
ADVANCES IN COMPUTER METHODS FOR PARTIAL DIFFERENTIAL EOUATIONS -III
R. VICHNEVETSKY and R.s. STEP LEMAN (Editors)
Publ. I MAC S· 1979

On the Constructive Approach to Programming: The Case of "Partial Choleski Factorisation"
(A Tool for Static Condensation in Structural Analysis)

Alain BOSSAVIT
Bertrand MEYER

Electricite de France, Direction des Etudes et Recherches Service IMA
1 avenue du General de Gaulle 92141 CLAMART FRANCE '

I - INTRODUCTION

. .From our experience in solving POE's for
englneerlng problems, we feel confident that the
following statements will generally be agreed upon

- There is a noticeable gap between
aZgorithms presented in textbooks, and their
implementation as programs.

- Too much unproductive work is done by
structural engine~rs, physicists, numerical analysts,
etc., to code agaln and again close variants of
standard algorithms.

The two points are closely related, we think.
The fact that, in spite of the existence and availa
bility of popular finite-element codes, in spite of
the broad marketing of well documented subroutine
libraries, so many people continue to code their
own versions of standard methods, is not to be blamed
on human weaknesses only. It is also due to a tenden
cy to reorganize old methods into new combinations
in ?r~er ~o answer ·~ew.que~tions. Thus, slight
modl~lcatlons of eXlstlng lmplementations are always
r~q~lred. But the general obscurity and poor reada
b1l1ty of programs make these adaptations harder
than they should be, and would be, if the gap we
mentioned could be bridged.

Our contention is that this gap can be
reduced, thanks to the advances in Computer Science
in the recent years. We shall concentrate here on
algorithms in linear algebra, relying on results
obtained in the domain of proof-oriented program
const~~ction techniques, after the work of Hoare (2)
and D1Jkstra (1). In this approach, methods which
were oriqinally used for proving properties of
existing programs are applied instead to the
top-down design of new ones ; programs and their
proofs will be developed in parallel.

The example we discuss is related to
str~ctural analysis by the finite-element method.
It 1S often necessary to perform a LLstatic conden
sation LL , which is nothing else than elimination of
selected variables in a linear system. Though not
new (~ , the idea is currently in the development
stage as far as software is concerned (4), and our
implementation is (we hope) novel.

To avoid mixing all difficulties, we shall
first state the basic concepts on a toy example (the
square root), then proceed with the formal specifi
cation of the static condensation problem, the design
of the program, and a brief account of the FORTRAN
implementation.

287

II - PROGRAMS AS PREDICATE TRANSFORMERS - BASIC
CONCEPTS

Underlined words below denote the few
concepts we need. Consider the following text:

program square root (input a : REAL ; output x : REAL)

{P : a> O}

find x

2 (Q : x = a and x > O}

This is the text of a tautologically correct
"programLL. The notation should be self-explanatory:
sentences surrounded by braces { and } are treated as
comments; most often, they will be predicates, i.e.
properties which must be verified by the var1ables
of t~e program (x and a in our example). Texts such
as f~nd x are statements; successive statements
will be separated by semicolons. Proper indentation
will help display the logical structure. A construct
of the form {P} A {Q} is used to express that Q is
true after execution of A if P was true before.

The approach known as top-down design calls
now for refinements of the statement find x, which
must eventually be. expressed in terms of elementary
actions. A seemingly very productive heuristics toward
that end is uncoupling (or embedding) : let us intro
duce another varlable ~ also of type REAL, and a
new predicate I which is a weaker form of the
intended conclusion Q

(I) xy = a and x > 0 and y > 0

so that Q = I and C, where C is

(C) x = y (within a prescribed margin of accuracy).

A possible way to proceed is to start with
such a state of the variables where I is true, and,
while keeping it true, to try to reach the ILgoal" C.
One natural way to do this is to look for a program
of the form

{P}
establish I ;
whiZ.e not C do

I
bring x and y oZoser to eaoh other ;
restore I

{C and I}

which we can assert is correct (i.e. will bring the
variables from a state where the initial predicate is
verified to a state where the final predicate is
verified) provided the loop terminates properly.

This is shown by noting thatIis a loop invariant,
i.e.

(2) {I and not C} A {I}

where A stands for the two statements of the loop body.
Hoare's axioms for the while loop imply that, if the
loop terminates, we can deduce from (2) that

(3) {I} while not C do A {I and C}

which ensures the validity of pro~ram (1).

