
INFORMATION PROCESSING 80, S.H. Lavington (ed.)
North-Holland Publishing Company
©IFIP,1980

A BASIS FOR THE CONSTRUCTIVE APPROACH TO PROGRAMMING

Bertrand MEYER
Electricite de France, Direction des Etudes et Recherches (service IMA)
1, avenue du General de Gaulle, 92141 Clamart, France

Although programming is a difficult and creative activity, useful strategies and heuristics
exist for solving programming problems. We analyse some of the most fundamental and productive
among them; their knowledge and conscious application should help the programmers in
constructing programs, both by stimulating their thinking and by helping them to recognise
classical situations. The precise framework for the. analysis is provided by the specification
language Z. For editorial reasons the description in some sections of this paper has had
to be curtailed.

1. THE NEED FOR A CONSTRUCTIVE APPROACH TO
PROGRAM ANALYSIS

1.1 Introduction

The evolution of the various domains of
computer science has led to the development
of powerful program analysis methods. They make
it possible to study many properties of
problems and programs; e.g., to determine
whether a problem can be solved at all, and,
if so, whether there exist realistic algorithms;
to evaluate the abstract and concrete
complexity of a program; and to prove it
correct relative to some specification.

Useful as these techniques may be, they do not
provide a completely satisfactory answer to
the practicing programmer, whose immediate
concern is to build programs which will solve
given problems. Programming is a difficult
intellectual activity, and it can hardly be
expected that straightforward "methods" will
ever be discovered, let alone "algorithms",
to deduce programs from problems. To anyone
seriously concerned with programming, however,
it is obvious that certain fruitful thought
patterns do recur with a remarkable frequency,
and it is quite a temptation to try to analyze
and formalize them with the hope that their
knowledge will be of some help for those who
construct programs. Such is the aim of this
paper.

Several authors have remarked that program
proving techniques are of less use for proving
the correctness of existing programs than as
tools to help the programmers write programs
which will be correct in the first place. An
important work in this direction is that of
Dijkstra [5J. We will try to elaborate on
these methods and give a precise basis for
their application.

For any precise reasoning about programming,
the use of a formal notation is unavoidable.
We will rely on such a notation, the "ZlI
sP7cification language, the essentials of
~h1Ch are summed up in section 2. Section 3
1S devoted to the presentation of our framework

293

for the constructive study of programs, and
a brief comparison with other approaches.
Section 4 contains several significant
examples. In section 5, we analyze the scope
and implications of the concepts and techniques
discussed.

Before going into detailed analysis, it may be
useful to set the general tone of the work by
informally introducing some of the ideas on a
toy example. More serious examples are treated
in section 4.

1.2 A toy example

Assume we are looking for an algorithm to
compute square roots. The problem is to find
a method which, given any a ~ 0, will yield x
such that

x ~ o and x * x = a (1)

Looking at the form of eq. (1), we decide to
try a heuristic called "uncoupling" (see 4.1),
which roughly suggests that: "one variable
appearing twice may be replaced by two equal
variables", i. e. here eq. (1) may be replaced
by

~ 0 and x * y = a and x = y
- (2)

The heuristics used also suggests that we call
"invariant" the conjunction of the first three
clauses in eq. (2), and "goal" the last one
(x = y)~ and look for an algorithm of the form:

establish invariant;
while not goal do
-- begin -

get x and y closer to each other;
restore invariant
end

{goal and invariant} {i.e.~ the desired
--- conclusion}

establish invariant is readily implemented by
the assignments

x := 1 ; Y := a

294 B. Meyer/A basis for the constructive approach to programming

get x and y closer to each other may be chosen
(among many other possibilities : this is
probably the central design decision) as :

x := (x + y)/2

restore invariant may then be

y := a/x

What we have obtained is the classical
algorithm known as Newton's method; it is
indeed easily seen that the sequence of values
taken by x satisfies x +1 = {x + a/x)/2. Of . n n n
course, one must show that the algorithm
terminates in a finite number of steps (adding
to "x = y" the mention "within a prescribed
margin of a.ccuracy"), i.e. that Iy - x I is a . n n
converg~ng sequence.

