticeable gap between 
aZgorithms presented in textbooks, and their 
implementation as programs. 

- Too much unproductive work is done by 
structural engine~rs, physicists, numerical analysts, 
etc., to code agaln and again close variants of 
standard algorithms. 

The two points are closely related, we think. 
The fact that, in spite of the existence and availa
bility of popular finite-element codes, in spite of 
the broad marketing of well documented subroutine 
libraries, so many people continue to code their 
own versions of standard methods, is not to be blamed 
on human weaknesses only. It is also due to a tenden
cy to reorganize old methods into new combinations 
in ?r~er ~o answer ·~ew.que~tions. Thus, slight 
modl~lcatlons of eXlstlng lmplementations are always 
r~q~lred. But the general obscurity and poor reada
b1l1ty of programs make these adaptations harder 
than they should be, and would be, if the gap we 
mentioned could be bridged. 

Our contention is that this gap can be 
reduced, thanks to the advances in Computer Science 
in the recent years. We shall concentrate here on 
algorithms in linear algebra, relying on results 
obtained in the domain of proof-oriented program 
const~~ction techniques, after the work of Hoare (2) 
and D1Jkstra (1). In this approach, methods which 
were oriqinally used for proving properties of 
existing programs are applied instead to the 
top-down design of new ones ; programs and their 
proofs will be developed in parallel. 

The example we discuss is related to 
str~ctural analysis by the finite-element method. 
It 1S often necessary to perform a LLstatic conden
sation LL , which is nothing else than elimination of 
selected variables in a linear system. Though not 
new (~ , the idea is currently in the development 
stage as far as software is concerned (4), and our 
implementation is (we hope) novel. 

To avoid mixing all difficulties, we shall 
first state the basic concepts on a toy example (the 
square root), then proceed with the formal specifi
cation of the static condensation problem, the design 
of the program, and a brief account of the FORTRAN 
implementation. 
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II - PROGRAMS AS PREDICATE TRANSFORMERS - BASIC 
CONCEPTS 

Underlined words below denote the few 
concepts we need. Consider the following text: 

program square root (input a : REAL ; output x : REAL) 

{P : a> O} 

find x 

2 (Q : x = a and x > O} 

This is the text of a tautologically correct 
"programLL. The notation should be self-explanatory: 
sentences surrounded by braces { and } are treated as 
comments; most often, they will be predicates, i.e. 
properties which must be verified by the var1ables 
of t~e program (x and a in our example). Texts such 
as f~nd x are statements; successive statements 
will be separated by semicolons. Proper indentation 
will help display the logical structure. A construct 
of the form {P} A {Q} is used to express that Q is 
true after execution of A if P was true before. 

The approach known as top-down design calls 
now for refinements of the statement find x, which 
must eventually be. expressed in terms of elementary 
actions. A seemingly very productive heuristics toward 
that end is uncoupling (or embedding) : let us intro
duce another varlable ~ also of type REAL, and a 
new predicate I which is a weaker form of the 
intended conclusion Q 

( I) xy = a and x > 0 and y > 0 

so that Q = I and C, where C is 

(C) x = y (within a prescribed margin of accuracy). 

A possible way to proceed is to start with 
such a state of the variables where I is true, and, 
while keeping it true, to try to reach the ILgoal" C. 
One natural way to do this is to look for a program 
of the form 

{P} 
establish I ; 
whiZ.e not C do 

I 
bring x and y oZoser to eaoh other ; 
restore I 

{C and I} 

which we can assert is correct (i.e. will bring the 
variables from a state where the initial predicate is 
verified to a state where the final predicate is 
verified) provided the loop terminates properly. 



This is shown by noting thatIis a loop invariant, 
i.e. 

(2) {I and not C} A {I} 

where A stands for the two statements of the loop body. 
Hoare's axioms for the while loop imply that, if the 
loop terminates, we can deduce from (2) that 

(3) {I} while not C do A {I and C} 

which ensures the validity of pro~ram (1). 

A third step in the top-down design will be 
to express more precisely how I is to be lI es tablished" 
(for instance by the two assignments x + a ; y+-l), 
how x and yare to be "brought closer to each other ll 

(one possible way is the assignment x+- (x+y)/2) , and 
how I will then be "restored" (y + a/x). 

The program now obtained (a version of 
Newton's algorithm) is in a form very close to any 
current programming language, and we may stop here. 
But the process could be pursued further down if this 
proved necessary. For instance, if ordinary floating
point division were not available, we might have to 
refine the statement y+a/x into a loop so designed 
as to achieve the final predicate xy = a. 