A third step in the top-down design will be
to express more precisely how I is to be lI es tablished"
(for instance by the two assignments x + a ; y+-l),
how x and yare to be "brought closer to each other ll

(one possible way is the assignment x+- (x+y)/2) , and
how I will then be "restored" (y + a/x).

The program now obtained (a version of
Newton's algorithm) is in a form very close to any
current programming language, and we may stop here.
But the process could be pursued further down if this
proved necessary. For instance, if ordinary floating
point division were not available, we might have to
refine the statement y+a/x into a loop so designed
as to achieve the final predicate xy = a.

III - STATIC CONDENSATION

We consider now the nxn rigidity matrix of
a structure, in block form

(4) I;t; I
where the last blocks correspond to a subset E C [1~n1
of the variables, containing only those which may
interact with other parts of a higher-level structure,
and are call ed "interna 1" for that reason. It is often
useful to factorize such a matrix in the following
way :

S 0

(5) o
=

T H

The matrix H(H = C - TTt) , ~hich links
displacements (or other generalized variables) of
external type and related forces may be used in a
higher-level assembly process and T and S allow one
to go back to the elementary displacements once
external variables are known. It seems interesting
to allow "external variables" to include load
parameters, Lagrange multipliers, right-hand members
in general. Thus, a software tool capable of solving
(5), which may be called a "condenser" (it is an
extension of the classical "solver"), appears as
an essential piece of any finite-element code where
sub-structuring is to be implemented.

It is not practical, however, to number the
variables in such a way that internal variables will
always appear first as in (5) : identical
sub-structures may have different sets of external
variables (fig. 1), so that a different set of
pointers to the same file must be used for each
condensation. If interval variables are treated first
(for example through a Cholesky routine), T being
computed next, and then H, a lot of page faults
will occur if the file is not entirely in core.

288

Figure 1 Assembly of three identical
substructures, with different sets
of external variables

The problem to be solved may thus be sstated
as follows: given a nxn symmetric matrix a, and a
subset E of (l~nl, find a symmetric nxn matrix $ such
that

i 1 $ j ~ i ~ n then

. .(.'
~ jfE then

I
I' 8'k $"k = a .. k . 1- J 1-J
~ J

~ j €: E and i 1: E then
I(n)

I
I"' I
L. $'k $"k = a .. ~ k ~ i 1- J '-J

if. J ~ E and -I- f E then

I
,

s .. = a .. - I Sik $ 'k 1-J 1-J k ~ n J
,

~\!here L stands for a summation where external indices
are omitted. Entries Si1 correspond to s ;n (5) when
i and j are both internal, to T when one of them is
external, to H when both are external.

The above predicate, which we call I(n) for
reasons which will be made clear below, is the final
predicate of the program that is to be built.
Obviously, it requirespositivedefillitions
of the internal-internal part of a, which will be
assumed as initial predicate, although checked in
practice by the program itself.

We shall add the following requirement:
assuming that a and 8 are stored in "symmetric mode"
i.e. li~e after line, in one-dimensional arrays, the'
p~ocess:ng should be as "sequentialll as possible. This
w1ll gU1de the search for a suitable loop-invariant.

Only Cholesk~ factorization ;s considered
below; using the Lot variant would not be more
difficult .

IV - TOP-DOWN DESIGN OF THE SELECTIVE FACTORIZATION

We embed the final predicate I(n) in a family
of.predicates I(Z), obtained by substitution of l for
n 1n I(n) ; 1(0) is trivially true.

I
t

"f

T
i

r

~

Choosing the "uncoupling"

(6) I(n) = I(ZJ and (l=n)

then leads to the following program

erogram seZeative_ChoZesky (input a : SYMMETRIC MATRIX.,
-- E : subset of-

--- INTEGER;
output s .'

SYMMETRIC_MATRIX)

variab 1.e 1. INTEGER;

Z + 0 ; {I(O)}

whi1.e 1. < n do

Iz + 1.+1.,
';esto1'e I(l.)

{I(n)}

For the second refinement step, we look for a
sequence A of actions such that

(7) { I(l.-lJ} A {I(l.)}

It is sufficient to find A such that

{l ~ d ~ i $- Z-l and

i E E and d ~
I

E => s. , = Is 'k S 'k
(8) 1-J 1- J

A

{J(Z)}

where J(Z) is defined as

if 1 ~ d ~ 1. then

J(Z) d.f E
I

if then I, SZk S'k = a z ,
k;{.J J J

r j r: E and Z ¥ E then

I' sZk Sjk = a1.j
k$-1.

if j l: E and l t E then

for aU i >, j and i ~ E

I f)ij = aij - k~zsik Sjk

In order to solve problem (8), we again use the
"uncoupling" strategy, Let Z, an INTEGER, and y, a
R8AL, be new variables, We can express J(l) as :

