
(TOOlS '89 t

THE EIFFEL OBJECT-ORIENTED PARSING LIBRARY

Philip Hucklesby

Societe des Outils du Logiciel
Centre d' Affaires 3MPP

4 rue Rene Barthelemy 92120 Montrouge (France).

Bertrand Meyer

Interactive Software Engineering Inc.,
270 Storke Road Suite 7

Goleta, CA 93117 (USA).

Although parsing and compiling techniques are one of the most thoroughly explored
areas of computer science, the construction of quality compilers remains a difficult task.

Compilers show all the problems of reusability, extend ability , succinctness of code,
and maintainability of resulting products which object-oriented programming claims to
solve.

The work reported here has resulted in the Eiffel Parsing Library, which is a released
part of version 2.2 of the Eiffel system. It is currently being used as one of the central
elements in the new architecture of the Eiffel compiler itself.

A yacc-like tool that can be used in conjunction with this library is described (called
yoocc).

Programming in the Microscopic ?

Object-oriented programming is often
associated with simulation and graphical
applications and prototypes. Its application to
lower-level operations like syntactic analysis is
less well known.

This bias towards high level frameworks for
small or fairly homogeneous applications is
largely due to deficiencies in the early designs of
object-oriented languages; Naive implementations
of inheritance involved inefficient lookup tables
for dynamic binding which rendered extensive
use of inheritance at a low level impractical, and
the artificial restriction to inheritance from a
single parent precluded intricate use of inheritance
in high level design.

The availability of multiple inheritance
object systems with efficient message passing
mechanisms has changed the outlook of object
oriented programmers. Inheritance structures of
great complexity can be built with no effect on
the efficiency of the message passing, and
systems built using nlultiplc inheritance ,lrc much
more flexible than the \I hicrarchics t

, of single
inheritance. In practice this flexibility n1C"H1S thut

501

inheritance graphs are built in smaller increments,
and bottom-up rather than top-down. Each
decision about a use of inheritance within a given
architecture has less effect on future decisions, so
that one can use an inheritance relation locally
without worrying about its global effect on the
system.

The object-oriented techniques and tools of
Eiffel seemed appropriate to address tbe issues of
com piler architecture.

Compiling : the state of the art.

In spite of promising advances such as the
PQCC project, the standard techniques used by
most compiler builders today are at the level of
the yacc parser generator. Yacc has been
extremely useful to many software developers. It
suffers, however, from a number of limitations, of
which we were made painfully aware as we
applied it to the development of the first Eiffel
compiler:

• The LALR (1) restrictions are often
unnatural, and may require lengthy
dcbugging of grammars for no apparent
purpose.

• The rigidity of these rules is particularly
detrimental to.language evolution.

• The mixing of syntactic and semantic
elements makes it very inconvenient to
write several processors for the same
language without considerable duplication of
effort. In Eiffel, for example, Yacc is used
not only by the various passes . of the
compiling commands ec and es, but also by
documentation and extraction tools such· as
short and flat. Each must be updated
separately whenever the language or
compiling technology is updated.

• As with any preprocessor, and especially
one that generates C, debugging can be
extremely difficult.

• Yacc is inconvenient for multi -pass
compilers. The inherently low-level
facilities, very close to C, make it next to
impossible to share information between
passes on an abstract level (such as AST's
which are repeatedly decorated by
successive passes).

The Eiffel Parsing Library

Object-oriented programming models the
objects of some external reality through classes.
This should apply to compiling as well.

Here the main objects of interest are the
grammar and, at a finer level of granularity, the
constructs (tenninals and non-terminals of that
grammar).

To simplify matters, we adapt the grammar
so that every non-tenninal appears on the left
hand side of exactly one production. Every
production is a "choice", an "aggregate" or a
"sequence", illustrated respectively by the
following (infonnally described) examples :

Instruction =
Skip I Compound
I Conditional I Loop

Conditional =
"if' Expression
"then" Instruction
"else" Instruction
"end"

Compound =
("begin", " ;", "end")
Instruction

502

(A "sequence" construct is characterized by a
header, a delimiter,a trailer and a base non
terminal.)