After this example which shows that few
"creative" decisions may be needed in order to
discover a good algorithm, we come to the
description of the notation used in the rest of
this paper.

2. A NOTATIONAL BASIS : THE Z SPECIFICATION
LANGUAGE

In order to precisely define the constructive
meaning of programming structures, we need a
notation which, is both formal and readable.
Moreover, it should be purely static, i. e.
involve only well-known mathematical constructs.

The "z" specification language satisfies these
requirements. This language has been used [1 J
to model all kinds of information processing
problems, ranging from text editing to "on-the
fly" garbage collection, system problems,
programming language semantics, business data
processing problems etc. Z is based on formal
set theory and logic; it uses a notation similar
to that of programming languages, and has in
particular be~n influenced by the syntax of
ADA [8J.

We shall in no way attempt a complete
description of Z, which is to be found in [IJ.
For further discussion and examples see [9J.

A Z text is divided into "chapters".
As an example which will introduce notions used
below, we write a small chapter describing order
relations, and in particular "well-founded"

, order relations, also called "noetherian" [3J.

STRICT ORDER !!

chapter <some basic chapters; see [lJ> del
-- transitive~ irre[lexive and order
-- re lations :
trans [XJ ~ set . r ~or .1' : X ++ X where

(r Q .1') c-r en ; -----
irre[lex[XJ !!. set r [Oa r : X ++ X where

r n id[XJ = null en ; --
strict_order[XJ !! trans[X] n irreflex[X];
integer_order ~ theorem ££«) E strict

order[NATJ end;
minimum[X] e re l A., .1' ++ m for

-- A subset (X) ;
.1' stnct order (X);
m X

where
--A c rem) "I' (" • e. r m+-+a)

--for aU a in A
end;

strict well [ounded[X] ~
- - set r [or r : strict-order[X]

where
--[oraZZ A [or A : subset(X)

then minimum (A.,r) :j
null

end~-

end;--

-- Let f be a function from X into X and n'a
-- NAT. Then iter(n) (f)~ defined in another
-- chapter., is the n-th iterate of [.
-- A being a subset of X., [iA is the restric-
-- tion of f to A.
converge[XJ !! theorem -- see reference[3].,

-- III. 51., prop. 6.
[ora U A~ [~ a for;

A : subset X) - {nuU};
[: (X -+ X);
a : A

where -- f on A is the inverse
--of a strict weU founded
--relation :

then

end
ena;-

[iA E inv(strict well
[ounded[XJ); - -

exist ~ for; n : NAT where
1...ter n) (f) (a~

end

limit[XJ ::: tunc A., f -+ g £0.1'
A : su set (X) - {nuU};
f X -+ X;

end

where

then

g : A -+ X - A (-- A's comple
-- ment)

f rA € inv{strict well
[ounded[X]); -

-- g !! tunc a -+ b lE!:... a A;
b : X-A then

b ::: iter(n) (f) (a;--
given

N ::: set m em: NAT
where 1...ter(m) (f)
~A
end;

n ~z.east (N)
-- smaUest e Lt.

proof

end
end

N :j nu zz. from
theor:eii!" converge"

3. A FORMAL BASIS FOR THE CONSTRUCTION OF
PROGRAMS

3.1. Guidelines

The framework for our representation of
programs is the concept of a solution to a
programming problem, which will be characterized
by :

--
B. Meyer/ A basis for the constructive approach to programming 295

two (generic) sets
output set 0;

the input set I and the

_ a relation on I x 0, which is the problem to
be solv3d;

_ a function from I to 0, which represents a
program "implementing" the relation. Program
ming is the search for explicit functions
compatible with relations given in implicit
form.

This is readily expressed in Z by a class which
we call 8oLution

solution[I, OJ ~ cZass with
--pT'O'lJ!:iim x ++ Y;

X + Y pT'ogram
wheT'e

pT'ogram
end

C pT'oblem

In this approach, any constructive theory of
programming may be considered as a set of rules
for constructing solutions for certain programs,
and deducing solutions to new problems from
solutions to simpler ones.

