

Type conversions in an O-O language with inheritance

Bertrand Meyer

Pullout quote:

A type may conform or convert to another, but not both.

We expect, in programming languages, that certain conversions will occur silently and
automatically. The most common case, permitted by almost all languages, is assigning an
integer value to a real variable, which we expect to work, with the effect that it will
convert the integer to the closest real equivalent. We also accept mixed-type arithmetic
expressions, such as your_real_number + my_integer, with the understanding that the
result will be of the “heavier” type, real. Most of the time these possibilities of mixed-
type assignment and mixed-type arithmetic only apply to a few basic types (integer, real,
double, possibly boolean) and cannot be generalized to others, whereas it would often be
nice to do the same thing for some user-defined types; another criticism is that these rules
are ad hoc, breaking the simplicity and regularity of language design. This is particularly
true in an object-oriented language where we have another mechanism for assigning
between two different types: polymorphic assignment or argument passing. We end up
accepting both

 your_polygon := your_rectangle

and

my_real := your_integer

but with very different semantics: in the first case, assuming the corresponding types are
RECTANGLE and POLYGON, inheriting from each other, the assignment simply
reattaches a reference, without any change to any object; the second case causes a change
of values (formally, objects of simple types). This suffices to show that the first intuition
— making INTEGER inherit from REAL —, although natural enough for someone who
looks at the issue of conversions from an O-O background, is quite wrong. As this article
will (I think) clearly demonstrate, we must instead accept that the two mechanisms are
not just different but incompatible, and in fact take great pains to ensure that they can
never be both applicable in a given situation.

This is the pre-publication version (as sent to the editor) of an article that appeared in JOOP.

Cite as follows: Bertrand Meyer, Conversions in an Object-Oriented Language with Inheritance, in JOOP (Journal of
Object-Oriented Programming), vol. 13, no. 9, January 2001, pages 28-31.

I will describe the work that has recently been performed to integrate conversions into the
fabric of a strongly typed object-oriented language, Eiffel, leading to a new language
mechanism that addresses the issues just raised: permitting mixed-type assignments and
mixed-type argument passing as well as mixed-type arithmetic, with the validity and
semantic rules that correspond to the practice of mathematics and of traditional
programming languages, while remaining compatible with the letter and spirit of object-
oriented principles, keeping predefined types fully within the confines of the object-
oriented type system, avoiding any conflict with inheritance, and making the mechanism
applicable not only to predefined types but also to arbitrary programmer-defined types.

A word of warning

In this Eiffel column we usually describe existing realizations in Eiffel and stay away
from speculative discussions. Only once did I present a mechanism that had not been
fully implemented; this was when my co-authors and I first discussed [1] the agent
mechanism, which is now operational (and, not surprisingly, a little different in its details
from that original description, although the general features are essentially as given then).
The present article is our first real exception to this rule, since the proposal described here
is, for the moment, a paper design.

This is of course a bit risky. In early September I was privileged to attend the Joint
Modular Languages Conference in Zurich, which turned into a farewell symposium for
the recently retired Niklaus Wirth and an homage to his language series (Pascal, Modula,
Oberon). A book was published for the occasion [2]. We were reminded more than once,
by the conference and by the book, of the Wirth school’s principle that you shouldn’t
propose a language construct until you have a running implementation for it. In the
evolution of Eiffel we have almost always followed this rule, with the ISE compiler
usually serving as the testbed for new ideas. But of course the successful integration of a
proposed extension into a compiler, while indeed a necessary condition of its final
acceptance, is by no means a guarantee that the extension is good; history has shown over
and again that a language feature may be compilable but still imperfect or even logically
flawed. Language design and evolution is inevitably a back-and-forth process of
validating proposed ideas through discussion and through pilot implementations. In the
present case I think that it’s OK to start with the discussion. Just accept that there is a big
CAUTION sign at the entrance to that discussion: the ideas presented here have not been
implemented, and until that happens you should look at them with the consequent dose of
skepticism.

Getting rid of the Balancing Rule

We are looking for a mechanism that will clarify and generalize the implicit conversions
that exist between basic types, giving them a clear place in the class system of the
language. This is largely a theoretical cleanup effort; no fundamental change will result
for the practicing programmer, but we will have gone one step further towards the goal of

providing the language with a simple, general set of mechanisms, whereby all types —
including basic types such as INTEGER and the like — are defined by classes, with little
or no privileges or special rules. Eiffel goes much further than other typed O-O languages
in treating predefined types as normal classes (while ensuring optimal execution
performance by letting the compiler know about these types); the small extension
described here removes any remaining special theoretical treatment.