The approach to parsing followed in the
library is a direct application of the phrase
"syntax -directed compiling". The key idea is to
obtain a straightforward one-to-one
correspondence between productions of the above
form and the corresponding Eiffel classes. For
instance the class describing the construct
Conditional above is as follows.

class CONDITIONAL
inherit

AGGREGATE
feature

template: L_LIST [CONSTRUCT] is
local

condition: EXPRESSION;
then_part: INSTRUCTION;
else_part: INSTRUCTION;

once
Result. Create ;
then_part.Create ;
else_part. Create ;

keyword ("if') ;
branch (condition);
keyword ("then") ;
branch (then_part);
keyword ("else") ;
branch (else_part);
keyword ("end")

end;

end; -- class CONDITIONAL

As this example suggests, the Eiffel form is
a direct translation of the BNF. The most
significant part is the sequence of keyword and
branch instructions that define the feature
template. The appropriate ancestor
(AGGREGATE, SEQUENCE, CHOICE or
TERMINAL) must be named in the inheritance
clause, and the rest of the text is the minimum
required to tum it into a valid Eiffel class.

Although the correspondance between
grammar and code is simple, the task of writing
this code for a significant sized grammar is
tedious, since each construct definitions resides in
a separate source file. The obvious thing to do
was to generate the code automatically. A tool

1REE

fig.1

called yoocc, ("Yes! an Object-Oriented Compiler
Compilerll

, in homage to yacc) performs this
function and is described below.

Abstract Syntax Trees

The basic data structure used in the
syntactic library is the abstract syntax tree (or
AST), generated for a given input text by creating
a node for every occurrence of a production of
the grammar. Thus an II if-then-else-end II
statement might be a node in the tree and the text
between each adjacent pair of keywords would
generate a subtree. Drawing on experience from
Cepage, a syntax directed editor, three
characteristics were particularly desired:

1. Compactness

The information stored in the nodes of the
tree should be the minimum necessary, in
particular the abstract syntax, without the concrete
syntax. Thus for a node of the tree representing
a construct if ... then ... else ... end, the four
keywords should not be stored in each node, but
only the references to the intervening sub-trees.

503

2. Completeness

The concrete syntax of each node should be
available. It should, for instance, be possible to
reconstruct the source code from the AST.

3. Generality

Algorithms for constructing, traverSing and
updating the tree should be defined in general
tenns, without reference to the definition of the
grammar for each node of the tree.

Main Implementation Techniques

The Eiffel library class TWO_WAY_TREE
was chosen to implement AST's in the parsing
library. Each node of the tree is one of four
types of language construct, Either an aggregate,
a sequence, a choice or a terminal. The
inheritance graph of the library (fig. 1) reflects this
classification of language constructs.

As shown above, a once function template
is defined for each construct of the grammar to
define both the concrete (via function keyword)
and the abstract syntax of the construct. The
template is simply a list of subconstructs and
keywords in the order that they appear in the

construct. During the construction of the tree,
new nodes are created by Gone operations from
the non-keyword elements of the template. This
ensures that although all the tree construction,
analysis and traversal algorithms are written in
tenns of tree nodes of type CONSTRUCT (or
sometimes AGGREGATE, SEQUENCE, CHOICE
and TERMINAL), the nodes actually have a
dynamic type corresponding to the type of
grammatical construction that generated them.

Covering semantics

The discussion so far has made no mention
of semantic actions. The parser for a given
language is itself a library, and can be specialised
by inheritance to build many different tools
operating on the same language, or even the same
stored ASTs.

A routine semantics in class CONSTRUCT
expresses the general scheme for executing
semantic actions in a traversal of the AST's It
relies on empty routines pre_action post_action
which by default do nothing, but may be
redefined by any descendant class. pre_action is
called before recursively calling the semantics
routines of each subtree, and poscaction is
executed afterwards. For sequences there is also
a middle_action which is executed after the
semantics routine of each element of the
sequence.

Semantic actions can be performed either by
using the library routine semantics to completely
traverse the tree, or for simple operations for
which a full traversal is not justified, by using the
features of TWO_WAY_TREE directly.

Much of the semantics in a typical yacc
application simply stores the data found for later
use, indeed the cleanest use is probably to make
this the sole function of the yacc code. The
advantage of this is that all data is read in before
any significant manipulations of it are perfonned,
so an operation never depends on data which has
not yet been read.

In the Eiffel approach the infonnation is
always stored automatically in the relevant nodes
of the AST and all other operations are perfonned
afterwards. This is a consequence of the parsing
algorithm used. It would not be suitable for
retrieving small amounts of information from a
large file, but is ideal for multi-pass compilers
since syntactic analysis can be done once for all
passes.

504

Yoocc

Yoocc was originally conceived simply as a
programmer aid to facilitate generation of the
code according to the scheme described above.
As usually happens with such tools, it was soon
realised that it could usefully do a lot more. The
language used will not be described here (it is yet
another BNF-like description language). Instead
we describe its use of the parsing library in the
code that it generates.

