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Although programming is a difficult and creative activity, useful strategies and heuristics 
exist for solving programming problems. We analyse some of the most fundamental and productive 
among them; their knowledge and conscious application should help the programmers in 
constructing programs, both by stimulating their thinking and by helping them to recognise 
classical situations. The precise framework for the. analysis is provided by the specification 
language Z. For editorial reasons the description in some sections of this paper has had 
to be curtailed. 

1. THE NEED FOR A CONSTRUCTIVE APPROACH TO 
PROGRAM ANALYSIS 

1.1 Introduction 

The evolution of the various domains of 
computer science has led to the development 
of powerful program analysis methods. They make 
it possible to study many properties of 
problems and programs; e.g., to determine 
whether a problem can be solved at all, and, 
if so, whether there exist realistic algorithms; 
to evaluate the abstract and concrete 
complexity of a program; and to prove it 
correct relative to some specification. 

Useful as these techniques may be, they do not 
provide a completely satisfactory answer to 
the practicing programmer, whose immediate 
concern is to build programs which will solve 
given problems. Programming is a difficult 
intellectual activity, and it can hardly be 
expected that straightforward "methods" will 
ever be discovered, let alone "algorithms", 
to deduce programs from problems. To anyone 
seriously concerned with programming, however, 
it is obvious that certain fruitful thought 
patterns do recur with a remarkable frequency, 
and it is quite a temptation to try to analyze 
and formalize them with the hope that their 
knowledge will be of some help for those who 
construct programs. Such is the aim of this 
paper. 

Several authors have remarked that program 
proving techniques are of less use for proving 
the correctness of existing programs than as 
tools to help the programmers write programs 
which will be correct in the first place. An 
important work in this direction is that of 
Dijkstra [5J. We will try to elaborate on 
these methods and give a precise basis for 
their application. 

For any precise reasoning about programming, 
the use of a formal notation is unavoidable. 
We will rely on such a notation, the "ZlI 
sP7cification language, the essentials of 
~h1Ch are summed up in section 2. Section 3 
1S devoted to the presentation of our framework 

293 

for the constructive study of programs, and 
a brief comparison with other approaches. 
Section 4 contains several significant 
examples. In section 5, we analyze the scope 
and implications of the concepts and techniques 
discussed. 

Before going into detailed analysis, it may be 
useful to set the general tone of the work by 
informally introducing some of the ideas on a 
toy example. More serious examples are treated 
in section 4. 

1.2 A toy example 

Assume we are looking for an algorithm to 
compute square roots. The problem is to find 
a method which, given any a ~ 0, will yield x 
such that 

x ~ o and x * x = a (1 ) 

Looking at the form of eq. (1), we decide to 
try a heuristic called "uncoupling" (see 4.1), 
which roughly suggests that: "one variable 
appearing twice may be replaced by two equal 
variables", i. e. here eq. (1) may be replaced 
by 

~ 0 and x * y = a and x = y 
- (2) 

The heuristics used also suggests that we call 
"invariant" the conjunction of the first three 
clauses in eq. (2), and "goal" the last one 
(x = y)~ and look for an algorithm of the form: 

establish invariant; 
while not goal do 
-- begin -

get x and y closer to each other; 
restore invariant 
end 

{goal and invariant} {i.e.~ the desired 
--- conclusion} 

establish invariant is readily implemented by 
the assignments 

x := 1 ; Y := a 
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get x and y closer to each other may be chosen 
(among many other possibilities : this is 
probably the central design decision) as : 

x := (x + y)/2 

restore invariant may then be 

y := a/x 

What we have obtained is the classical 
algorithm known as Newton's method; it is 
indeed easily seen that the sequence of values 
taken by x satisfies x +1 = {x + a/x )/2. Of . n n n 
course, one must show that the algorithm 
terminates in a finite number of steps (adding 
to "x = y" the mention "within a prescribed 
margin of a.ccuracy"), i.e. that Iy - x I is a . n n 
converg~ng sequence. 

After this example which shows that few 
"creative" decisions may be needed in order to 
discover a good algorithm, we come to the 
description of the notation used in the rest of 
this paper. 

2. A NOTATIONAL BASIS : THE Z SPECIFICATION 
LANGUAGE 

In order to precisely define the constructive 
meaning of programming structures, we need a 
notation which, is both formal and readable. 
Moreover, it should be purely static, i. e. 
involve only well-known mathematical constructs. 

