
This is a pre-publication version of an article that appeared in the JOOP Eiffel column in 1999. Citation reference: 
Paul Dubois, Mark Howard, Bertrand Meyer, Michael Schweitzer and Emmanuel Stapf, From Calls to Agents, in 
Journal of Object-Oriented Programming (JOOP), vol. 12, no 6, June 1999. 
________________________________ 
 
From calls to agents 
 
Paul Dubois, Mark Howard, Bertrand Meyer, Michael Schweitzer and 
Emmanuel Stapf 
 
 

Agents bring a new level of expressive power by providing elegant mechanisms for 
iteration, numerical computation, financial applications, introspection, and type-safe 
higher-level functionals. 

  
 
Of the recent Eiffel extensions previewed in the last column ("Extension Season", June 1999, see 
http://www.inf.ethz.ch/personal/meyer/publications/joop/extensions.pdf), some are intended to 
clean up and simplify existing mechanisms, but a few significantly raise the expressive power of 
the language. The most spectacular of these is agents, a new mechanism for manipulating 
operations as objects — so important on its own that it deserves a presentation of its own. 
 
Like any good language extension, agents address many needs at once. Among their applications 
we may note: 
 
• Iterators: mechanisms that will apply a routine call to all the elements of a certain structure, 

such as a list, substituting each of its elements in turn for the target of the call, or one of its 
arguments. 

• Numerical computation: passing a numerical function as argument to a mechanism that will 
apply it to many different values, as in the typical example of an integration routine. 

• Financial applications: factoring out repetitive operations on objects representing such 
abstractions as shares or company histories. 

• Offloading computation: we may pass an agent to another software element, hence giving it 
the right to operate on some of our own data structures, at a time of its own choosing. 

• Initialization: using an agent to describe an initial operation to be applied to all future objects 
of a given type. 

• Introspection: using agents to gain information about routines and other software elements, 
as part of Eiffel's introspective capabilities, enabling a software system, during execution, to 
explore and manipulate information about its own properties. (Introspection is also known as 
reflection.) 

 
The agent mechanism, addressing these needs, is typd: agents, representing routines ready to be 
applied to some arguments, have a precise type and benefit from all the Eiffel mechanisms for 
type checking. 

http://www.inf.ethz.ch/personal/meyer/publications/joop/extensions.pdf


 
Another test of a good extension, distinguishing it from mere "featurism", is that it should not 
confuse users by introducing alternative ways of doing things that were perfectly doable before. 
Agents satisfy this requirement since the goals just listed did not previously have full language 
support. Some, such as introspection, could be achieved only through library mechanisms; others, 
such as iterations, were possible before (also through libraries) but are much more convenient and 
general now; yet others, such as integration and other numerical applications, required going 
through the CECIL library, the C-Eiffel Call-In Library, and hence were not type-safe. Agents 
provide simpler and safer ways to achieve these goals; in areas where existing language 
mechanisms had proved sufficient, agents do not affect Eiffel practice. 
 

Writing an agent expression 

An agent is an object, representing a routine ready to be evaluated. To obtain an agent, you will 
write an agent expression, which will refer to that routine. An agent expression is easy to 
recognize since it will always include a tilde character ~ (the only use of that character in the 
language, except of course in strings). 

Consider a class C with a procedure 

 p (x: T ; y: U) 

Then, with c1 of type C, t1 of type T, u1 of type U, a possible agent expression is 

 agent c1. p (t1, u1) 

This agent expression superficially resembles a call to the procedure p, such as 

 c1.p (t1, u1) 
 
but is quite different: the agent expression doesn't call the procedure; it simply denotes an object 
that has, in itself, the ability to call it. So if we use the name pa for this expression, through the 
assignment  

 pa := agent c. p (t1, u1) 

where pa is of a PROCEDURE type (with generic parameters, to be introduced below), we can 
later on obtain the effect of an original call by executing 

 pa.call ([ ]) 
 
Here call is a feature of class PROCEDURE, which performs a call to the routine associated with 



an agent. Feature call always takes a single argument, a tuple. (Tuples, discussed in the last 
column, represent sequences of values.) Here the argument is the empty tuple [ ]; this is because 
when defining the agent expression agent c1.p (t1, u1) we included a target c1 and all the 
necessary arguments to p — t1 and u1 —, so at the time of the call to call we don't need any 
more arguments. We say that the agent expression is closed on all of its operands (target and 
arguments). 
 