(9)

if i ~ j $. P and l' ~ l then

it jt E then L' B1.k sdk = a Zj "
kd

J(l.,r.,y) j E E and liE then

I
I

L s1.k a'k + Y s'l = a Z '
k<l J J J

and K(l) as
1

K(l)

it 1.4E and l;{.j~i~l and ifE

and jf E

then

l s. , = a., - I I S 'k S 'k
1-J 1.,J k~Z 1.. J

Examination of (9) suggests that action A
should be constructed as the composition of a while
loop admitting J(Z,P"y) as an invariant, and sUltable
actions which will ensure y = szz and K(Z), In other
words, we shall look for an A of t~following form

A

r+O;y+1;

whiZe l' < l do

1

1' + 1'+1 ,;
restore J(l,,1',y)

ensure y = all while maintaining J(ljl"y) ;

ensure K(l)

We could pursue the process further, and show
how the last sub-actions of A can be systematically
developed ; the approach of proof-directed top-down
program design should be clear by now, however, and
we shall give the final product without further
justification. The program for selective Choleski
factorization, expressed in our notation, appears
on the next page,

289

program selective_choleski

SYMMETRIC MATRIX, (input a
e

output s
FUNCTION (INTEGER + LOGICAL) ;
SYMMETRIC MATRIX)

{input assertion:
the internaL-internal part of a is

positive-definite}

variables

n, l, r, i, j : INTEGER.,
y : REAL;

n + order (a) l + 0 ,;

{Ia)}

while l < n do {Loop invariant I(l)}

l + 'l+l j

{restore I(Z) : }

r + 0 ; Y + 1 {J{Z,r,y) is satisfied}

whi'le r < Z do {'loop invariant :
J(Z.,r,y) }

r + r+l ;

{restore J(Z,r.,y) :}

i not e (v) then

r < Z then

1 I

sZI' + (a - L sZ,k srk)/srr 'lr k<r

{I(Z)

e'lse

T
su + Ian - I' s'lk

2

k<'l
{positive definiteness
guarantees that the square
root is defined}

elsif not e (Z) then
I

s'lr + (aZr - k~L aZ,k ark) / y ;

i not e('l) then

y + Szz j

.l.ef 0 < r <: L 7;Jhi'le 'e (1")

I s lr + S lr / Y ,;

~ l~j!i:i$L
wh~le e(i) and e(j) a:o- -

~ Sij + 8ij - Sti Stj

{J (Z,r.,yJ }

do

290

v - A FORTRAN IMPLEMENTATION OF THE SELECTIVE
FACTORIZATION.

Included below is a FORTRAN program which
is little more than a litteral translation of the
above routine. It embodies a few implementation
decisions; in particular:

- s and a have been stored as one-dimensional
arrays, where the relative position of an element
(i, j) is computed via a function ADRESS (I, J). In
the implementation below, it is assumed that s and a
are full and fit in core. If skyline is consider.ed,
and/or if secondary storage is required, only ADRESS
has to be modified.

,
- the I operator is effected through a call

to the SCLPRD subroutine, which must be consistent
with ADRESS (pursuing the approach further, we could
have defined these functions as belonging to the same
II vi rtual machine", or "abstract data type").

VI - CONCLUSION

We hope to have shown that program design,
all the way from the search for an algorithm to the
writing and documenting of the final code, can
proceed in a disciplined way not unlike the classical
mathematical discourse.

We certainly do not mean to imply, however,
that this is a smooth and easy process ; indeed, there
are choices involved at each step, and sometimes there
is no better way to resolve them than trial and error.
Uncoupling (9), for instance, requires a good deal
of insight, and ~Je had to try a few blind alleys
before we found it. Top-down proof-directed program
design is certainly not a magical recipe for solving
numerical problems; what the method does bring,
however, is a better control of the whole programming
process, a better relationship between mathematical
methods and their implementations, and, of course,
better programs, easier to code, debug, document and
modify.

REFERENCES

(1) Dijkstra, E. W. : A Discipline of Programming;
Prentice-Hall,1976.

(2) Hoare, C. A. R. : An Axiomatic Basis for Computer
Programming; CACM; 12, 10, 1969, pp. 576-583.

(3) Kron, G. : Diakoptics, Piecewise SoZution of Large
Systems; London, McDonald, 1963.