The "z" specification language satisfies these 
requirements. This language has been used [1 J 
to model all kinds of information processing 
problems, ranging from text editing to "on-the
fly" garbage collection, system problems, 
programming language semantics, business data 
processing problems etc. Z is based on formal 
set theory and logic; it uses a notation similar 
to that of programming languages, and has in 
particular be~n influenced by the syntax of 
ADA [8J. 

We shall in no way attempt a complete 
description of Z, which is to be found in [IJ. 
For further discussion and examples see [9J. 

A Z text is divided into "chapters". 
As an example which will introduce notions used 
below, we write a small chapter describing order 
relations, and in particular "well-founded" 

, order relations, also called "noetherian" [3J. 

STRICT ORDER !! 

chapter <some basic chapters; see [lJ> del 
-- transitive~ irre[lexive and order 
-- re lations : 
trans [XJ ~ set . r ~or .1' : X ++ X where 

(r Q .1') c-r en ; -----
irre[lex[XJ !!. set r [Oa r : X ++ X where 

r n id[XJ = null en ; --
strict_order[XJ !! trans[X] n irreflex[X]; 
integer_order ~ theorem ££«) E strict 

order[NATJ end; 
minimum[X] e re l A., .1' ++ m for 

-- A subset (X) ; 
.1' stnct order (X); 
m X 

where 
--A c rem) "I' ( " • e. r m+-+a) 

--for aU a in A 
end; 

strict well [ounded[X] ~ 
- - set r [or r : strict-order[X] 

where 
--[oraZZ A [or A : subset(X) 

then minimum (A.,r) :j 
null 

end~-

end;--

-- Let f be a function from X into X and n'a 
-- NAT. Then iter(n) (f)~ defined in another 
-- chapter., is the n-th iterate of [. 
-- A being a subset of X., [ iA is the restric-
-- tion of f to A. 
converge[XJ !! theorem -- see reference[3]., 

-- III. 51., prop. 6. 
[ora U A~ [~ a for; 

A : subset X) - {nuU}; 
[ : (X -+ X); 
a : A 

where -- f on A is the inverse 
--of a strict weU founded 
--relation : 

then 

end 
ena;-

[ iA E inv(strict well 
[ounded[XJ); - -

exist ~ for; n : NAT where 
1...ter n) (f) (a~ 

end 

limit[XJ ::: tunc A., f -+ g £0.1' 
A : su set (X) - {nuU}; 
f X -+ X; 

end 

where 

then 

g : A -+ X - A (-- A's comple
-- ment) 

f rA € inv{strict well 
[ounded[X]); -

-- g !! tunc a -+ b lE!:... a A; 
b : X-A then 

b ::: iter(n) (f) (a;--
given 

N ::: set m em: NAT 
where 1...ter(m) (f) 
~A 
end; 

n ~z.east (N) 
-- smaUest e Lt. 

proof 

end 
end 

N :j nu zz. from 
theor:eii!" converge" 

3. A FORMAL BASIS FOR THE CONSTRUCTION OF 
PROGRAMS 

3.1. Guidelines 

The framework for our representation of 
programs is the concept of a solution to a 
programming problem, which will be characterized 
by : 
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two (generic) sets 
output set 0; 

the input set I and the 

_ a relation on I x 0, which is the problem to 
be solv3d; 

_ a function from I to 0, which represents a 
program "implementing" the relation. Program
ming is the search for explicit functions 
compatible with relations given in implicit 
form. 

This is readily expressed in Z by a class which 
we call 8oLution 

solution[I, OJ ~ cZass with 
--pT'O'lJ!:iim x ++ Y; 

X + Y pT'ogram 
wheT'e 

pT'ogram 
end 

C pT'oblem 

In this approach, any constructive theory of 
programming may be considered as a set of rules 
for constructing solutions for certain programs, 
and deducing solutions to new problems from 
solutions to simpler ones. 

3.2 Sequence 

The rule for program composition is as follows 

sequence [I,X,OJ ~ 
func sl' 8 2 + 8 foT' 

then 

end 

81 solution[I,XJ; 

so lution[X, 0 J; 

solution[I, OJ 

8 ~ cons solution [I,OJ with 
--probLem ~ pT'oblem 7B;T 

o pT'oblem(sl); Q 

pT'ogram ~ program (s2) 
o pT'ogram(81) 

pT'oof 
pT'ogT'am is a function and 

pT'ogram c problem 

end 

The constructive interpretation of this rule 
c?uld be phrased as : if you can't go there 
dlrectly, then go indirectly. The rule is a 
fu~ctional equivalent of Hoare's and Dijkstra's 
aXloms for composition [5J[7]. 
Note the pT'oof clause used to justify the cons. 

