
E i ffe I

The new culture of
software development

bject-oriented design is an
old idea and a new idea.

The basic concepts have
been around for almost
twenty-five years, time for

more than a few generations when mea
sured against the rate of evolution of the
computer industry. Only recently, how

ever, have object-oriented techniques been

exposed to enough people and applied to
enough projects to yield a concrete idea of
the practical power, benefits, and require
ments of the method.

This column, adapted from an earlier

article, 1 describes some of the issues that
arise when the object-oriented approach
is implemented on a significant scale. It
argues that object-oriented techniques, as

represented by Eiffel, imply a new culture
of software development, and studies how
this new culture can, for the time being,
coexist with the old.

The basis for this discussion is the ob
servation of many applications, developed

in quite diverse contexts - some by peo
ple working with me, others without any
direct involvement on our part.

THE PROJECT CULTURE
Object-orientedness is not just a pro

gramming style, but the implementation
of a certain view of what software should

be. Taken seriously, this view implies a pro
found rethinking of the software process.

1 The New Culture of Software Development: Reflec
tions on the Practice of Object-Oriented Design,
TOOLS 1, PROCEEDINGS OF TECHNOLOGY OF OB

JECT-ORIENTED LANGUAGES AND SYSTEMS, Paris,

June 1989, SOLIANGKOR, Paris, 1990.

76 JOOP NOVEMBER/DECEMBER 1990

How profound is best understood by con

trasting the mode of development implied
by object-oriented techniques with the most
common culture of software engineering.

That traditional culture is project-based.

This means that the subject of discourse
is the individual project, tailored to one

specific set of requirements, and having as

its goal the delivery of a program with the

supporting documents.
A typical example of this view is Barry

Boehm's well-known (and useful) book
Software Engineering Economics [1], a 767-

page discussion entirely predicated on the
assumption of a linear lifecycle, meant at

Outcome Results
Economics Profit

Untt Departme~

Time Short-term
Goal Program
Bricks Program elements
Strategy Top-down
Method Functional, structured

analysis/design, entity-relation,
dataflow, Merise '"

Language some PDL, C, Pascal ...

Figure 1. The project culture.

solving one particular problem. The men
tal frame of reference in that case is the

project. This project starts at day one with,
as its input, some large user's specific need.

It ends some months or years later with a

solution to that need - or, as the case

may go, with no usable result at all, the
book's purpose being to reinforce the like
lihood of the former alternative.

Typical of the assumptions is the way
Boehm's introductory note (p. xxiii) at
tempts to awaken the student reader's
awareness of the book's relevance:

by Bertrand Meyer

There is a good chance that, within
a few years, you will find yourself to
gether in a room with a group ofpeo
pIe who will be deciding how much
time and money you should get to do
a significant new software job.

Note the use of the word new, which

appears again later (p. 29) in the description
of the lifecycle as starting "from the earliest
exploratory phases in which the feasibility of
a new software product is addressed. "

"Product" here is always used in the
singular; one senses that it is really there

to mean "program," the more general term

being used mainly to encompass other ar
tifacts resulting from a project, such as end
usage procedures.

Such assumptions are particularly sur

prising in a discipline where authors have

fought and continue to fight so hard to

obtain the recognition conferred by the
title "software engineering." Surely, engi

neering in other fields - electronics, con

struction, automatic control- is charac

terized by a search for common building
blocks and an effort to diminish, as much

as possible, the "new" part in evelY de

velopment.

Boehm's classic treatise is not at issue

here; it is merely representative of the gen
eral project view, pervasive through the

software engineering literature. Some of

the implications of this view, taken to the

extreme, are summarized in Figure 1.
The outcome is results, produced by a

program in response to user's requirements.

The economics is one of profits, as pro

duced by the results.
The organizational unit impacted is

usually the department directly affected

u

-
by the project. The time frame is as short
as it will take to produce the required so
lution. The goal is a program, or a few pro
grams. The bricks of which this program is
made are program elements: modules built

for the occasion.
The strategy, as recommended in most

textbooks and procurement policies, is top
down: start from the specific problem re
quirements and decompose. The method
that follows naturally is based on analysis of
the functions and data flow. The languages
used for analysis, design, and implemen
tation are any of the classical languages.

A corollary of the project culture is a

highly sequentiallifecycle model. The wa
terfall model, although somewhat of a car
icature, still serves as a theoretical refer
ence for many organizations. One of its
many variants is shown in Figure 2.