E,volution of the grammar

To facilitate regeneration of the syntax
definitions as the grammar evolves, yoocc
generates two classes for each construct of the
grammar. For instance for the construct
conditional above it would generate class
S_CONDITIONAL which contains the syntactic
definitions and CONDITIONAL in which the
programmer may add action functions and/or
attributes.CONDITIONAL inherits from
S CONDITIONAL which inherits from
AGGREGATE. For this discussion
S_CONDITIONAL will be called the 'S_' (S
underscore) class and CONDITIONAL the leaf
class. The full text of the S_ class for
CONDITIONAL is given in fig.2.

For simple modifications of the grammar,
such as occur when the language becomes
reasonably stable, the semantics already
implemented does not need to change. Re
running yoocc with a modified grammar updates
the 'S_' classes and creates other classes only if
they do not already exist.

Multiple Tool Development

The S_ classes for a given language can be
thought of as a library which may be compiled
with a given set of leaf classes to make a tool
operating on the language. The syntactic analysis
is reusable with different semantics.

What is more interesting is to share the
constructed AST's between different tools. Since
Biffel objects may be stored and retrieved this is
quite possible. The only problem is one of inter
project logistics; The definition of the leaf classes
must be agreed upon.

If the developers of the different tools can
agree in advance on the contents of the leaf
classes then the whole set of S_ and leaf classes
may be used as a library.

fig.1

called yoocc, ("Yes! an Object-Oriented Compiler
Com piler" , in homage to yacc) perfonns this
function and is described below.

Abstract Syntax Trees

The basic data structure used in the
syntactic library is the abstract syntax tree (or
AST), generated for a given input text by creating
a node for every occurrence of a production of
the grammar. Thus an "if-then-else-end"
statement might be a node in the tree and the text
between each adjacent pair of keywords would
generate a subtree. Drawing on experience from
Cepage, a syntax directed editor, three
characteristics were particularly desired:

1. Compactness

The information stored in the nodes of the
tree should be the minimum necessary, in
particular the abstract syntax, without the concrete
syntax. Thus for a node of the tree representing
a construct if ... then ... else ... end, the four
keywords should not be stored in each node, but
only the references to the intervening sub-trees.

503

1REB

2. Completeness

The concrete syntax of each node should be
available. It should, for instance, be possible to
reconstruct the source code from the AST.

3. Generality

Algorithms for constructing, traversing and
updating the tree should be defined in general
terms, without reference to the definition of the
grammar for each node of the tree.

Main Implementation Techniques

The Eiffel library class TWO_WAY_TREE
was chosen to implement AST's in the parsing
library. Each node of the tree is one of four
types of language construct, Either an aggregate,
a sequence, a choice or a tenninal. The
inheritance graph of the library (fig. 1) reflects this
classification of language constructs.

As shown above, a once function template
is defined for each construct of the grammar to
define both the concrete (via function keyword)
and the abstract syntax of the construct. The
template is simply a list of sub constructs and
keywords in the order that they appear in the

construct. During the construction of the tree,
new nodes are created by Clone operations from
the non-keyword elements of the template. This
ensures that although all the tree construction,
analysis and traversal algorithms are written in
terms of tree nodes of type CONSTRUCT (or
sometimes AGGREGATE, SEQUENCE, CHOICE
and TERMINAL), the nodes actually have a
dynamic type corresponding to the type of
grammatical construction that generated them.

Covering semantics

The discussion so far has made no mention
of semantic actions. The parser for a given
language is itself a library, and can be specialised
by inheritance to build many different tools
operating on the same language, or even the same
stored ASTs.

A routine semantics in class CONSTRUCT
expresses the general scheme for executing
semantic actions in a traversal of the AST's It
relies on empty routines pre_action poscaction
which by default do nothing, but may be
redefined by any descendant class. pre_action is
called before recursively calling the semantics
routines of each subtree, and poscaction is
executed afterwards. For sequences there is also
a middle_action which is executed after the
semantics routine of each element of the
sequence.

Semantic actions can be performed either by
using the library routine semantics to completely
traverse the tree, or for simple operations for
which a full traversal is not justified, by using the
features of TWO_WAY_TREE directly.

Much of the semantics in a typical yacc
application simply stores the data found for later
use, indeed the cleanest use is probably to make
this the sole function of the yacc code. The
advantage of this is that all data is read in before
any Significant manipulations of it are performed,
so an operation never depends on data which has
not yet been read.