It is important to understand what pa represents: an object embodying all the properties of the 
procedure p, ready to be applied to the given target and arguments. C++ programmers might at 
first think of it as a "function pointer", but it is really much more: an object representing the 
procedure's properties. We can do many things with such an object: not just pass it around and 
call the associated routine (through procedure call), as we could do with a function pointer, but 
also obtain information about it, such as the class to which it belongs (here C), its possible 
redefinitions, its precondition, postcondition and so on. The last examples show how the agent 
mechanism opens up a whole set of introspection mechanisms. 
 

If instead  of starting from a procedure p you build  an agent  expression  from a  function f (x: T ; 
y: U): V, as in 

 fa := agent c1.f (t1, u1) 

then in addition to call you can use on fa the feature item, such that fa.item gives the result 
returned by the last call to fa.call ([ ]); you can also combine call and item by using fa.value ([ 
]), which returns the result of calling f on the given target and arguments. 
 
All these operations can be applied at any time, by any routine that has access to the agent (pa or 
fa in these examples). By passing an agent expression to another unit, you enable it to call the 
corresponding routine (p or f here) whenever it pleases. So we may view an agent as a delayed 
call. Of course you can, as noted, do more with an agent than just call the associated routine. 
  

Keeping arguments open 

In the two examples so far, all operands (arguments and target) were closed — set at the time of 
the definition of the agent expression. In many cases you will want to leave some of the operands 
unspecified, or "open", in the agent, to be specified only at the time of the actual call as executed 
by feature call. The mechanism leaves you complete freedom as to which operands you choose to 
close and which you leave open. 

To leave an argument open, simply replace it by a question mark. For example you can define the 
agents 



 pb := agent  c1.p (?, u1) 

 pc  := agent  c1.p (t1, ?) 

 pd  := agent  c1.p (?,?) 

The first and second are open on one argument, the third is open on both arguments. With t2 of 
type T and u2 of type U, they can be used in calls such as 

 pb.call ([t2]) 

 pc.call ([u2]) 

 pd.call ([t2, u2]) 
 
Note how, in each case, the tuple must provide the arguments corresponding to the open positions 
in the defining agent expression. The first call will yield the same result as if, using the original 

procedure p, you had directly called c1. p (t2, u1); the second, c1.p (t1, u2); the third, c1. p (t2, 
u2). (Readers familiar with lambda calculus may think of "open" as free and "closed" as bound.) 
 
As a syntactical facility, you may omit the argument list if all arguments are open. So the 
expression defining pd could also be written as just agent c1 ~ p. 
 
Along with operands, you may want to leave the target of a call open. In all previous examples 
this target, c1, was closed. To leave it open, the question mark notation would not work, because 
you need to state the type of the target. (This is not necessary for arguments, since once we know 
c1 and its type we — and the compiler — know the types for the arguments of procedure p in the 
corresponding class C.) Instead of a question mark you will use the notation {C}, where C is the 
corresponding type, here class C. The following are agent expressions open on their targets: 

 pe := agent {C}. p (t1, u1) -- Open on its target only 

 pf := agent {C}. p (?, u1) -- Open on its target and first argument 

 

 pg := agent {C}. p (?,?) -- Open on all operands; 

       -- can also be written as just  agent {C}. p 



 

Corresponding routine calls will be of the following form (for c2 of type C): 

 pe.call ([c2]) 

 pf.call ([c2, t2]) 

 pg.call ([c2, t2, u2]) 
 
 
Note how the arguments to call correspond to the open operands in the defining agent expression, 
without any distinction between target and argument. This property will be particularly important 
when we use agents to define iterators: we can use the same iterator mechanism to apply an 
operation repetitively to every element of a structure, whether the operation applies to its target or 
to its arguments. 
 
For consistency and expressiveness, you can in fact use both of the open operand notations — 
question mark, and explicit type {T} in braces — for arguments as well as for the target. 
 
The procedure call will always apply dynamic binding, that distinctive feature of object-oriented 
computation: the feature version to be applied is the one deduced, at run time, from the actual 
type of the target. This is particularly significant in the case of open targets (and is another 
difference with mere function pointers). 
 