THE COMPONENT CULTURE
The culture implicit in object-oriented

design is quite different. It may be called
the component culture: the subject of dis
course is reusable components rather than
individual projects. Some of the implica
tions of this view, taken to the extreme,
are summarized in Figure 3.

The outcome is reusable software ele
ments, meant to be useful to a large num
ber of applications. The economics is one
of investment - which, of course, is in

tended as deferred profit.
The unit is, beyond an individual pro

ject, a department, a company, and some
times an entire industry. The time frame is
long-term. More than a program, the goal
is to build systems. The bricks are sojiz.oare
components, which distinguish themselves
from mere program elements by having a
value of their own, independently of the
context for which they were initially de
signed. More will be said below about gen
eralization, the task of transforming pro
gram elements into software components.

The strategy for obtaining quality
reusable components embodies a consid
erable bottom-up aspect: working by ex
tension, improvement, specialization, and
combination of previously obtained com
ponents. This is exactly what the object
oriented method supports, thanks to mul-

- Eiffel -

tiple inheritance, genericity, assertions, de
ferred classes, and encapsulation.

The language used at the analysis, de
sign, and implementation stages should
reflect this method. The corresponding
entry in Figure 3 has been left for the
reader to fill, as a quiz to test how well you
understood the previous installments of
this column.

COHABITATION
The above characterizations are some

what extreme. No industrial software de
velopment environment totally neglects
tools; few can afford to neglect results. But
the contrast between project and compo-

Figure 2. The waterfall model.

Outcome
Economics
Unit
Time
Goal
Bricks
Strategy
Method
Language

Tools, libraries
Investment
Industry
Long-term
System
Software components

• Bottom-up
Object-oriented

Figure 3. The component culture.

nent cultures shows some of the problems
associated with promoting object-oriented
techniques on a broad scale.

Without question, the dominant cul
ture is project-based and will remain so
for a long time. Customers, users, man
agement, and shareholders all want re
sults, and preferably fast. Posterity will

come later.
The immediate issue then is not so

much how to replace the project culture
by a component culture, an impossible

goal at least initially, but how to instill sig
nificant doses of component-oriented con
cerns into a context that is largely driven by
project preoccupations.

One of the all-time favorite strategies
of subversives - penetrating reactionary
institutions rather than destroying them
outright - indeed seems to work here.

Assume that, being an advance soldier
of the object-oriented army, you are as
signed the job of MIS director in some
large, traditional computing organization.
You can hardly decide, on your first day
on the job, that all requests for specific de
velopments will be turned down for two
years, time for your department to build
the right base of reusable components. You
have users and customers, and must be
ready to respond to their specific requests.

Catering to the short term does not
mean, however, that you give up on tools
and reusability. You will fulfill your cus
tomers' specific requests, but you will do
more than these requests, seeing the even
tual software components beyond the im
mediate program elements.

The effort involved in transforming
program elements into software compo
nents may be called generalization and will
be studied in more detail below. It involves
abstracting from the original program ele
ments so as to make them independent
from their original context, more robust,
better documented. Giving generalization
a systematic role in the software develop
ment process is the key step in the pro
gressive transition from project to com
ponent culture.

By starting from specific requests but go
ing further, you can quietly start accumu
lating a repertoire of ready-made compo
nents that, little by litde, will play an
increasing role in your subsequent develop
ments. With such a strategy you can, after a
while, introduce a new attitude towards your
users - more active and less reactive. You
can respond to a new request, with its spe
cific and sometimes baroque set of technical
requirements, with a counterproposal, of
fering to do a somewhat different or per
haps simplified job much faster thanks to
the use of preexisting components. Then
you can give your customers a choice: ei-

NOVEMBER/DECEMBER 1990 JOOP 77

ther tailor-made development, using tradi
tional techniques, in n person-months, or
"mix-and-match" development using ob
ject-oriented techniques in, say, 0.3 n. Some
offers are hard to refuse.

GENERALIZATION
"What does it take to transform a pro

gram element into a software component?
Some aspects of this generalization pro
cess are obvious, and not specific to the

object-oriented approach:

• Writing more complete documenta
tion - perhaps unnecessary for an el
ement that is only used as part of a
given program, but required for its in
dependent use as a component.