In the Eiffel approach the infoITIlation is
al ways stored automatically in the relevant nodes
of the AST and all other operations are performed
afterwards. This is a consequence of the parsing
algorithm used. It would not be suitable for
retrieving small amounts of information from a
large file, but is ideal for multi-pass compilers
since syntactic analysis can be done once for all
passes.

504

Yoocc

Yoocc was originally conceived simply as a
programmer aid to facilitate generation of the
code according to the scheme described above.
As usually happens with such tools, it was soon
realised that it could usefully do a lot more. The
language used will not be described here (it is yet
another BNF-like description language). Instead
we describe its use of the parsing library in the
code that it generates.

Evolution of the grammar

To facilitate regeneration of the syntax
definitions as the grammar evolves, yoocc
generates two classes for each construct of the
grammar. For instance for the construct
conditional above it would generate class
S_CONDITIONAL which contains the syntactic
definitions and CONDITIONAL in which the
programmer may add action functions and/or
attributes. CONDITIONAL inherits from
S_CONDITIONAL which inherits from
AGGREGATE. For this discussion
S CONDITIONAL will be called the 'S_' (S
u~derscore) class and CONDITIONAL the leaf
class. The full text of the S_ class for
CONDITIONAL is given in fig.2.

For simple modifications of the grammar,
such as occur when the language becomes
reasonably stable, the semantics already
implemented does not need to change. Re
running yoocc with a modified grammar updates
the 'S_' classes and creates other classes only if
they do not already exist.

Multiple Tool Development

The S_ classes for a given language can be
thought of as a library which may be compiled
with a given set of leaf classes to make a tool
operating on the language. The syntactic analysis
is reusable with different semantics.

What is more interesting is to share the
constructed AST's between different tools. Since
Eiffel objects may be stored and retrieved this is
quite possible. The only problem is one of inter
project logistics; The definition of the leaf classes
must be agreed upon.

If the developers of the different tools can
agree in advance on the contents of the leaf
classes then the whole set of S_ and leaf classes
may be used as a library.

In practice this is too restrictive so the
scenario illustrated in fig.3 is used. For the
development of two tools 1 and 2, the developer
of tool 1 works with an empty class
_2CONDITIONAL and vice versa and the classes
from each developer are compiled together to
produce the final system.

Command line options on yoocc allow this
structure of classes to be generated to any number
of levels.

Exported Interface of the AST

Also generated by yoocc are interface
functions in each 'S_' class returning each
subtree with the correct static type. This is one
of the rare uses of the "reverse assignment
attempt" (represented by the operator '?='). If B
is a descendent of A, The assignment B := A is
not nonnally allowed, since class B may have
features which class A does not. The assignment
in the other direction is allowed, so that entities
of type A may at runtime have dynamic type B.
If the dynamic type of art entity is known
statically to be of a particular dynamic type then
the reverse assignment attempt may be used. If
the dynamic type is not correct, the assignment
fails and the target entity becomes a void
reference. Testing whether the reference is void
for targets of different types gives a way of
testing the dynamic type of an object.

Use of the reverse assignment attempt is at
best a suspicious event, and the operator was
added to the Eiffel language with some
reluctance. If it is used to perforrn different
operations depending on the dynamic type of the
object, one must ask why dynamic binding is not
used, and if the dynamic type is known statically,
one must ask why it is not the same as the static
type. Either situation may indicate a weakness of
the program architecture.

In this instance, the tree nodes are
necessarily declared of type CONSTRUCT to
implement the tree in a general forrn, but as
remarked above, their dynamic types correspond
to their grammatical function since they are
Cloned from the template list. For someone
writing an application to process the language, the
interface to the AST should be in terrns of the
actual types of the nodes so that any features
defined at the level of CONDITIONAL may be
used although they would not be exported by

505

CONSTRUCT.

This use of the reverse assignment attempt
may be thought of as a space saving device. An
equivalent implementation would be to use
attributes instead of functions, but then there
would be two pointers in a tree node to each of
its subtrees.

Parsing Techniques

The mechanisms defined in the general
purpose classes define a recursive left-descent
algorithm with backtracking. For an LL(k)
grammar, the amount of backtracking can be
reduced by calling the procedure commit, which
discards hopeless subtrees in a manner similar to
Prolog's cut mechanism. The position of the
commit also deiennines the error messages given
if syntax errors occur.

The same overall scheme could undoubtedly
be used with other compiling techniques; top
down parsing seemed appropriate for the
purposes of the parsing library because it allowed
a direct and intuitive correspondence between the
code written by a client programmer and the
internal algorithm of the parser. By compiling
the library with the debug option, debugging print
statements provide a trace· of the successfully and
unsuccessfully parsed constructs.