(4) Wilson, E. L., and_Dovey, H. H. : SoLution or
Reduction of Equi'librium Equations for Large
CompLex StructuraL Systems ; Advances in Enginee
ring Software, 1, 1, 1978, pp. 19-26;

)

(

APPENDIX

A FORTRAN Program for the Selective Factorization

CC:CCCCCCCCCCCCC:CCCCCCCC:CCC
SUBHOUTlNC

SELCHO

(N,A,E,S,f'OSt'EF ,r,ANt<)
C
CCCCCCCCCCCCCCCLCCCCCCCCCCCC:CC
C
C
C
C
C
C
C
C
C
C
C
C
C
C

FUNCTION

SEL.ECTIVE CHOlESKI FACTORIZI'tTION <I.E. DEALING WITH "INTt::RNAL"
VAfn.("BLES ONLY, THOSE FOR WHICH C(T.) = .FfILSE.), WITH SIMULfq;NEOUS
[IETERMINATION OF INTEr.:NAL-EXTEHNAL f,ELATIONS AND OF THE: "CONDENSED
MATHIX' WH('.J(E ONLY EXTEF,'NAL VAHIABl.ES ARE CONSIDEf\ED.

S AND A MAY BE THE S!,\MC REr,l. AfmUMF.:NT IN THE CAL. LING P'HOGf,AM.
~ SEClUENTU.L·· VARIANT OF THE ALGORITHM, SUITAEIl.E For, AN OUT-OF

CORE IMF"LE~:ENTAT10N. THIS PROGF~AM IS NOT WRITTEN FOI::: ACTUAL USE,
BUT COLll.II SEmi~: AS A TEMPLATE FOR AN OPERATIOl4AL VERSION.

FORMAL ARGUMENTS

C *-I('*')(.*~·i(·***~'*.:xi(·i(·*.**')(··~·X'-K·*·X"~1(·,)(:,)(·i(··X:·)(-,*.)(.)(-.)(.,)(.'*.)(:)(0.)(••)()Co*,)(,*,)(.**~** Xi<' x-)(-·~·~·)(-·x .x-.,; **,)/;.Ji+.)E -)(- x-
C TYF'E NAME ARf,AY ? MEANING
C **.:O(-***.~,)(*)/:,M-.~*.~**)f t *'~i('*~"K-**:)(-**-)('-)(**-)(--)(-)(")(0-)(-' *i(*-~'X-*~"f'X--)(d~**-~')(**-)('"X-******i(-*~-)(-*
C INF'UT
C

C
C
C

C

C
C

REAL

INTE'3ER

LOGICAL

A

N

E

(l.)

(1)

8YMMr::Tfac F'ClmTIVE··[lEFINITE:
1 MATf\lX. 1-B AHr,AY STORAGE :

AU,.\) IS IN A ",r,r~!:'.:S8 <r, J))

ORDER OF A.

C OUTPUT
C

C
C

c
C

C
C
C

HEAL

LOGICAL

INTEGER

S (1)

PC)SDEF

RANi',

OUTPUT OF THE. SEl.E,CTIVE FACTO
RIZATION. 8TOF,FeD LIKE A.

TRUE IF A IS INDEED POSITIVE
DEFINITE.

N IF F'OSI'EF ; El.SE, f(ANt< OF
I THE LINE WHEf,E A NeGATIVE

DIAGONAI_ TEF~M AF'PEr·,f,ED.
C ***·)t*·)If·)(-*1t·-X--K-'~*'X- X -)t-)t*-~-I.')(-"'-)(--1(.. K-.)()t'~*<K-')('.)(1(-)(-ol(- •• -)(--)(-:x--x-*-x -)('X--X"X'o)("~* X-')(o'X-1(-.)(,.)(o-)f*-ti.-.)i-.)(,i('-K'~'*)(*')(-)E--)(o-)(

C
C
C
C

THIS UNIT'-' MI\KES CAl.l.S TO :
HEAL FUNCTION SCl.Pf([I(S,E,I,J)

CI II I 111I I / / / / I II/ / / 11/ / /1/ / I / I / / I / / / /1// / / / 1// // / / 11111/111111 / I / I II I I I
C THE: FOLLOWING IS THUE AFTEf, EXECUTION OF SELCHO :

IF POStlEF,
IF 1

THEN
<= J <= I (= N. THEN

IF NON-E (J), THErl
SIGMA(SIKl<S.JI< I K <= J, NON-E(K»

IF NON--E: (Xl ~ E (.1), THI:,N
SIGMA(SIK*8JI, : K (= I, NON-E<K»

IF E(1) ~. E(.J) , TliEN
AIJ

C
e
C
e
e
C
C
e
C
C
C
C

SIJ '"' AI.l - SICiMA< SIK~SJK : K <;0 N, NON-E<I()