• Removing functional limitations -
which may be tolerable when you have
full control over a component's use,
but not in a more general context.

Others, however" are less straightfor
ward: assertions; abstraction through in
heritance; factoring out commonalities.
The next few sections address them.

GENERALIZATION:
ASSERTIONS

One of the fundamental generalization
tasks is to add the proper assertions to the
components. An assertion is an element
of formal specification that characterizes
the implementation-independent proper
ties of a software unit - routine or class -
in object-oriented programming. Asser
tions include particular preconditions,
postconditions, and invariants (see
[Meyer88]).

A routine precondition expresses un
der what condition the routine may cor
rectly be called. For example, an insertion
routine for a table of bounded capacity
might have the precondition

xequire
count < capacity

A routine postcondition expresses the
abstract properties of the state resulting
from a correct call to the routine. The post
condition for a routine inserting x with
key k might be written as

78 JOOP NOVEMBER/DECEMBER 1990

- Eiffel -

ensw:e
count = old count + 1;
item (k) = x

where old serves to refer to a "snapshot"

of a value (here count, the number of ele
ments inserted) taken before the call, and a
function item is assumed on tables, yielding

the value associated with a certain key.
A class invariant expresses global con

sistency properties associated with all in
stances of a certain class, for example

count <= 0;
count <= capacity

For a mere program element, program
mers are sometimes lazy about including the
proper assertions. For a software compo
nent, this would be unacceptable: without as
sertions, it is not possible to produce truly in
dustrial software components. They would
be like electronic components without a pre
cise specification of their accepted inputs,
guaranteed outputs, and general conditions
of use - the hardware equivalents of pre
conditions, postconditions, and invariants.

Adding assertions is thus an important

part of the generalization process. Invari
ants, in particular, are not always under
stood right away; it takes some research
into a class and often some practical use
to obtain all the right invariant clauses.
The result is always worth the effort, as
the process of deriving the invariant yields
considerable insights into the deeper se
mantics of the class.

The presence of assertions as integral
parts of the language permits applications
such as automatic documentation (pro
ducing class interfaces from the class text,
as with the "short" tool of the Eiffel envi
ronment) and debugging (as with the Eif
fel compilation options that make it pos
sible to check assertions at run-time).

ABSTRACTIONS AND
FACTORING

Two other interesting aspects of gen
eralization have to do with how we obtain
good inheritance structures. They may be
called class abstraction and extraction of
commonalities. (For further discussion see
[Meyer90]' which presents these tech-

niques as applied to the evolution of the
Eiffellibraries, [Casai90], and Uohns88].)

In both cases, when you have not been
able to obtain inheritance structures in the
orthodox way (from more abstract to more
concrete) as recommended by theoretical
presentations of object-oriented concepts,
you may need to "switch into reverse" and
produce a deferred version of an Eiffel class
only after more concrete versions have been
obtained, used, and analyzed.

The first case, abstraction, occurs when
developers realize that a certain class C,
which was meant to represent a certain con
cept, in fact describes only one implemen
tation of that concept. Reestablishing the
normal inheritance hierarchy, by adding a
deferred class B as an ancestor of C, will

preserve the future consistency of the class
structure. It would have been better, of
course, to obtain Figure 4 right from the
start; but if this was not the case, better late
than never. To continue with cliches, if to
err is human, to persevere in not recogniz
ing your parents would be diabolical.

Factoring of commonalities (Fig. 5) is
similar. This occurs when you realize too
late that two variants of a certain notion
have given rise to two separate classes, with

no common ancestor, but probably many
redundancies, simply because no one rec
ognized early enough that two closely re
lated developments were going on. Again,
for the sake of your class library's future
evolution, you should cut your losses and ac

cept the need to reorganize the hierarchy a
posteriori.

ORGANIZATIONAL ASPECTS
Object-oriented development, the em

phasis on reuse, and, more generally, a
trend toward the component culture in
evitably have consequences on the orga
nizational and managerial aspects of soft
ware development, a few of which will be

considered here.
The newest aspect, as discussed above,

is the generalization step. This will cost
money; not necessarily fortunes - de
pending on one's ambitions, the overhead

on standard development costs may be
anywhere between 10 and 50% - but

hardly invisible.