Incremental compilation

One of the aims of the current Eiffel
development is to progress toward a finer grained
incremental compilation system. The current
compiler already detects whether the interface of
a feature or class has changed, enabling it to
recompile less of the system if Ghanges are
localised.

One approach to incremental compilation
would be to couple the compiler tightly to an
intelligent editor. While this has other
advantages, like the possibility of syntax directed
editing, it is undesirable in that users will always
have certain tasks for which they prefer to use
their favourite straightforward text editor.

It is hoped that the parsing library will
provide a framework where incremental
compilation can be implemented in a language
independent fashion, without the need for any
particular editor. The idea is simple: functions
will be added to the parsing library to perform a
special type of tree traversal where tokens are

class S_CONDITIONAL
inherit

AGGREGATE
feature

construct_name: STRING is
once

Result := CONDITIONAL;
end;

template: LINKED_LIST [CONSTRUCf] is
local

once

end;

condition: EXPRESSION;
then_part: INSTRUCfION;
else_part:. INSTRUCfrON;

Result Create;
then-part. Create;
else_part. Create;

keyword ("if');
branch (condition);
keyword ("then");
branch (then-part);
keyword ("else");
branch (else_part);
keyword fIend")

condition: EXPRESSION is
do

end;

child...,go (2);
Result ?= item;

then_part: INSTRUCTION is
do

end;

child~o (4);
Result 1= item;

else_part: INSTRUCTION is
do

end;

child~o (6);
Result 1= item;

end; -- class S_CONDITIONAL

506

fig.2 (below)

Inheritance used to partition the
AST between developers of different

. tools.

fig.3 (left)

A sample of the output of yoocc
for the if-then-else-end construct show
ing the 'template' function and the
interface functions using a reverse
assignment attempt to return the data
with the correct static type.

read from a modified text and compared with the
concrete syntax infOlmation from each node. As
soon as a difference is detected, the current
subtree is regenerated and the traversal continues.
Thus although a lexical analysis of the whole
input file must be performed, only the modified
parts of the AST are regenerated.

Lexical analysis

The lexical analysis library contains classes
for defining lexical tokens in a regular expression
language, building finite automata, and converting
them to deterministic automata. The state table
for a given lexical analyser may be built and
stored once, and then be retrieved by several
different tools, so that the so on.

In keeping with the principles of reusable
programming, predefined elements cover the most
common types of tokens (integers, identifiers,
strings etc.).

Assessment

The set of tools resulting from the work
described above seems to fulfil the promises of
versatility and reusability.

Although it provides an almost ideal
flagship example of the entire Eiffel technology,
this project is more than just an academic
example. It was conceived as the cornerstone of
future Eiffel compiling technology and seems to
live up to the expectations.

Acknowledgements

The parsing libraries were implemented
chiefly by Bernard Nieto, Jean-Francois Macary,
Philip Hucklesby and Philippe Stephan. This
paper owes much to lively discussions among the
dynamic teams of engineers at Interactive
Software Engineering and Societe des Outils du
Logiciel (special thanks in this respect are due to
Philippe Elinck).

References

1. Interactive Software Engineering Inc.,
"Eiffel The Language," Technical Report
TR-EI-17/RM, October 1989 (version 2.2,
Oct 1989).

2. Interactive Software Engineering Inc.,
"Eiffel The Libraries," Technical Report
TR-EI-7/LI, October 1989 (version 2.1, Oct

507

1989).

3. K. John Gough , Syntax Analysis and
Software Tools, Addison Wesley, 1988.

4. Bertrand Meyer, "Reusability: the Case for
Object-Oriented Design," IEEE Software,
vol. 4, no. 2 , pp. 50-64, March 1987.

5. Bertrand Meyer, "Eiffel: A Language and
Environment for Software Engineering,"
The Journal of Systems and Software, 1988.

6. Bertrand Meyer, "Genericity, static type
checking, and inheritance," The Journal of
Pascal, Ada and Modula-2, 1988. (Original
version in OOPSLA 86 proceedings,
SIGPLAN Notices, Sept. 1986, pp. 391-
405.)

7. Bertrand Meyer, Object-Oriented Software
Construction, Prentice-Hall, 1988.

8. Bertrand Meyer, "From Structured
Programming to Object-Oriented Design:
The Road to Eiffel," Structured
Programming, vol. 10, no. 1, pp. 19-39,
1989.