3.2 Sequence

The rule for program composition is as follows

sequence [I,X,OJ ~
func sl' 8 2 + 8 foT'

then

end

81 solution[I,XJ;

so lution[X, 0 J;

solution[I, OJ

8 ~ cons solution [I,OJ with
--probLem ~ pT'oblem 7B;T

o pT'oblem(sl); Q

pT'ogram ~ program (s2)
o pT'ogram(81)

pT'oof
pT'ogT'am is a function and

pT'ogram c problem

end

The constructive interpretation of this rule
c?uld be phrased as : if you can't go there
dlrectly, then go indirectly. The rule is a
fu~ctional equivalent of Hoare's and Dijkstra's
aXloms for composition [5J[7].
Note the pT'oof clause used to justify the cons.

3.3~

The two-way choice or alternative, may be
described as fo1lo;s

alternative[I,OJ =
func 8 1, s2' A + s for

A : subset (I);
8 1 : soZution [A,OJ;s2 so lution [A f, 0 J;

8 : soZution [I,OJ
then

s ~.~ solution [I, OJ with

pT'oblem ~ pT'oblem (s)
u pT'oblem (8

2
); 1

progT'am ~ program (8)
u pT'ogram (8

2
) 1

. pT'oof
----:progT'am E (I + 0) and program

end
given

A'~I-A

end

C pT'oblem ---

:he constructive interpretation of this rule
~s that when looking for a solution to a
programming problem with I as input domain it
maY.be useful to look for partial solutions
deflned on disjoint subsets of I. The rule
70uld ~f course be generalized to a partition
lnvolvlng more than two subsets. It does not,
however, gracefully generalizes to Dijkstra's
non-deterministic if .•. fi construct. This is
quite natural since-we stated from the
beginning that we were looking for functions.

3.4.Loops

We choose to model the so-called while loop. It
is well-known from the work of Floyd [6J and
Hoare [7J that one of the basic concepts in
connection with loops is that of "invariant" or
"inductive assertion". However, invariants are
often presented after the construction of a
loop; on the other hand, in [5J, although
invariants are used throughout as a constructive
technique, the corresponding rule is not an
axiom of the proposed semantics, but a
consequence of the axioms for loops. It seems
to us that the concept of invariant is so
important that it should be part of the
definition of loops. As we shall see, this can
be done in a simple way; loop initialization
and loop invariant turn out to be one concept.

Before we turn to the formal description, it is
useful to present a closely related mathemati~
cal analogy which gives much insight into the
essence of loops. Let p(x,y) = 0 be an equation
where x is given and y is the unknown.x and y
are usually vectors. Under certain conditions
this equation may be transformed into the fix~
point equation y = f(x,y) where f(x,y) is
defined as y + Ap(x,y) A being some linear
application. This equation is solved by taking
the limit of the sequence Y .J defined by : n

For the sequence to converge in a certain domain
J(x), f must satisfy a certain condition,
called the Lipschitz condition, under which for
all y, y' in J(x) :

If(x,y') - f(x,y) I < kx Iy' - yl
for a value k < 1 independent of y. The
choice of A x helps meet this requirement.
Moreover, the initialization function init must
ensure that init(x) belongs to the convergence
domain J(x).

296 B, Meyer/A basis for the constructive approach to programming

In programming a loop is a fixpoint computation
method which generalizes the above scheme. It
has an initialization part init which ensures
the initial validity of the invariant assertion;
the latter expresses membership in the
"convergence domainll J(x). Then the loop has a
body which is a transition function f ; for all
x ,the transition function has the pro~erty
that f (y) belongs to J(x) if y does (except
perhap~ when y is equal to the limit of the
sequence), i.e. that the invariant is indeed
invariant, under' f,; and that f "converges" i.e,
satisfies a kind S:f "Lipschitz.x condition
usually expressed by an associated variant
function V such that V (f (y)) < V (y) and the

x x x x
range of V is a strict well-founded set; of

X

course, programming,unl±ke classical analysis,
usually requires that sequences reach their
limits.