•

•

This means, among other conse

quences, that serious object- oriented de
velopment cannot be done "on the side."
Without management support, you can
perform a few harmless experiments, but
not implement true object-oriented de
sign and programming with their imme
diate consequence: the development of in
vestment-oriented tools and components.

The budgeting problem should not be
overlooked. In most corporate environ
ments, budgets reflect the surrounding
project culture and are allocated on a pro
ject basis; "general" funds, not earmarked
for a particular project, are usually much
more limited. Yet, the generalization ac
tivity does not profit the current project
so much as the next few projects - which,
adding insult to injury, may well be un
der the responsibility of the project leader's
peers an(ii rivals in the career role! Mecha
nisms must be found to obtain funding
for such undertakings - project-foolish,
component-wise.

Another practical caveat concerns pro
ductivity. Standard productivity measure
ments, based on lines per person-months,
may be deceptive. Assume a project that
enthusiastically adopts object-oriented
techniques. At the end of an initial devel
opment, a first measurement is made:

PROD1 = LINES1/EFF1

where PRODl is the productivity, mea
sured as the ratio of the number of pro
duced lines, LINESl, to the effort EFFl,

measured in person-months or using some
better criterion if there is one.

No doubt that if object-oriented tech
niques have been applied well and with
good tools, PROD 1 will be a pleasant sur
prise to management as compared to the
usual results. Assume now, however, that
the project leader decides to go on and ap
ply the generalization step. After a while, a
new measurement is made: .

PROD2 = LINES2/EFF2

Obviously, EFF2 is greater than EFFl.

But it may very well be the case that
LINES2 is less than LINESl: after all, much
of the generalization work consists in re
moving duplicate elements (in particular as

- Eiffel -

a result of "extraction of commonalities")

and other dead wood. Unless properly
briefed, management (and software engi
neers) will not like these figures.

If anything, this hypothetical story
highlights the danger of simplistic ap
proaches to assessing productivity im
provements (see also [Gindr89] and
U ones86]). It also serves to remind us of
the need to involve and educate manage-

Figure 4. Abstraction.

Figure 5. Factoring.

ment, always eager for figures showing im
mediate productivity gains. Although the
productivity gains are undeniably there,
we should not forget that in switching to
object-oriented software engineering the
really big prize is to be won over the long

term, thanks to reuse.

ABSTRACTION POLICE
Another important management issue

is the question of who should be respon
sible for the generalization activities men-

tioned above: class abstraction and factor
ing out commonalities.

In theory, it could be the developers
themselves, and if management has clearly
emphasized the need for reuse and the
long-term commitment to building a base
of reusable software, developers may be
expected to play their part in the collec
tive search for generality. But this will not
suffice if the goal is to establish a serious,
organization-wide reuse base. Developers
are inevitably prisoners, at least in part, of
the project mood. They have immediate
goals to fulfill; they have immediate goals
to fulfill and deadlines to meet.

It appears necessary to designate a spe
cific group of people whose mission is of
ficially component-oriented and project
independent. The charter for this group
(which typically will remain small) is to
detect potential reusable components, per
form the generalization steps as outlined
above to remove their unjustified ties to
specific projects or circumstances, and cat
alog them appropriately for easy retrieval.

We might call that group the "reusabil
ity brigade" or the "abstraction police," al
though most of the companies I know will
probably choose a more sedate title such as
"reuse administrator." In fact, such a name
would be, not inappropriately, reminiscent
of the traditional position of "database ad
ministrator." A database administrator's
charter is to develop the organization's data
investment and maintain its consistency;
the reuse administrator does the same for
the company's sofiwareinvestment. The job
also includes other aspects that resemble
the task of quality assurance engineers.

CLUSTER MODEL OF THE
SOFTWARE LIFECYCLE

We will conclude with a brief discus
sion of the lifecycle model that seems most
appropriate for the Eiffel-based component
culture. (This section draws heavily on a
previous article [Meyer89] and on a report
by Eiffel users from Thomson [Gindr89].)

Despite the frequent criticism of the
waterfall model, no satisfactory replace
ment has gained widespread acceptance.
Variants such as the incremental model
[Boehm82] or the spiral model [Boehm88]

NOVEMBER/DECEMBER 1990 JOOP 79

make the process more flexible, but devi
ate from the fundamental tenet of the pro
ject culture, the single-product hypothe
sis. What kind of lifecycle is appropriate
to the component culture and to Eiffel de

sign?
Here are some of the main ingredients

of a possible answer (see also [Hende90]
for further developments):

• The merging of the design and imple
mentation activities, traditionally con
sidered to be different phases of the life

cycle.