3.3~ 

The two-way choice or alternative, may be 
described as fo1lo;s 

alternative[I,OJ = 
func 8 1, s2' A + s for 

A : subset (I); 
8 1 : soZution [A,OJ;s2 so lution [A f, 0 J; 

8 : soZution [I,OJ 
then 

s ~.~ solution [I, OJ with 

pT'oblem ~ pT'oblem (s ) 
u pT'oblem (8

2
); 1 

progT'am ~ program (8 ) 
u pT'ogram (8

2
) 1 

. pT'oof 
----:progT'am E (I + 0) and program 

end 
given 

A'~I-A 

end 

C pT'oblem ---

:he constructive interpretation of this rule 
~s that when looking for a solution to a 
programming problem with I as input domain it 
maY.be useful to look for partial solutions 
deflned on disjoint subsets of I. The rule 
70uld ~f course be generalized to a partition 
lnvolvlng more than two subsets. It does not, 
however, gracefully generalizes to Dijkstra's 
non-deterministic if .•. fi construct. This is 
quite natural since-we stated from the 
beginning that we were looking for functions. 

3.4.Loops 

We choose to model the so-called while loop. It 
is well-known from the work of Floyd [6J and 
Hoare [7J that one of the basic concepts in 
connection with loops is that of "invariant" or 
"inductive assertion". However, invariants are 
often presented after the construction of a 
loop; on the other hand, in [5J, although 
invariants are used throughout as a constructive 
technique, the corresponding rule is not an 
axiom of the proposed semantics, but a 
consequence of the axioms for loops. It seems 
to us that the concept of invariant is so 
important that it should be part of the 
definition of loops. As we shall see, this can 
be done in a simple way; loop initialization 
and loop invariant turn out to be one concept. 

Before we turn to the formal description, it is 
useful to present a closely related mathemati~ 
cal analogy which gives much insight into the 
essence of loops. Let p(x,y) = 0 be an equation 
where x is given and y is the unknown.x and y 
are usually vectors. Under certain conditions 
this equation may be transformed into the fix~ 
point equation y = f(x,y) where f(x,y) is 
defined as y + Ap(x,y) A being some linear 
application. This equation is solved by taking 
the limit of the sequence Y .J defined by : n 

For the sequence to converge in a certain domain 
J(x), f must satisfy a certain condition, 
called the Lipschitz condition, under which for 
all y, y' in J(x) : 

If(x,y') - f(x,y) I < kx Iy' - yl 
for a value k < 1 independent of y. The 
choice of A x helps meet this requirement. 
Moreover, the initialization function init must 
ensure that init(x) belongs to the convergence 
domain J(x). 
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In programming a loop is a fixpoint computation 
method which generalizes the above scheme. It 
has an initialization part init which ensures 
the initial validity of the invariant assertion; 
the latter expresses membership in the 
"convergence domainll J(x). Then the loop has a 
body which is a transition function f ; for all 
x ,the transition function has the pro~erty 
that f (y) belongs to J(x) if y does (except 
perhap~ when y is equal to the limit of the 
sequence), i.e. that the invariant is indeed 
invariant, under' f,; and that f "converges" i.e, 
satisfies a kind S:f "Lipschitz.x condition 
usually expressed by an associated variant 
function V such that V (f (y)) < V (y) and the 

x x x x 
range of V is a strict well-founded set; of 

X 

course, programming,unl±ke classical analysis, 
usually requires that sequences reach their 
limits. 

With this suggestive analogy in mind, we are 
ready to express the loop as a constructive 
proble~-solving method. 