III - STATIC CONDENSATION 

We consider now the nxn rigidity matrix of 
a structure, in block form 

(4) I;t; I 
where the last blocks correspond to a subset E C [1~n1 
of the variables, containing only those which may 
interact with other parts of a higher-level structure, 
and are call ed "interna 1" for that reason. It is often 
useful to factorize such a matrix in the following 
way : 

S 0 

(5) o 
= 

T H 

The matrix H(H = C - TTt) , ~hich links 
displacements (or other generalized variables) of 
external type and related forces may be used in a 
higher-level assembly process and T and S allow one 
to go back to the elementary displacements once 
external variables are known. It seems interesting 
to allow "external variables" to include load 
parameters, Lagrange multipliers, right-hand members 
in general. Thus, a software tool capable of solving 
(5), which may be called a "condenser" (it is an 
extension of the classical "solver"), appears as 
an essential piece of any finite-element code where 
sub-structuring is to be implemented. 

It is not practical, however, to number the 
variables in such a way that internal variables will 
always appear first as in (5) : identical 
sub-structures may have different sets of external 
variables (fig. 1), so that a different set of 
pointers to the same file must be used for each 
condensation. If interval variables are treated first 
(for example through a Cholesky routine), T being 
computed next, and then H, a lot of page faults 
will occur if the file is not entirely in core. 
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Figure 1 Assembly of three identical 
substructures, with different sets 
of external variables 

The problem to be solved may thus be sstated 
as follows: given a nxn symmetric matrix a, and a 
subset E of (l~nl, find a symmetric nxn matrix $ such 
that 

i 1 $ j ~ i ~ n then 

. .(.' 
~ jfE then 

I 
I' 8'k $"k = a .. k . 1- J 1-J 
~ J 

~ j €: E and i 1: E then 
I(n) 

I 
I"' I 
L. $'k $"k = a .. ~ k ~ i 1- J '-J 

if. J ~ E and -I- f E then 

I 
, 

s .. = a .. - I Sik $ 'k 1-J 1-J k ~ n J 
, 

~\!here L stands for a summation where external indices 
are omitted. Entries Si1 correspond to s ;n (5) when 
i and j are both internal, to T when one of them is 
external, to H when both are external. 

The above predicate, which we call I(n) for 
reasons which will be made clear below, is the final 
predicate of the program that is to be built. 
Obviously, it requirespositivedefillitions 
of the internal-internal part of a, which will be 
assumed as initial predicate, although checked in 
practice by the program itself. 

We shall add the following requirement: 
assuming that a and 8 are stored in "symmetric mode" 
i.e. li~e after line, in one-dimensional arrays, the' 
p~ocess:ng should be as "sequentialll as possible. This 
w1ll gU1de the search for a suitable loop-invariant. 

Only Cholesk~ factorization ;s considered 
below; using the Lot variant would not be more 
difficult . 

IV - TOP-DOWN DESIGN OF THE SELECTIVE FACTORIZATION 

We embed the final predicate I(n) in a family 
of.predicates I(Z), obtained by substitution of l for 
n 1n I(n) ; 1(0) is trivially true. 
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Choosing the "uncoupling" 

(6) I(n) = I(ZJ and (l=n) 

then leads to the following program 

erogram seZeative_ChoZesky (input a : SYMMETRIC MATRIX., 
-- E : subset of-

--- INTEGER; 
output s .' 

SYMMETRIC_MATRIX) 

variab 1.e 1. INTEGER; 

Z + 0 ; {I(O)} 

whi1.e 1. < n do 

Iz + 1.+1., 
';esto1'e I(l.) 

{I(n)} 

For the second refinement step, we look for a 
sequence A of actions such that 

(7) { I(l.-lJ} A {I(l.)} 

It is sufficient to find A such that 

{l ~ d ~ i $- Z-l and 

i E E and d ~ 
I 

E => s. , = Is 'k S 'k 
(8) 1-J 1- J 

A 

{J(Z)} 

where J(Z) is defined as 

if 1 ~ d ~ 1. then 

J(Z) d.f E 
I 

if then I, SZk S'k = a z , 
k;{.J J J 

r j r: E and Z ¥ E then 

I' sZk Sjk = a1.j 
k$-1. 

if j l: E and l t E then 

for aU i >, j and i ~ E 

I f)ij = aij - k~zsik Sjk 

In order to solve problem (8), we again use the 
"uncoupling" strategy, Let Z, an INTEGER, and y, a 
R8AL, be new variables, We can express J(l) as : 