The remaining special treatment in current Eiffel [3] is a set of rules that govern
conversions between basic types, providing exceptions to the general conformance
requirements. Conformance of b to a, which governs the validity of the assignment a :=
b, or of argument passing if a is the formal argument of a routine, basically states that the
type of b must be a descendant of the type of a in the inheritance hierarchy, with
appropriate adaptations for generic classes. For the basic types, there are special rules
implying that INTEGER conforms to REAL and DOUBLE, and REAL conforms to
DOUBLE, with the understanding that a corresponding assignment or argument passing
will cause conversions.

In addition the language needs a special “Balancing Rule” to address mixed-type
arithmetic. This is because, in the strict object-oriented world of Eiffel, we view an

expression of the form a + b, theoretically at least, as an abbreviation for a.infix_plus (b),
where infix_plus would be a normal, non-operator function taking an argument. In fact,
such a function does exist; it is called infix "+". If a is of type REAL and b of type
INTEGER, things work as expected since b is formally the argument to infix "+" and its
type, INTEGER, conforms to the expected type for the argument of function infix "+" in
class REAL: the type REAL. But if we reverse the roles this doesn’t work any more, since
the function infix "+" of INTEGER would expect an integer argument, so a real doesn’t
conform. Viewed strictly from the perspective of object-oriented principles this situation
would be justifiable, but it conflicts with the usual conventions of mathematical notation.
Although + on ordinary arithmetic types is commutative — that is to say, a + b = b + a
— we don’t want to force programmers to rewrite a + b as b + a in some cases,
depending on the types of the operands. For that reason, the Balancing Rule states that in
the evaluation of such a mixed-type arithmetic expression the first step is to convert all
operands to the heaviest one, where DOUBLE is heavier than REAL and REAL than
INTEGER. This works, but at the price of an ad hoc rule, applicable only to the basic
arithmetic types. The framework described in this article will remove the need for the
Balancing Rule.

The inheritance-conversion exclusion principle

An important guideline in devising a conversion mechanism is that it should not conflict
with inheritance. As noted at the very beginning, polymorphic assignment, controlled by
inheritance in a typed O-O language, is a simple reference reattachment that doesn’t
involve any change of the referenced values; in contrast, conversions transforms a value
of a type into a value of another type. The mechanisms are completely disjoint and we
must be careful to avoid any confusion (lest we run into the trouble caused, for example,
by the conflict between overloading and dynamic binding in languages supporting both).

Hence the following rule, which provides the basic constraint on our language design for
convertibility:

Conformance-conversion exclusion principle

A type may not both conform and convert to another.

Conformance, as used in this rule, is the property that holds between two types when
values of one may be polymorphically attached to another. As noted, this essentially
means that the conforming type is a descendant of the other in the inheritance structure,
with some provisions for generically derived types (for example LINNKED_LIST
[EMPLOYEE] conforms to LIST [PERSON] if EMPLOYEE is a descendant of PERSON
and LINKED_LIST of LIST).

Conversion basics

Based on the preceding observations we are now ready to devise the conversion
mechanism. Here is a simple example:

expanded class DOUBLE inherit … create
 from_integer convert {INTEGER},
 from_real convert {REAL},

 … Other creation procedures …
feature -- Initialization
 from_integer (n: INTEGER) is
 -- Initialize by converting from n.
 do
 … Conversion algorithm …
 end
 … Similarly for from_real …
 … Rest of class omitted …
end -- class DOUBLE

The only new possibility here is, when you list a creation procedure (constructor), to
specify that it also serves to convert from other types (it will then be called a conversion
procedure). Indeed that’s what a conversion is from an O-O viewpoint: creating an
object that you initialize from an object of some other type. We have to specify the
creation mechanism; this is done simply through a procedure. A creation procedure that is
equipped

The effect of declaring such a conversion procedure, with an argument of type D, in a
class C, is to permit attachments (assignments or argument passing) from D to C. Such an
attachment will apply the corresponding creation procedure, such as from_integer. In
cases such as DOUBLE, the target class is expanded, so that no object will be created; for

a reference class, the operation might create a new object. (Expanded types, similar to
what is known in C# as value types, are used for variables which directly denote objects,
rather than references to objects; this is useful in particular for basic types. Two different
expanded types never conform to each other, even if one inherits from the other.)

For basic types such as DOUBLE, we will of course continue, as today, to let the
compiler cheat and apply conversions directly through built- in knowledge; we do not
want to incur the overhead of a procedure call in an assignment my_double :=
your_integer. But the class text will look as above, legitimizing such assignments, and
you may apply a similar scheme to any of your own programmer-defined classes. The
special conformance rules (INTEGER to REAL etc.) go away; in fact, the conformance-
conversion exclusion principle explicitly implies that a type that converts to another may
not conform to it.

Here indeed are the validity rules that govern the introduction of conversion procedures
into a class, as in this example:

• Every conversion procedure must have a single argument.