loop[I~OJ == 

func start~ body~ exit ~ ~ for 

start~.~: soZutionCI~OJ; 

body soZutionCI x O~ OJ; 

exit I +-+ 0 

where 

inv 

dec 

transition (invariant-exit) 
c invariant; 

transition € inv(strict weZl 
foundedCinvariant-exitJ); 

then 

9., = E!!!Y:!!.. soZutionCI~ OJ with 

probZem = invariant n exit; 

program = proj 2 
o Zimit (transition) 0 init2 

proof 

theorem "converge"~ section 2.6 

end 

given 

end 

invariant ~ probZem (start); 

transition ~ projl [I .. OJ & program (body); 

initiaZization ~ program (start); 

init2 ~ idCIJ & initiaZization 

The constructive interpretation of th' 1 
h 

. ~s ru e is 
t at ~t may be useful to try and express th 
~oal ~s the conj~nction of two relations e 
t.~vart.~nt.an~ ~xt.t~ a~d solve the new problems 
t us 0 ta:ne. ~n.a qu~te dissymetric way: no 
strategy ~s ~mpl~ed for obtaining invari t 
(i.e. the initialization), whereas ex~t ~n 

h d b f
· , " ~ s to be 

reac e. y a ~xpo~nt method keeping invariant 
true r~ght up to the end. 

3.5 A few remarks 

The above ~unctional definition corresponds to 

f
a prog(:ammA~ng languag7 construct of the following 

orm ~n P SCAL notat~on) 

var i : I {input} ~ 
o : 0 {output }.; 

o := initiaZization(i);{invariant (i~o) is 
true} 

while not exit (i~o) do 
o := transit'ion ((,OJ; 

{invariant (i.,o) and eX1;t('i,o)} 

In view of the key role played by the initiali
zation ~n any loop, as evidenced by the above Z 
model, ~t seems regrettable that initialization 
is not syntactically part of the loop in common 
programming languages. It is well-known that 
omission of the initialization part is both a 
frequent and a serious programming error. It 
may thus seem advisable to include it in the 
syntax for loops, giving something like: 

from 
<initiaZization part> 

until 
-----<exit condition> 
keeping 

<invariant assert'l:01'l> 
loop 

<transition> 
end; 

The "keeping .. ,If clause should be optional 
since one cannot expect all programmers to use 
formal methods. 

4. STRATEGIES FOR PROGRAM CONSTRUCTION AND 
EXAMPLES 

4.1 Embedding, constant relaxation and uncoupling 

One of the lessons we draw from the previous 
section is that loops may be considered as a 
~rogram construction strategy whereby the goal 
IS expressed as the conj une tion of an tlinva
riant ll which is easier to establish than the 
goal itself, and an "exit" condition, in such a 
way that a "transition" function can be found, 
~hich.will not destroy the validity of the 
~nvar~ant while decreasing a "variant" funct.ion 
so long as the exit condition is not satisfied. 

It is easy to find many prototypical examples 
which fit nicely into this framework. For 
instance the "simplex" algorithm is nothing 
else [4J than keeping a certain point on the 
edges of a convex polyhedron (the invariant 
relation) while minimizing a cost function 
(the variant), Note that the latter may not be 
decreasing everywhere, which is a well-known 
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theoretical problem in linear programming. On 
the other hand, so-called "relaxation methods l1 

in numerical analysis vary the shape of a 
certain surface which is kept isomorphic to 
itself (invariant) and gradually decrease its 
energy function (variant). 

A basic problem of program construction is : 
how do we weaken the goals to get the inva
riants ?The general method may be called 
embedding : use a larger domain D, a subset 
of which is isomorphic to the output set O. 
Find a relation inv defined on D which is 
easier to establish on D than the goal g is on 
0, but such that inv implies g on O. Then use 
inv as invariant, and membership in 0 as the 
exit condition. The method can be visualized 
a succession of "frog leaps" between the 
"surface" inv and the "hyperplane" 0 in D 
(see figure). 

Many algorithms are direct applications of 
embedding. For example, for loops, such as 
operations on matrices, usually set out to 
solve a problem on the set of (n~n) matrices 
by embedding it in the set of (i~i) matrices 
for 0 ~ i s n. Initialization is usually 
trivial; transition adds one to the dimension. 

A particular case is "constant relaxation" : 
replace the goal pen) , where n is a constant 
belonging to some set X, by P(i) and i = n~ 
where i is'a variable constraine~ range over 
X . This is also typical of for loops : to 

n 
compute s = E a[k]~ we replace this goal by 

k=l 
i 

8::: E a[k] and i = n and let i range from 0 
k=l to n. 

Another closely related heuristics in~
pIing, which applies to a goal of the form 
P( ... ~ i~ .'.~ i~ .. ) where i appears twice, 
replacing it by P( ... " 1.:" ••• " j" ... ) and 
i = j. We saw a simple example of this method 
in section 1. 