(9) 

if i ~ j $. P and l' ~ l then 

it jt E then L' B1.k sdk = a Zj " 
kd 

J(l.,r.,y) j E E and liE then 

I 
I 

L s1.k a'k + Y s'l = a Z ' 
k<l J J J 

and K(l) as 
1 

K(l) 

it 1.4E and l;{.j~i~l and ifE 

and jf E 

then 

l s. , = a., - I I S 'k S 'k 
1-J 1.,J k~Z 1.. J 

Examination of (9) suggests that action A 
should be constructed as the composition of a while 
loop admitting J(Z,P"y) as an invariant, and sUltable 
actions which will ensure y = szz and K(Z), In other 
words, we shall look for an A of t~following form 

A 

r+O;y+1; 

whiZe l' < l do 

1

1' + 1'+1 ,; 
restore J(l,,1',y) 

ensure y = all while maintaining J(ljl"y) ; 

ensure K(l) 

We could pursue the process further, and show 
how the last sub-actions of A can be systematically 
developed ; the approach of proof-directed top-down 
program design should be clear by now, however, and 
we shall give the final product without further 
justification. The program for selective Choleski 
factorization, expressed in our notation, appears 
on the next page, 
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program selective_choleski 

SYMMETRIC MATRIX, (input a 
e 

output s 
FUNCTION (INTEGER + LOGICAL) ; 
SYMMETRIC MATRIX) 

{input assertion: 
the internaL-internal part of a is 

positive-definite} 

variables 

n, l, r, i, j : INTEGER., 
y : REAL; 

n + order (a) l + 0 ,; 

{Ia)} 

while l < n do {Loop invariant I(l)} 

l + 'l+l j 

{restore I(Z) : } 

r + 0 ; Y + 1 {J{Z,r,y) is satisfied} 

whi'le r < Z do {'loop invariant : 
J(Z.,r,y) } 

r + r+l ; 

{restore J(Z,r.,y) :} 

i not e (v) then 

r < Z then 

1 I 

sZI' + (a - L sZ,k srk)/srr 'lr k<r 

{I(Z) 

e'lse 

T
su + Ian - I' s'lk

2 

k<'l 
{positive definiteness 
guarantees that the square 
root is defined} 

elsif not e (Z) then 
I 

s'lr + (aZr - k~L aZ,k ark) / y ; 

i not e('l) then 

y + Szz j 

.l.ef 0 < r <: L 7;Jhi'le 'e (1") 

I s lr + S lr / Y ,; 

~ l~j!i:i$L 
wh~le e(i) and e(j) a:o- -

~ Sij + 8ij - Sti Stj 

{J (Z,r.,yJ } 

do 

290 

v - A FORTRAN IMPLEMENTATION OF THE SELECTIVE 
FACTORIZATION. 

Included below is a FORTRAN program which 
is little more than a litteral translation of the 
above routine. It embodies a few implementation 
decisions; in particular: 

- s and a have been stored as one-dimensional 
arrays, where the relative position of an element 
(i, j) is computed via a function ADRESS (I, J). In 
the implementation below, it is assumed that s and a 
are full and fit in core. If skyline is consider.ed, 
and/or if secondary storage is required, only ADRESS 
has to be modified. 

, 
- the I operator is effected through a call 

to the SCLPRD subroutine, which must be consistent 
with ADRESS (pursuing the approach further, we could 
have defined these functions as belonging to the same 
II vi rtual machine", or "abstract data type"). 

VI - CONCLUSION 

We hope to have shown that program design, 
all the way from the search for an algorithm to the 
writing and documenting of the final code, can 
proceed in a disciplined way not unlike the classical 
mathematical discourse. 

We certainly do not mean to imply, however, 
that this is a smooth and easy process ; indeed, there 
are choices involved at each step, and sometimes there 
is no better way to resolve them than trial and error. 
Uncoupling (9), for instance, requires a good deal 
of insight, and ~Je had to try a few blind alleys 
before we found it. Top-down proof-directed program 
design is certainly not a magical recipe for solving
numerical problems; what the method does bring, 
however, is a better control of the whole programming 
process, a better relationship between mathematical 
methods and their implementations, and, of course, 
better programs, easier to code, debug, document and 
modify. 
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APPENDIX 

A FORTRAN Program for the Selective Factorization 

CC:CCCCCCCCCCCCC:CCCCCCCC:CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
SUBHOUTlNC 

SELCHO 

(N,A,E,S,f'OSt'EF ,r,ANt<) 
C 
CCCCCCCCCCCCCCCLCCCCCCCCCCCC:CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

FUNCTION 

SEL.ECTIVE CHOlESKI FACTORIZI'tTION <I.E. DEALING WITH "INTt::RNAL" 
VAfn.("BLES ONLY, THOSE FOR WHICH C(T.) = .FfILSE.), WITH SIMULfq;NEOUS 
[IETERMINATION OF INTEr.:NAL-EXTEHNAL f,ELATIONS AND OF THE: "CONDENSED 
MATHIX' WH('.J(E ONLY EXTEF,'NAL VAHIABl.ES ARE CONSIDEf\ED. 