WITH SYMMETF\Y : Sn,J) = 8(J,1) AND SAME FOR A •

elli/ / / I I / / I / / / / // / I / / / / I / / I / / / / / / / / / / / II / /11// I / II // //1 I I I / I // /11//1 I II
e LOCAL V(.IF,IF,[<LES :

C

C
C

INTEGEr, AD, I, J, L, f\
f(Er.L Rr.,['IC, Y

ARITHMf:TH;"~I.L Y [lEFINED FUNCTION
INrEC;D~ Artm.::SS
ADRFSS(I,J) = (!l<(1-1»/2 + J

291

C
1

C

C
:2

C
C

C

C

3
C

c

" ::;
6

C
C
C

C
7

e
9
C

C

10
11

12
C
13

POSDEF = • TRUE.
L = 0

i~~C':~E~N~ ~o~~'~i FOR EACH LINE OF A), REPEATI

L = L + 1
IRESTORE THE VALIDITY OF THE LOOP-INVARIANT leUI

R = 0

i~'~~:~E.~L~ ~O~~·~· FOR ALL LINES UF' TO L) ,REPEATI

R .. R + 1

/COMF-UTE SLR IN THE INTERNAl.-INTERNAL CASE, ANB
SLL*SLR IN THE INTEf(NAL-EXTERNf,L CASEI

AD "" HIIHESS(L,R)
IIF R INTEf,NAI_, THENI
IFCE<m) GOTO "

IIF R (L, COMF'UTE SL.RI
IF CR.EQ.U GOTO 3

S(AII) = (A(AIIl-SCLPrW(S,E,L,R»/
S (ADRESS (R, R))

CONTINUE
IIF f< = L, COMPUTE THE PIVOTI

RI'lNI< ., L
RArtIC " I\(AD) - SCLF'RD(S,E,L,R)
POS~IEF " RArttC.GT .0.
IF (.NOT.F"ClSnCF) GOTO 13
S (All) " SQRT (f~ADIC)

GO TO ::;
IELSE, IF l. INTERNAL, TI-IENI

GOTO :2
CONTl:NUE

IF (• NOT .E (L» S (AD) "A (AUl -SCLPRII (S, E. L, R)

IF (E (l.» GOTO 1,1.
/1F L INTERNALI

IAfJJUST THE r.Nn::f\i~AI~-EXTEf~NAL TERMS IN l.INE LI
I <THE PIVOT 1S NOW KNOWN) I

Y = 8(All)
R'" 0
IFar~ EACH Exn,F(NAL R < L, REPEAT /
IFCr<.GE.L) GOTO 9

R " R + 1
IF (.NOT .E (R» GO TO 8

AD = AI'RESS(l.,R)

GOTO
CONTINUE

SCAm '" S(AD) I Y
7

IINCf(FoMENT THE EXTERNAI_-EXTERNAL ENTRIES/
DO 10 I .. 1,L

CONTINUE
GOTO 1

CONTINUE

ItO 10 J = 1, I
IFOR EI"ICH EXTERNAI_-EXTERNAL (1,.1), r~EF'EATI

IF(E 0) .AND.E (J» S(ADRESS (1 ,.1» "8 (AIIRESS
(I,.l))-S (ADRESS (L., 1) *S (AIIRESS (L,..))
CONTINUE

RETURN
END

CCCCCCCCCCCCCCCCCCC:CCC:CC:C;CCCCCCCCC:CCCc:ccC:CCCCCCCc:cCcc:ccccccccccccccccccc
REAL FUNCTION

SCLF'f(B
(S, E, I, J)

C
CCCCCCCCCCCCCCccc:c:ccC:CCCCCCCCccccccceccccc:cCCCCccc:cc:c:cCCCCCCCCCCCCCCCCCC

F\CAL, S(1)

LOClT.CI-lL E (1)

1NTEGEF~ 1, .J
C SCALAR F'RClJ:llICT 01'" TWO LINES OF S, SKIPPING EXTERNAL INDICES. SEE
C COMMi::.NTS IN ··SELCHCl··.

c

C

lNTEGEF~ I At! ,J(.)[I
DOUBLE PRECISION PS

PS = O.
1 AIl (1* (1-1» /2 +
..)(,(1 " <.J*(J-1))/2 +
K ~ 1

C IWHILE K (..), REPEAT I
1 IF(K.GE.J) GOTO 2

1F(.NOT .E(K» SCLF'RD = 8CLPfW + snAIl + K) * SUAII + K)
K = t< + 1
GOTO 1

2 RETURN
END