• The type of that argument must not conform (in the sense of inheritance, as

defined above) to the current type (DOUB LE in the example).

• The argument types associated with two different conversion procedures must be

different.

The second rule achieves the conformance-conversion exclusion principle; the third rule
avoids any ambiguity between different convertible types.

Other examples

As a non-arithmetic example, a class DATE could start with

 class DATE create
 from_tuple convert {TUPLE [INTEGER, INTEGER, INTEGER]}
 …

allowing assignments of the form my_date := [day, month, year] where the source is a
tuple. (TUPLE introduces tuple types with a variable number of fields.)

An example that combines inheritance with conversion involves the recently introduced
(and implemented!) specific-size integer INTEGER_8 and so on. The inheritance
hierarchy is shown in figure 1.

INTEGER_

INTEGER_
GENERAL

8

INTEGER_
16

INTEGER

INTEGER_
64

Figure 1: Integer class hierarchy

Class INTEGER_GENERAL will allow conversions:

create
 from_integer convert
 {INTEGER_8, INTEGER_16,
 INTEGER, INTEGER_64}
 … Other creation procedures …
feature -- Initialization
 from_integer (n: INTEGER_GENERAL) is
 -- Set from n
 do … Conversion algorithm … end
 … Rest of class omitted …

Note how a given conversion procedure may apply to several source types. There is no
conflict between convertibility and inheritance here, since the types involved are
expanded, and hence may not conform to each other.

Mixed-type expressions

The conversion mechanism as described takes care of most of what we need, but not yet
of ensuring full compatibility with mathematical tradition for mixed-type expressions.
More precisely, my_double + your_integer will work, being understood as

my_double.infix "+" (your_integer)

which is OK since DOUBLE now has a conversion procedure for INTEGER, so it will
convert its argument to a double. But this doesn’t work for your_integer + my_double.
We need a cleaner and more general replacement for the Balancing Rule.

It would be quite wrong to handle this issue by introducing overloading into the
language. We must retain the basic simplicity rule of object-oriented programming that,
within a class, a feature name denotes exactly one feature. What we need is not
overloading (in fact rather irrelevant here) but a rule that will, in some cases, force infix
"+" to reverse its arguments and call another routine instead.

Here is the syntax that achieves this. In the current Eiffel Kernel Library, infix "+" is
declared inclass INTEGER as

infix "+" (other: INTEGER): INTEGER is
 -- Sum of current integer and other
 do
 … Implementation of integer addition …
 end

Similar (but unrelated) declarations appear for infix "+" in classes REAL and DOUBLE,
and any other class that needs an infix “plus” operation.

We adapt this definition by adding a convert clause:

infix "+" convert {REAL, DOUBLE}
 (other: INTEGER): INTEGER is
 -- Sum of current integer and other
 do
 … Implementation of integer addition …
 end

This means that apart from its normal argument, an integer, infix "+" will also accept a
REAL or a DOUBLE, but in this case it will:

• Convert the first operand (a in a + b, i.e. the target of the formally associated call

a.infix "+" (b)) to the corresponding type, here REAL or DOUBLE.

• Ignore the body of the routine as given in the current class, here INTEGER..

• Instead, call the function with the same name in the corresponding type, here

REAL or DOUBLE.

The validity constraints are obvious: the current type, here INTEGER, must be
convertible to all the listed types, here REAL and DOUBLE; they must all have the
appropriate function; and they must neither convert nor conform to the argument type
listed for the given function, here INTEGER (the type of other), as this would cause an
ambiguity.

This achieves, in a simple way, the desired goal of providing us with a completely
general mechanism avoiding the need for special rules such as the Balancing Rule, and
avoiding any ambiguity.

An assessment

One may debate how broadly it is wise to use the facilities described in this article
beyond the case of predefined arithmetic types. The case of dates and tuples seems
appropriate; but as soon as things become more complicated you should use explicit
conversions. For example, to produce a linked list form of some structure, it is just as

clear and simple to write my_list := your_structure.linear_representation, using a
function linear_representation that the EiffelBase library indeed provides for all
applicable structures. Implicit conversion in such a case doesn’t seem particularly
necessary.

But even if the mechanism described here only serves to provide a clean language
framework for the common operations on standard arithmetic types, it will have justified
its design — at least when it’s implemented and available.

References

[1] Paul Dubois, Mark Howard, Bertrand Meyer, Michael Schweitzer and Emmanuel
Stapf: From Calls to Agents, in Journal of Object-Oriented Programming, vol. 12, no. 6,
September 1999.

[2] The School of Niklaus Wirthl, ed. László Böszörményi, Jürg Gutknecht and Gustave
Pomberger, dpunkt.verlag, 2000

[3] Bertrand Meyer: Eiffel: The Language, Prentice Hall, 1991.