S AND A MAY BE THE S!,\MC REr,l. AfmUMF.:NT IN THE CAL. LING P'HOGf,AM. 
~ SEClUENTU.L·· VARIANT OF THE ALGORITHM, SUITAEIl.E For, AN OUT-OF

CORE IMF"LE~:ENTAT10N. THIS PROGF~AM IS NOT WRITTEN FOI::: ACTUAL USE, 
BUT COLll.II SEmi~: AS A TEMPLATE FOR AN OPERATIOl4AL VERSION. 

FORMAL ARGUMENTS 

C *-I('*')(.*~·i(·***~'*.:xi(·i(·*.**')(··~·X'-K·*·X"~1(·,)(:,)(·i(··X:·)(-,*.)(.)(-.)(.,)(.'*.)(: .... )(0.)( •• )( )Co*,)(,*,)(.**~** Xi<' x- )(-·~·~·)(-·x .x-.,; **,)/;.Ji+.)E -)(- x-
C TYF'E NAME ARf,AY ? MEANING 
C **.:O(-***.~,)(*)/:,M-.~*.~**)f t *'~i('*~"K-**: )(-**-)('-)(**-)(--)(-)(")(0-)(-' *i(*-~'X-*~"f'X--)(d~**-~')(**-)('"X-******i(-*~-)(-* 
C INF'UT 
C 

C 
C 
C 

C 

C 
C 

REAL 

INTE'3ER 

LOGICAL 

A 

N 

E 

( l. ) 

( 1 ) 

8YMMr::Tfac F'ClmTIVE··[lEFINITE: 
1 MATf\lX. 1-B AHr,AY STORAGE : 

AU,.\) IS IN A ",r,r~!:'.:S8 <r, J) ) 

ORDER OF A. 

C OUTPUT 
C 

C 
C 

c 
C 

C 
C 
C 

HEAL 

LOGICAL 

INTEGER 

S ( 1 ) 

PC)SDEF 

RANi', 

OUTPUT OF THE. SEl.E,CTIVE FACTO 
RIZATION. 8TOF,FeD LIKE A. 

TRUE IF A IS INDEED POSITIVE 
DEFINITE. 

N IF F'OSI'EF ; El.SE, f(ANt< OF 
I THE LINE WHEf,E A NeGATIVE 

DIAGONAI_ TEF~M AF'PEr·,f,ED. 
C ***·)t*·)If·)(-*1t·-X--K-'~*'X- X -)t-)t*-~-I.')( -"'-)(--1( .. K-.)( )t'~*<K-')('.)( 1(- )(-ol(- •• -)(--)(-:x--x-*-x -)('X--X"X'o)("~* X-')(o'X-1(-.)(,.)(o-)f*-ti.-.)i-.)(,i('-K'~'* )(*')(-)E--)(o-)(

C 
C 
C 
C 

THIS UNIT'-' MI\KES CAl.l.S TO : 
HEAL FUNCTION SCl.Pf([I(S,E,I,J) 

CI II I 111I I / / / / I II/ / / 11/ / /1/ / I / I / / I / / / /1// / / / 1// // / / 11111/111111 / I / I II I I I 
C THE: FOLLOWING IS THUE AFTEf, EXECUTION OF SELCHO : 

IF POStlEF, 
IF 1 

THEN 
<= J <= I (= N. THEN 

IF NON-E (J), THErl 
SIGMA( SIKl<S.JI< I K <= J, NON-E(K» 

IF NON--E: (Xl ~ E (.1), THI:,N 
SIGMA( SIK*8JI, : K (= I, NON-E<K» 

IF E(1) ~. E(.J) , TliEN 
AIJ 

C 
e 
C 
e 
e 
C 
C 
e 
C 
C 
C 
C 

SIJ '"' AI.l - SICiMA< SIK~SJK : K <;0 N, NON-E<I() 

WITH SYMMETF\Y : Sn,J) = 8(J,1) AND SAME FOR A • 

elli/ / / I I / / I / / / / // / I / / / / I / / I / / / / / / / / / / / II / /11// I / II // //1 I I I / I // /11//1 I II 
e LOCAL V(.IF,IF,[<LES : 