With this suggestive analogy in mind, we are
ready to express the loop as a constructive
proble~-solving method.

loop[I~OJ ==

func start~ body~ exit ~ ~ for

start~.~: soZutionCI~OJ;

body soZutionCI x O~ OJ;

exit I +-+ 0

where

inv

dec

transition (invariant-exit)
c invariant;

transition € inv(strict weZl
foundedCinvariant-exitJ);

then

9., = E!!!Y:!!.. soZutionCI~ OJ with

probZem = invariant n exit;

program = proj 2
o Zimit (transition) 0 init2

proof

theorem "converge"~ section 2.6

end

given

end

invariant ~ probZem (start);

transition ~ projl [I .. OJ & program (body);

initiaZization ~ program (start);

init2 ~ idCIJ & initiaZization

The constructive interpretation of th' 1
h

. ~s ru e is
t at ~t may be useful to try and express th
~oal ~s the conj~nction of two relations e
t.~vart.~nt.an~ ~xt.t~ a~d solve the new problems
t us 0 ta:ne. ~n.a qu~te dissymetric way: no
strategy ~s ~mpl~ed for obtaining invari t
(i.e. the initialization), whereas ex~t ~n

h d b f
· , " ~ s to be

reac e. y a ~xpo~nt method keeping invariant
true r~ght up to the end.

3.5 A few remarks

The above ~unctional definition corresponds to

f
a prog(:ammA~ng languag7 construct of the following

orm ~n P SCAL notat~on)

var i : I {input} ~
o : 0 {output }.;

o := initiaZization(i);{invariant (i~o) is
true}

while not exit (i~o) do
o := transit'ion ((,OJ;

{invariant (i.,o) and eX1;t('i,o)}

In view of the key role played by the initiali
zation ~n any loop, as evidenced by the above Z
model, ~t seems regrettable that initialization
is not syntactically part of the loop in common
programming languages. It is well-known that
omission of the initialization part is both a
frequent and a serious programming error. It
may thus seem advisable to include it in the
syntax for loops, giving something like:

from
<initiaZization part>

until
-----<exit condition>
keeping

<invariant assert'l:01'l>
loop

<transition>
end;

The "keeping .. ,If clause should be optional
since one cannot expect all programmers to use
formal methods.

4. STRATEGIES FOR PROGRAM CONSTRUCTION AND
EXAMPLES

4.1 Embedding, constant relaxation and uncoupling

One of the lessons we draw from the previous
section is that loops may be considered as a
~rogram construction strategy whereby the goal
IS expressed as the conj une tion of an tlinva
riant ll which is easier to establish than the
goal itself, and an "exit" condition, in such a
way that a "transition" function can be found,
~hich.will not destroy the validity of the
~nvar~ant while decreasing a "variant" funct.ion
so long as the exit condition is not satisfied.

It is easy to find many prototypical examples
which fit nicely into this framework. For
instance the "simplex" algorithm is nothing
else [4J than keeping a certain point on the
edges of a convex polyhedron (the invariant
relation) while minimizing a cost function
(the variant), Note that the latter may not be
decreasing everywhere, which is a well-known

r B. Meyer/ A basis for the constructive approach to programming 297

theoretical problem in linear programming. On
the other hand, so-called "relaxation methods l1

in numerical analysis vary the shape of a
certain surface which is kept isomorphic to
itself (invariant) and gradually decrease its
energy function (variant).

A basic problem of program construction is :
how do we weaken the goals to get the inva
riants ?The general method may be called
embedding : use a larger domain D, a subset
of which is isomorphic to the output set O.
Find a relation inv defined on D which is
easier to establish on D than the goal g is on
0, but such that inv implies g on O. Then use
inv as invariant, and membership in 0 as the
exit condition. The method can be visualized
a succession of "frog leaps" between the
"surface" inv and the "hyperplane" 0 in D
(see figure).