 

 

The types of agents 

 
As noted in the introduction, the agent mechanism is type-safe. An agent is an instance of one of 
the new Kernel Library classes PROCEDURE and FUNCTION, both inheriting from ROUTINE 
(where routines such as call are introduced). These are generic classes; for example FUNCTION 
is declared as FUNCTION [BASE, OPEN –> TUPLE, RES]. The first generic parameter, BASE, 
represents the class to which the underlying routine belongs, C in our examples. OPEN represents 
the tuple of types of open operands; the Eiffel notation  –> TUPLE indicates that OPEN is a 
"generically constrained" parameter, representing a type that must inherit from TUPLE, i.e. a 
tuple type. RES represents the type of the function result. Similarly, ROUTINE is declared as 
ROUTINE [BASE, OPEN –> TUPLE], with no result type; PROCEDURE is declared like 
ROUTINE. 
 
Here are the types of the preceding example agents: 



 
 pa: PROCEDURE [C, TUPLE] 
 pb: PROCEDURE [C, TUPLE [T]] 
 pc: PROCEDURE [C, TUPLE [U]] 
 pd: PROCEDURE [C, TUPLE [T, U]] 
 pe: PROCEDURE [C, TUPLE [C]] 
 pf: PROCEDURE [C, TUPLE [C, T]] 
 pg: PROCEDURE [C, TUPLE [C, T, U]] 
 
Note again how the TUPLE  type used for the second parameter represents the open arguments, 
no difference being made between the target and the arguments. Correspondingly, procedure call 
is declared in class ROUTINE (and inherited by PROCEDURE and FUNCTION) with the 
signature 
 
 call (arguments: OPEN) 
 
meaning that it takes a single argument, which must be a tuple of the type OPEN representing the 
open arguments. 
 

Example uses 

The above describes the essential properties of agents (the only significant missing part is the set 
of features in ROUTINE and related classes that will provide introspection facilities). Here are a 
few examples showing the versatility of the mechanism. 
Assume you want to integrate a function g (x: REAL): REAL over the interval [0, 1]. With 
your_integrator of a suitable type INTEGRATOR  you will simply write the expression 

   your_integrator.integral (agent  g (?), 0.0, 1.0) 
 
A nice touch is that you can use exactly the same mechanism to integrate a function h of, say, 
three arguments, along its first argument: just use 

 your_integrator.integral (agent h (?, u, v), 0.0, 1.0) 
Here is the way integral could look like (using an unsophisticated integration algorithm) in 
INTEGRATOR: 

 
 integral (f: FUNCTION [ANY, TUPLE [REAL], REAL]; 
   low, high: REAL): REAL is 
   -- Integral of f over the interval [low, high] 
  require 
   meaningful_interval: low <= high 
  local 



   x: REAL 
  do 
   from x := low invariant 
    x >= low ; x <= high + step 
    -- Result approximates the integral over 
    -- the interval [low, low.max (x – step)] 
   until x > high loop 

Result := Result + step  * f.value ([x])  
x := x + step  

   end 
  end 
 
Similar applications abound in numerical computation, and future editions of the EiffelMath 
library [1] may be able to benefit from the agent mechanism. 
 
Consider now an integration example. Assume that in a class C we have a boolean-valued 
function is_positive that tells us whether a certain integer is positive: 
 
 is_positive (x: INTEGER) is do Result := (x > 0) end 
 
 
and a list of integers intlist: LINKED_LIST [INTEGER]. With a suitable iterator function 
for_all in class LIST (inherited by LINKED_LIST and other variants) we can determine whether 
all elements in the list are positive: 
 

 all_positive := intlist.for_all (agent is_positive (?)) 
 
Remarkable here is the possibility to use the same iterator mechanism, for_all, to iterate a 
function that operates on its target, rather than on its argument as is_positive does. Consider a 
class CUSTOMER with a boolean-valued function has_maintenance; a typical call would be 

this_customer.has_maintenance, operating on its target this_customer and returning a boolean 
value. We might have a list customer_list: ARRAYED_LIST [CUSTOMER]. To determine 
whether every element satisfies the property, we can just write: 

 all_on_maintenance := customer_list.for_all  

      (agent {CUSTOMER}.has_maintenance) 
 
To switch from iterating an operation working on its argument to one working on its target, it 
suffices to make the target, rather than the argument, open. This is what the last expression does. 
 