It is surprising to see how many loop 
algorithms may be recognized as instances of 
the latter two variants of embedding, In fact, 
it proves quite hard to find loop algorithms 
which escape these categories - which is 
rather disappointing when one has embarked 
upon a tentative classification of useful 
heuristics. However, these two ~ useful 

without any doubt, and we shall now conclude 
by analysing the way they apply to two 
examples: array partitioning, and the QR 
algorithm for computing matrix eigen-values. 
For further examples, see [9]. 

4.2 Array partitioning 

A straightforward case of uncoupling is Hoare's 
method for partitioning arrays, as used in 
Quicksort. If we use the first element as the 
pivot [13J, the problem is to establish for 
some s in i .. j 

foralZ k for k i + 1 .. j then 

k s s => ark) s a(i) 

s+1 s k => ark) ~ a(i) 

end 

Uncoupling the two clauses with respect to s, 
i.e. replacing s by t in the second one to get 
the invariant, will yield an algorithm schema 
of the form 

s :::: i ; t := j ; {invariant is true} 

whi le s :I t do 

"get s closer to t~ maintaining the 
invariant 11 

To represent the quoted statement, the partitio
ning method moves sand ttowards each other, 
then restores the invariant : 

begin 

while s :I t and a(s) s a(i) do 

s := s+1 ; 

while t :I sand art) ~ a(i) do 

t := t-l ,; 

{t::: s or (a(s) > a(i) and art) <a(i))} 

exchange elements a(s) and art) 
end 

A variant is the algorithm for the "Dutch 
National flag" problem [5J ' 

4.3 The QR algorithm for computing matrix eigen
values 

We turn now to a quite difficult numerical 
algorithm. Assume we wish to compute the eigen
values of a matrix a. A possible course of 
action is based on the following two properties 
of eigenvalues : 

1. The eigenvalues of a and b are the same if 
a and b are similar matrices. 

2. Eigenvalues are particularly easy to compute 
for some classes of "good" matrices, e.g. 
orthogonal and triangular ones. 

o h h' h f 0 a compute a "good" b Algor~t ms w lC or g~ven 
similar to a will thus yield the solution. The 
subproblem may be expressed as finding band s 
(the similarity matrix) such that b is "good", 
s is regular, and 

b = 8-
1 a s 
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If we write this as sb = as~ uncoupling with 
respect to s is once again very tempti~g. . 
Knowing that a relatively simple algorlthm 1S 
known for factoring (i.e. for given m find 
regular sand "good" 1', such that sr = m),we 
are led t; an algorithm of the following form 

s := 1 ; t .- 1 ; b := 1 ; 

whiZe sb :f at do 

begin 
(s~b) := facto1'ing (at); *; 

t := s 

end 

(Note that here s = t is the invariant and 
sb = at the goal: The reverse choice would also 
work). Now if we define, in location marked *, 

q as t-1s, we recognize an efficient algorithm 
known as QR or LR depending on the class of 
"good" matrices chosen (resp. orthogonal or 
triangular) [14J. This algorithm computes: 

qo1' 0 ~ a 

ql1'l ~ 1'oqo 

q.r. ~ 1'. l q · 1 1" 1" 1,,- 1,,-

which converges towards a pair (q.~1'.) where 1'. 
1" 1" 1" 

and q. are "good" matrices and r".q", is similar 
to a.l" " v 

Of course the method shown only yields an 
~lgorithm schema; a proof of convergence, which 
1S mathematically far from trivial, is required. 
It looks remarkable, however, that such a 
"technical" algorithm may be obtained through 
the application of very general rules. 

5. CONCLUSION 

We hope to have shown that basic programming 
concepts such as control structures may be 
described in a simple way, using no particular 
mathematical apparatus other than well-known 
noti~n~ such as sets, relations, functions, 
part1tlons, orders, etc.; that this can be done 
in a clear and persuasive way thanks to the use 
of a rigorous yet readable formalism, namely Z; 
and that such a description paves the way for 
expression of powerful mechanisms which are 
basic in the design of algorithms. As was 
mentioned before, we do not mean to imply in 
any ~ay ~hat progr~ms can be invented through 
appl1cat1on of reclpes of any kind. The rules 
presented here do however provide much insight 
as it seems to us, into the structure of ' 
programs; they should be part of any set of 
rules used in work toward program synthesis. 
T~ese methods, as well as the general formali
zlng approach presented here, have proved 
helpful both in teaching programming and in 
looking for new algorithms. ' 
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