Many algorithms are direct applications of
embedding. For example, for loops, such as
operations on matrices, usually set out to
solve a problem on the set of (n~n) matrices
by embedding it in the set of (i~i) matrices
for 0 ~ i s n. Initialization is usually
trivial; transition adds one to the dimension.

A particular case is "constant relaxation" :
replace the goal pen) , where n is a constant
belonging to some set X, by P(i) and i = n~
where i is'a variable constraine~ range over
X . This is also typical of for loops : to

n
compute s = E a[k]~ we replace this goal by

k=l
i

8::: E a[k] and i = n and let i range from 0
k=l to n.

Another closely related heuristics in~
pIing, which applies to a goal of the form
P(... ~ i~ .'.~ i~ ..) where i appears twice,
replacing it by P(... " 1.:" ••• " j" ...) and
i = j. We saw a simple example of this method
in section 1.

It is surprising to see how many loop
algorithms may be recognized as instances of
the latter two variants of embedding, In fact,
it proves quite hard to find loop algorithms
which escape these categories - which is
rather disappointing when one has embarked
upon a tentative classification of useful
heuristics. However, these two ~ useful

without any doubt, and we shall now conclude
by analysing the way they apply to two
examples: array partitioning, and the QR
algorithm for computing matrix eigen-values.
For further examples, see [9].

4.2 Array partitioning

A straightforward case of uncoupling is Hoare's
method for partitioning arrays, as used in
Quicksort. If we use the first element as the
pivot [13J, the problem is to establish for
some s in i .. j

foralZ k for k i + 1 .. j then

k s s => ark) s a(i)

s+1 s k => ark) ~ a(i)

end

Uncoupling the two clauses with respect to s,
i.e. replacing s by t in the second one to get
the invariant, will yield an algorithm schema
of the form

s :::: i ; t := j ; {invariant is true}

whi le s :I t do

"get s closer to t~ maintaining the
invariant 11

To represent the quoted statement, the partitio
ning method moves sand ttowards each other,
then restores the invariant :

begin

while s :I t and a(s) s a(i) do

s := s+1 ;

while t :I sand art) ~ a(i) do

t := t-l ,;

{t::: s or (a(s) > a(i) and art) <a(i))}

exchange elements a(s) and art)
end

A variant is the algorithm for the "Dutch
National flag" problem [5J '

4.3 The QR algorithm for computing matrix eigen
values

We turn now to a quite difficult numerical
algorithm. Assume we wish to compute the eigen
values of a matrix a. A possible course of
action is based on the following two properties
of eigenvalues :

1. The eigenvalues of a and b are the same if
a and b are similar matrices.

2. Eigenvalues are particularly easy to compute
for some classes of "good" matrices, e.g.
orthogonal and triangular ones.

o h h' h f 0 a compute a "good" b Algor~t ms w lC or g~ven
similar to a will thus yield the solution. The
subproblem may be expressed as finding band s
(the similarity matrix) such that b is "good",
s is regular, and

b = 8-
1 a s

298 B. Meyer/A basis for the constructive approach to programming

If we write this as sb = as~ uncoupling with
respect to s is once again very tempti~g. .
Knowing that a relatively simple algorlthm 1S
known for factoring (i.e. for given m find
regular sand "good" 1', such that sr = m),we
are led t; an algorithm of the following form

s := 1 ; t .- 1 ; b := 1 ;

whiZe sb :f at do

begin
(s~b) := facto1'ing (at); *;

t := s

end

(Note that here s = t is the invariant and
sb = at the goal: The reverse choice would also
work). Now if we define, in location marked *,

q as t-1s, we recognize an efficient algorithm
known as QR or LR depending on the class of
"good" matrices chosen (resp. orthogonal or
triangular) [14J. This algorithm computes:

qo1' 0 ~ a

ql1'l ~ 1'oqo

q.r. ~ 1'. l q · 1 1" 1" 1,,- 1,,-

which converges towards a pair (q.~1'.) where 1'.
1" 1" 1"

and q. are "good" matrices and r".q", is similar
to a.l" " v

Of course the method shown only yields an
~lgorithm schema; a proof of convergence, which
1S mathematically far from trivial, is required.
It looks remarkable, however, that such a
"technical" algorithm may be obtained through
the application of very general rules.