Here now is how the for_all iterator itself might look. It is just one of the iterators which will be 
added to the EiffelBase classes describing sequential structures; others are do_all, do_while and 



so on. Recall that in these classes you can use start to move the cursor to the first element, forth 
to advance it by one position, item to access the element at cursor position, and off to find out if 
you have passed the last element: 
 
 
 
 
 do_all (test: FUNCTION [ANY, TUPLE [G], BOOLEAN]) is 
   -- Does every element of the structure satisfy test? 
  require 
   … Appropriate preconditions … 
  do 
   from 
    Result := True ; start 
   until off or not Result loop 

    Result := test.value ([item]) 
    forth 
   end 
  end 
 
 
  

(Sidebar) An exercise: once per object 
 
To test your understanding of the agent mechanism (and other object-oriented 
techniques), here is a little exercise to which agents provide a neat solution. That solution 
will be published in the next installment of the Eiffel column. 
 
Eiffel provides a powerful "once" mechanism [2]: if you declare a function (or other 
routine) using the once keyword rather than the more common do, the body will be 
executed only the first time around. So by writing a class C that includes a function 
 
 error_window: WINDOW is 
   -- Window where error messages will be displayed 
  once 
   create Result.make (x, y, height, width) 
  ensure 
   exists: Result /= Void 
  end 
 
you ensure that the body (the create instruction) will be executed only once. Subsequent 
calls will return immediately; for a function, as here, the result will always be the one 
computed by the first call (the window that this first call will have created). Using do 
rather than once would not produce the desired result, since every call would produce a 
new window. Here we want error_window to denote the same window in every instance 



of C. 
 
This is a "once per class" mechanism. In some cases you might want to achieve the effect 
of "once per object": a routine that is executed only the first time it is called on any 
particular object. As an example, consider a class TRADED_COMPANY, representing 
companies traded on, say, Nasdaq. One of the features of the class is history, of type 
COMPANY_HISTORY, representing historical data on the company. The company 
history is stored in a database, however, so evaluating company requires loading large 
amounts of data into memory. We don't want to do that whenever an instance of 
TRADED_COMPANY is created, because this would require loading huge amounts of 
data — potentially, in fact, the whole database of histories of all companies! Instead, we 
want to create a COMPANY_HISTORY object when and only when feature company is 
evaluated on a particular object. This is a typical "once per object" (not per class) 
situation. 
 
The exercise is: devise a "once per object" mechanism that will be easy to use in any such 
situation. You may restrict yourself to functions (such as company), but otherwise the 
solution must be completely general. A hint: since the mechanism must cover functions 
returning results of an arbitrary type, you can use Eiffel's genericity to provide the 
required flexibility. 
   

Status and current applications 

Together with the extensions discussed in the previous column, the agent mechanism (introduced 
in 4.3) is available in the current released version of ISE Eiffel, 4.4. It is submitted for 
standardization. A complete definition of the mechanism may be found at http://www.eiffel.com 
(follow "papers"). 

All the facilities described in this paper are supported. (We have alluded to the future 
introspection facilities of class ROUTINE; this is the only part not available at the time of 
writing.) The mechanism has already been applied widely by users, and the response has been  
enthusiastic. Within ISE it is also used in critical applications; in particular the command 
mechanism, so important for interactive applications [3], makes extensive use of agents in the 
newest version of the EiffelVision portable graphical library. The introduction of agents in no 
way invalidates command classes and the object-oriented principles that stand behind them; in 
fact they reinforce these techniques, while simplifying their application and reducing the number 
of necessary command classes. 

In a similar fashion, AxaRosenberg, in its investment software, used to have hundreds of separate 
classes to represent the so-called fundamental variables of every company being tracked by the 
system. Thanks to agents, these classes have been reduced to just a few, with agent expressions 
taking care of the specifics of each company. 

Although not yet part of official Eiffel, agents nicely complement the existing mechanisms, and 
all indications are that they are here to stay. 

http://www.eiffel.com/
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