
Conversation with 
Editorial Board Member 
Bertrand Meyer 

What brought you to object-oriented pro
gramming? Can you describe your contri
bution to the field? 

I had the great luck of being introduced to 
object-oriented programming almost from 
the start of my involvement with serious 
software techniques. As a student at Stan
ford in late 1973, I was told that the "in" 
thing was structured programming. So I 
bought the book Structured Programming 
by Dahl, Dijkstra, and Hoare. As most other 
people, I read the first of its three mono
graphs, the one by Dijkstra, and as many 
others I also read the second, Hoare's 
.. Notes on Data Structuring. " Being an obe
dient student, I also read the last mono
graph, by Dahl and Hoare, which was really 
an introduction to object-oriented program
ming in Simula 67. It was so obvious to me 
at the time that what they described was the 
right way to program that I didn't really 
think it worth a big fuss; the ideas were so 
convincing that, sure enough, everybody 
was going to embrace them soon. 

Well, after that I went to industry and I 
t<')und that not everybody was ready yet. But 
I was able to purchase a Simula compiler for 
the IBM 370 and, over the years, my group 
and I had the pleasure of developing quite a 
few systems using Simula. I became active 
in Simula circles and was even for a time 
chairman of the Association of Simula 

Users. 
We also had to abide by the constraints and 

inertia of a practical industrial environment, 
so part of our work involved devising and 
teaching ways of emulating modern software 
technology, including object-oriented con-

cepts, in older languages. At the time, I 
accepted the necessity to adapt to the ac-

cepted state of software practice in the indus
try, and I think we went about as far as one 
can go in developing this emulation technol
ogy. After doing it, however, I made a re
solve never again to settle down for anything 
else than the real thing. Either you do your 
job right or you choose another job. But if 
you are a serious software engineer you 
shouldn't play make-believe. 

During that period, I also worked on vari
ous aspects of software engineering and im
plemented a number of practical software 
tools. One aspect of my work that was very 
important to me was research on abstract 
data types, a topic on which I published an 
early paper in 1975, and formal specifica
tion. I saw these areas as the obvious basis 
for object-oriented techniques. 

The next shock occurred when I moved to 
California in 1983 to teach at UC Santa Bar
bara. From Europe, I hadn't appreciated the 
extent of the C epidemic in the US. I began 
to understand how bad it was when I taught 
an undergraduate "Data Structures and Al
gorithms" course, where usage of C was 
required by department policy. How could I 
even try to teach systematic algorithm con
struction when I knew the bulk of the stu
dents' time was spent fighting tricky pointer 
arithmetic, chasing memory allocation 
bugs, trying to figure out whether an argu
ment was a structure or a pointer, making 
sure the number of asterisks was right, and 
so on? I could well see then one 'benefit of 
C-its portability. But I am afraid it will be 
hard to recover from the damage caused by C 
to an entire generation of programmers .. I 
now wish I could have taught that course 

with Eiffel. 
In 1985, I started Interactive Software En

gineering with lean-Marc Nerson and 

Annie Meyer. We wanted to produce ad
vanced software engineering tools; initially 
we saw ourselves as users, not designers, of 
object-oriented technology. But when we 
started to look for a good development envi
ronment we just couldn't find any. Simula, 
which we would certainly have used, was not 
available to us, let alone to our projected 
users. Smalltalk, attractive as its program- ' 
ming environment looked, seemed way out 
of our software engineering concerns. The 
C extentions smacked far too much of my 
old "emulation" work; besides, they did not 
solve what we knew were the difficult 
problems-multiple inheritance, typing, 
garbage collection, automatic compilation, 
and so on. Worse yet, they still carried the C 
heritage which I had' come to distrust so 
much. So we decided that we needed a new 
language to support our view of serious soft
ware development: a small, simple lan-

May/June 1989 JOOP 41 



guage, with strong typing, genericity, multi
ple inheritance, no global variables, no 
main program, etc. The language, which we 
named Eiffel, also included assertions and 
other carry-overs from my earlier work on 
formal specifications; later these gave rise to 
a disciplined exception mechanism which is 
certainly one of the aspects of which I am 
proudest. 

To implement Eiffel we did use C, but 
only as a low-level target language, for por
tability (not just of the Eiffel compiler but of 
the generated code) and for compatibility 
with existing software (e.g., graphics or 
database packages). We implemented not 
just a compiler, but a whole supporting 
environment. 

The next shock was OOPSLA '86, to 
which we went because I had a paper to 
present on genericity and inheritance, de
rived from some earlier reflections on how 
to reconcile Ada and Simula module mecha-

nisms so as to overcome the limitations of 
both; part of the Ei ffel design, described in 
the article, was a result of these reflections. 
The shock came because until then we had 
thought that a design such as Eiffel was the 
rather obvious answer once the term 
"object-oriented programming" was taken 
seriously in an industrial context. But at 
OOPSLA, to our surprise, we saw that no
body else had done anything of the sort. 
That's when we realized the meaning of 
what we had achieved, and started to take it 
seriously. Today, of course, Eiffel and the 
related technology are a major part of our 
activity, although by no means the only one. 