5. CONCLUSION

We hope to have shown that basic programming
concepts such as control structures may be
described in a simple way, using no particular
mathematical apparatus other than well-known
noti~n~ such as sets, relations, functions,
part1tlons, orders, etc.; that this can be done
in a clear and persuasive way thanks to the use
of a rigorous yet readable formalism, namely Z;
and that such a description paves the way for
expression of powerful mechanisms which are
basic in the design of algorithms. As was
mentioned before, we do not mean to imply in
any ~ay ~hat progr~ms can be invented through
appl1cat1on of reclpes of any kind. The rules
presented here do however provide much insight
as it seems to us, into the structure of '
programs; they should be part of any set of
rules used in work toward program synthesis.
T~ese methods, as well as the general formali
zlng approach presented here, have proved
helpful both in teaching programming and in
looking for new algorithms. '

ACKNOWLEDGEMENT

Many ideas come from numerous discussions with
J.R. Abrial and A. Bossavit.

REFERENCES

[IJ J.R .. A~ria~, S.A. Schuman and B. Meyer,
Spec1"f1"cat1"on Language; Proce~dings of
School on Program Construction, Belfast.
Cambridge: Cambridge University Press, '1980.

[2J A. Bossavit and B. Meyer, On the Construc
tive Approach to Programming : The Case for
Part~al Cholesky .Fasto~ization (A Tool for
Stat1"C Condensat1"on); 1n Advances in
Computer Methods for Partial differential
Equations III, Vichnevetsky and Stepleman
(Eds.), lMACS, 1979.

[3J N. Bourbaki, Elements de Mathematiques -
Theorie des EnsembZes; Paris: Hermann, 1970.

[4J G.B. Dantzig, Linear Programming and
Extensions; Princeton (N.J.) : Princeton
University Press, 1963.

[sJ E.W. Dijkstra, A D'l:sc·t:pl'ine of Pr>oqrarrun'ing ;
Englewood Cliffs (N.J.) : Prentice-Hall, 1976.

[6J R.W. Floyd,.Assign~ng Meaning to Programs;
Proc. Sym. 1n Appl1ed Mathematics 19,
Schwartz J.T. (Ed.), American Mathematical
Society, pp. 19-32.

[7J C.A.R. Hoare, An Axiomatic Basis for Computer
Programming.; Communications ACM, 12, 10,
pp. 576-583.

[8J J.D. Ichbiah et aI, PreZiminary ADA Refe
rence ManuaZ.; RationaZe for the Design Of
the ADA Programming Language; SIGPLAN Noti
~, 14, 6, Parts A and B.

[9] B. Meyer, :J'he Z Language as a basis
for the Const-ru.ative Approaah ·to
ProgramTl'ing; Internal Report, E1ectricite
de France, Direction des Etudes et
Researches, May 1980

[10J B. Meyer and C. Baudoin, Methodes de
prograrnmation; Paris : Eyrolles, 1978.

[11] J. T. Schwartz, PJ:>og'J:1(:un Genesis and the
Design Of Programming Languages; in
Current Trends in Pro rammin Methodolo y,
Vol. IV, Data St:t'uc:'CU:Xl'L'tlfb Yeh Ed.),
pp. 185-215; Englewood Cliffs (N.J.) :
Prentice-Hall, 1978.

[12] D. S. Scott, The Lattice of FZow Diagrams;
in Symposium on Semantics of Programming
Languages, Engeler (Ed.), Lecture Notes
in Mathematics, pp. 311-366; Berlin:
Heidelberg : New-York : Springer-Verlag,
1971.

[13J R.S. Sedgewick, QU1.:c:·k.s01't; Ph. D. Thesis,
Stanford University, 1975.

[14J J.H. Wilkinson and C. Reinsch, Linear
A Zgebra (Handbook fo'!' NumerioaZ Corrrputa
tion

J
voZ. 2); Berlin: Heidelberg

New York: Springer-Verlag, 1971.