C 

C 
C 

INTEGEr, AD, I, J, L, f\ 
f(Er.L Rr.,['IC, Y 

ARITHMf:TH;"~I.L Y [lEFINED FUNCTION 
INrEC;D~ Artm.::SS 
ADRFSS(I,J) = (!l<(1-1»/2 + J 
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C 
1 

C 

C 
:2 

C 
C 

C 

C 

3 
C 

c 

" ::; 
6 

C 
C 
C 

C 
7 

e 
9 
C 

C 

10 
11 

12 
C 
13 

POSDEF = • TRUE. 
L = 0 

i~~C':~E~N~ ~o~~'~i FOR EACH LINE OF A), REPEATI 

L = L + 1 
IRESTORE THE VALIDITY OF THE LOOP-INVARIANT leUI 

R = 0 

i~'~~:~E.~L~ ~O~~·~· FOR ALL LINES UF' TO L) ,REPEATI 

R .. R + 1 

/COMF-UTE SLR IN THE INTERNAl.-INTERNAL CASE, ANB 
SLL*SLR IN THE INTEf(NAL-EXTERNf,L CASEI 

AD "" HIIHESS(L,R) 
IIF R INTEf,NAI_, THENI 
IFCE<m) GOTO " 

IIF R ( L, COMF'UTE SL.RI 
IF CR.EQ.U GOTO 3 

S(AII) = (A(AIIl-SCLPrW(S,E,L,R»/ 
S (ADRESS (R, R) ) 

CONTINUE 
IIF f< = L, COMPUTE THE PIVOTI 

RI'lNI< ., L 
RArtIC " I\(AD) - SCLF'RD(S,E,L,R) 
POS~IEF " RArttC.GT .0. 
IF (.NOT.F"ClSnCF) GOTO 13 
S (All) " SQRT (f~ADIC) 

GO TO ::; 
IELSE, IF l. INTERNAL, TI-IENI 

GOTO :2 
CONTl:NUE 

IF ( • NOT .E (L» S (AD) "A (AUl -SCLPRII (S, E. L, R) 

IF (E (l.» GOTO 1,1. 
/1F L INTERNALI 

IAfJJUST THE r.Nn::f\i~AI~-EXTEf~NAL TERMS IN l.INE LI 
I <THE PIVOT 1S NOW KNOWN) I 

Y = 8(All) 
R'" 0 
IFar~ EACH Exn,F(NAL R < L, REPEAT / 
IFCr<.GE.L) GOTO 9 

R " R + 1 
IF (.NOT .E (R» GO TO 8 

AD = AI'RESS(l.,R) 

GOTO 
CONTINUE 

SCAm '" S(AD) I Y 
7 

IINCf(FoMENT THE EXTERNAI_-EXTERNAL ENTRIES/ 
DO 10 I .. 1,L 

CONTINUE 
GOTO 1 

CONTINUE 

ItO 10 J = 1, I 
IFOR EI"ICH EXTERNAI_-EXTERNAL (1,.1), r~EF'EATI 

IF(E 0) .AND.E (J» S(ADRESS (1 ,.1» "8 (AIIRESS 
(I,.l) )-S (ADRESS (L., 1) *S (AIIRESS (L,..)) 
CONTINUE 

RETURN 
END 

CCCCCCCCCCCCCCCCCCC:CCC:CC:C;CCCCCCCCC:CCCc:ccC:CCCCCCCc:cCcc:ccccccccccccccccccc 
REAL FUNCTION 

SCLF'f(B 
( S, E, I, J) 

C 
CCCCCCCCCCCCCCccc:c:ccC:CCCCCCCCccccccceccccc:cCCCCccc:cc:c:cCCCCCCCCCCCCCCCCCC 

F\CAL, S(1) 

LOClT.CI-lL E (1) 

1NTEGEF~ 1, .J 
C SCALAR F'RClJ:llICT 01'" TWO LINES OF S, SKIPPING EXTERNAL INDICES. SEE 
C COMMi::.NTS IN ··SELCHCl··. 

c 

C 

lNTEGEF~ I At! ,J(.)[I 
DOUBLE PRECISION PS 

PS = O. 
1 AIl (1* (1-1» /2 + 
..)(,(1 " <.J*(J-1) )/2 + 
K ~ 1 

C IWHILE K ( ..), REPEAT I 
1 IF(K.GE.J) GOTO 2 

1F(.NOT .E(K» SCLF'RD = 8CLPfW + snAIl + K) * SUAII + K) 
K = t< + 1 
GOTO 1 

2 RETURN 
END 