What makes you so enthusiastic about 
object-oriented techniques? 

Everything! Butperhaps what I like best is 
the simplicity of the basic ideas. If you re
move the type, the implementation details, 
and all the bizarre terminology used in some 
quarters-method, message, protocol, dele
gation, reflection, and other big words
what remains is the application to program
ming of the simple but powerful notion of 
structure, as it exists in the sciences and 
especially in mathematics. That's what 
classes are: the programming equivalent of 
groups, fields, rings, topological vector 
spaces, and so on. Inheritance is also natural 
in this context. 

From a programming viewpoint, what is 
really fascinating is the combination of 

flexibility and safety. Thanks to multiple 
inheritance and dynamic binding you can 
get software structures that are so decentral
ized that reversals of design decisions cease 
to be a nightmare: they become a normal 
part of the design process. For all this flexi
bility, the static typing mechanism, the as
sertions, and the disciplined exceptions 
bring a degree of reliability which is un
heard of in traditional software develop
ment. And all this is achieved without undue 
performance overhead. 

In a way the most advanced object
oriented techniques, such as redefinition 
and dynamic binding, may be viewed as the 
rehabilitation of hacking-in the old sense, 
that of patching up software. Hacking does 
have ajustification: it stems from a desire to 
adapt general-purpose code so that it will 
work better, from a performance or func
tionality viewpoint, in specific cases. But 

with old-style hacking you do this by re
peated minute alterations of the general
purpose code. This soon destroys any struc
ture and elegance the system may have had. 
With inheritance you can tune the system to 
special cases but leave the original structure 
intact; adaptations are done by incremental 
add i tions. You get the best of both worlds. 

Then, of course, there is the reusability. 
The ease of sharing software with others 
through clearly defined interfaces. The abil
ity to rely on standardized, well-docu
mented libraries; here assertions playa key 
role because they provide formal descrip
tions of each operation's role, much more 
precise than anything you could express 
with words. What's great with libraries and 
reusable code is that they are both a short
term benefit (you program at a much higher 
level of abstraction) and a long-term invest
ment; you know that every effort will be 
beneficial not only to the current project but 
to the next one and the ones after that. It's a 
no-lose situation. 

What do you see as the future for object
oriented programming and object-oriented 
languages? 

Of course there are some pitfalls down the 
road. Trivialization is one; I haven't seen 
object-oriented baby food yet but short of 
that just about everything these days is sold 
as "object-oriented." This makes it hard at 
times for people who are promoting the real 
thing. Also I find the idea that you can take 

any old technology and "add" object
oriented ness to it, as if incrementally trans
forming an oxen cart into a jet plane, 
dangerously naive. 

But these fears fade away when you con
sider the opportunities. When you look at 
any particular application area-CADI 
CAM, simulation, business EDP, systems 
software, scientific visualization, you name 
it-almost inevitably you get the feeling that 
it is an ideal target for object-oriented tech
niques. I am particularly excited by the ap
plications to the MIS/EDP world. I think the 
business data processing community des
perately needs object-oriented techniques. 
When the alternative is COBOL, Eiffel 
looks pretty attractive. 

I can't speak about other languages, but 
for Eiffel it's hard to convey the excitement 
that we feel when we see the challenges and 
the possibilities. Once you get the basic 
technology right everything starts to look 

possible. Not easy-there's no free lunch
but feasible in an elegant way. In the months 
to come we'll announce support for more 
flexible persistency, concurrency (two areas 
in which the basic design permits strikingly 
powerful extensions), advanced develop
ment tools. We'll introduce more bridges to 
existing products: it's not enough to get the 
key facilities right, but you also need to 
support database management systems. 
graphics packages, expert system shells~ 
networking tools, and all the other compon
ents that today's complex software projects 
must integrate. The libraries are getting ever 
richer and more extensive, with contribu
tions by ever more people. The software in
dustry is maturing, and getting better at dis
tinguishing realities from hype and 
vaporware. The outlook is just fantastic. 

Bertrand Meyer, Ph.D., is the developer (?f 
the EifJel programming language and is flu' 
President of Interactive Softwa rt' 

Engineering Inc., a compall)' devoted to rlu! 
development of tools and methodsfor imp/"()\"
ing soft~i'are qualit,v. DI: Me.ver is also 111(' 
author (?fseveral books Oil s(?ftware engineer
ing. DI: Meyer call be collfacted at /llteIi:1C"

rive Software Engineering Inc., 270 Storki.' 
Road, Suite 7, Goleta, CA 93117. (805) (j85-
1006. Electronic mail can be sellt to bet1rtlll
d@e(ffel.com. Discllssions of E(ffel-rel(l/<-~t.I 
topics appear regularly ill the USENETIl(,H '.\'_ 
group comp.lang. eijjd. 

---------------------------~ 
42 JOOP 