• The general bottom-up approach, which
deemphasizes the immediate require
ments of the current project in favor of
a long-term view of software produc
tion, and suggests that general-purpose
utility modules should be built first,
specific ones last.

• The new lifecycle phase described
above: generalization.

One more concept is needed to com
plete the picture: the cluster concept. In
Eiffel, a cluster is a group of classes that
relate to a common aim; for example, a
system could contain a basic cluster (the
Basic Eiffel Library), a graphics cluster (the
Eiffel Graphics Library or another set of
graphics classes), a simulation cluster, a
synchronization cluster, etc.

With this notion in mind, we can take
a fresh look at the waterfall model. The
continued success of this model in the soft
ware engineering literature, in spite of its
known deficiencies, should perhaps be
credited to two of its properties, already
noted by Boehm ([Boehm82], pp. 38-41):

• The steps of the waterfall - analysis,
specification, design, implementation,
validation, and distribution - reflect
meaningful and necessary activities of
software construction, although, as we
have seen, it may be appropriate to
merge some adjacent pairs.

• It is hard to imagine a theoretically
more satisfying order than the one
given: although some readers will prob
ably be able to draw counterexamples
from their project experience, who

80 JOOP NOVEMBER/DECEMBER 1990

- Eiffel -

would seriously advocate that develop
ers must start the analysis after they

have implemented or distributed the

system?

We may realize, however, that nothing

really forces us to apply this sequence of
steps to the system as a whole. This would be
keeping the negative legacy of top-down de
sign: the all-or-nothing approach that con
siders system a monolithic entity fulfilling
a frozen specification. The notion of clus
ter provides the appropriate unit to which
each sublifecycle should be applied. As
shown in Figure 6, these sublifecycles may
overlap in time, and I believe they should.

time

Cluster 2

Cluster 1

time

Figure 6. The cluster model.

The other ideas developed so far help
further define this new lifecycle model, the
cluster model of software development:

• The best order for starting cluster de
velopment is bottom-up: from the most
general clusters, providing utility func
tions, to the most application-specific
ones. Of course, some of the lower-level
clusters will be available from the start
as part of the standard delivery (in Eif
fel, the Data Structure and Graphical
Libraries). As the method is applied to
repeated projects within an organiza
tion, other reusable clusters will become
readily available.

• As opposed to the all too frequent ad
vice of getting the interface right first
(what may be called the "Potemkin ap
proach," where the facade must be right
at all costs, even if there is nothing be

hind), this strategy suggests that the
key functions should be designed and
implemented first, and one or (usually)
more interfaces should then be built to
satisfy needs. These may be program
interfaces, command-line-oriented in
terfaces, full-screen interfaces, graphical
ones, and so on.

• A possible sequence to apply to each
sublifecycle includes the following three
steps: specification; design, and imple
mentation; validation; and generaliza
tion. (Gindre and Sada suggest in
[Gindr89] that the last two may be
merged.)

• Each cluster may be a client of lower
level ones. The client relation enables
the design/implementation of the
classes in a cluster to rely on the speci
fication of classes in another. In con
trast with hierarchical abstract machine
methods, we should not require that
each cluster only be a client of the im
mediately lower one; we may restrict,
however, cycles of the client relation to
occur within clusters only.

• As long as we do not start a more spe
cific cluster before a more general one,
we have many degrees of flexibility. At
one extreme, we might work on just
one cluster at a time, beginning with
the most general ones. At the other ex
treme, we might work on all clusters

in parallel, which would essentially take
us back to the waterfall model. In be
tween, many variants are possible, and
we should choose according to how
well we understand each part and what

resources we have.

Although these ideas need more work to

yield a full-fledged process model, I have
found them, at their current stage of evolu

tion, to yield a software development process
that is smoother and more effective than
traditional approaches because it integrates
at its very basis the concern for change and
the concern for reuse. In other words, it
helps in the key transition that is required for
the turning of software development into a
real industry: the transition from a project

culture to a component culture.

•

-
Next Column: With static you won't

get the message, or why we need dynamic

binding .•

REFERENCES

[Boehm821 B.W. Boehm. SOFTWARE ENGINEERING
ECONOMICS, Prentice-Hall, Englewood Cliffs,

NJ,1982

[Boehm881 B.W. Boehm. A Spiral Model of Software
Development and Enhancement, IEEE COM
PUTER, 21(5),61-72,1988.

[Casai901 E. Casais. Managing Class Evolution in
Object- Oriented Systems, in OBJECT MANAGE
MENT/GESTION D'OBJETS, D. Tsichritzis, ed.,
Centre Universitaire d'Informatique, Universite
de Geneve, July 1990, pp.133-196.

[Gindr891 e. Gindre and F. Sada. A Development
in Eiffel: Design and Implementation of a Net
work Simulator, JOURNAL OF OBjECT- OIUENTED
PROGRAMMING, 2(2),27-33,1989.

[Hende891 B. Henderson-Sellers andJ.M. Edwards.
Object-Oriented Systems Lifecycle, COMMUNI
CATIONS OF THE ACM, 33(9),143-159,1990.

Uohns881 R.E. Johnson and Brian Foote. Design
ing Reusable Classes, JOURNAL OF OBjECT-ORI
ENTED PROGRAMMING, 1(2),2235, 1988.

Uones861 T.e. Jones. PROGRAMMER PRODUCTIV
ITY, McGraw-Hill, New York, 1986.

[Meyer881 B. Meyer. OBJECT-ORIENTED SOFTWARE
CONSTRUCTION, Prentice-Hall, Englewood Cliffs,
NJ, 1988.

[Meyer891 B. Meyer. From Structured Program
ming to Object-Oriented Design: The Road to
Eiffel, STRUCTURED PROGRAMMING, 10(1),
19-39,1989.

[Meyer901 B. Meyer. Tools for the New Culture:
Lessons from the Design of the Eiffel Libraries.
COMMUNICATIONS OF THE ACM, 33(9), 69-88,
1988.

Bertrand Meyer is President of Interactive Software
Engineering, based in Santa Barbara, CA. He just
published INTRODUCTION TO THE THEORY OF

PROGRAMMING LANGUAGES (Prentice-Hall,
1990), which focuses on denotational and axiomatic
semantics; by the time this column appears, his next
book, EIFFEL: THE LANGUAGE, a fit/I presentation
ofEiffel syntax and semantics, should be available.
He can be reached at Interactive Software Engi
neering Inc., 270 Storke Road, Goleta, C4 93117,
by telephone 805-685-1006, Fax 805-685-6869,
or on email bertrand@eiJfel.com.

- Eiffel -

Recruiting?
Looking to hire a software professional

knowledgeable in object-oriented
programming?

There1s no better place to find the ideal candidate
than by advertising in our Recruitment Section.

Nine times a yea0 beginning January 1991 /
JOOP reaches 171000 professionals

versed in 0-0 techniques.

Special recruitment rates
Call Paige Myers at 212-274-0640

THE ANSWER BOOK FOR
YOUR SOnwARE MARKETING

PROBLEMS!
_WHOl.

SOFTWARE
SUCCESS

;

BY
DAWH. BoWEN

SOFTWARE SUCCESS REFERENCE

BOOK 1987-88 by David H. Bowen

I bet at least once today,
you've already been faced with a
tough decision in some area of
your business. Was it Promotion?
Lead Generation? Sales? Pricing?
A Legal or Management issue?
Don't you wish you could pull a
book off your shelf and, within
seconds have a solution to your

problem? Does such a book exist? YOU BET IT DOES!
It's THE SOFTWARE SUCCESS REFERENCE BOOK, a 268-page

guide, organized by topic to provide you with FAST HELP in
solving your TOUGH PROBLEMS. Compiled from a full year
of SOFTWARE SUCCESS - the "whole business" newsletter for
software CEOs - this indispensable answer book will save
you hours of needless worry over making the right decisions
for your software company.

Send your check for $25; or call or FAX with your credit
card payment (VISA/MC/AEX).
BY PREPAYING, YOU'LL RECEIVE A
FREE 3-MONTH SUBSCRIPTION to
SOFTWARE SUCCESS - a $57 value!
100% MONEY BACK GUARANTEE!

SOFTWARE SUCCESS

P.O. Box 9006
San Jose, CA 95157
Ph: (408) 446-2504
Fax: (408) 255-1098

NOVEMBER/DECEMBER 1990 JOOP 81

