
.. ----...... __ .. ____ .. _____ EIFFEL

Bertrand Meyer

Toward More Expressive Contracts

The principles of Design by Contract form the basis of the
Eiffel approach and account for a good deal of its appeal.
Eiffel's contracts are the result of a design trade-offbetween

the full extent of formal specifications and what is acceptable to
practicing software developers. The latter criterion has been
critical: The ideas had to be practical; any competent programmer
can immediately see their benefits, and start using them. In
James McKim's words, "If you can code, you can spec." This is
the principle behind Eiffel contracts-not a dream for a perfect
world, but a practical tool for solving everyday problems.

The design has proved its value, and Eiffel programmers en
joy it. But the time may have come to revisit the trade-off and
see how much more we could express with contracts-how close
we could come to the goal of full specification without losing
the simplicity and self-evidence of the classic Eiffel mechanism.
Developments such as the Object Constraint Language (OCL)
addition to UML show that interest in contracts has grown be
yond the Eiffel community, together with a search for ways to
express higher-level contracts, including, in particular, proper
ties of first-order predicate calculus. Eiffel has the considerable
advantage of including contracts as a part of the programming
language, intricately woven into the process of conceiving, de
veloping, documenting, debugging, and maintaining software.
This is all the more reason to explore whether we can make con
tracts more expressive. This article explores recent progress in
this direction, resulting from work in several areas:

• a language development: the new "agent" language mecha
nism presented in an earlier column l with a new variant (in
line agents);

• new Eiffellibrary work, especially around EiffelBase, an open
source framework2- 3 covering the fundamental data structures
and algorithms; and

• progress in the Tmsted Components project,4 aimed at building
a rich set of high-quality reusable components for the industly.

Bertrand Meyer is the author of Object-Oriented Software Construction, 2nd ed., and
several other books including Eiffel: The Language and Reusable Software. He is with
Interactive Software Engineering (Santa Barbara) and a Professor at Monash University
(Melbourne). He may be contacted at Bertrand_Meyer@eiffel.com.

CLASSIC CONTRACTS

Applying Design by Contract to software development yields a
number of well-known advantages5: .

• Contracts make it possible to be serious about reuse by equip
ping software components with specifications similar in spirit
to those of engineering components in electronics and other
engineering fields.

• They provide built-in documentation.

• They transform the process of in-depth testing and debugging,
making it more focused thanks to the presence of precise def
initions of expected behavior.

• They are also a powerful management tool, giving managers a
better handle on the progress of their projects by enabling them
to concentrate on function rather than implementation.

Contracts in Eiffel are closely connected with the object-oriented
structure of systems:

• Class invariants express the consistency constraints applicable
to all instances of a class, such as, in a class describing car trips,
"the average gas mileage since the beginning of the trip is the
distance traveled divided by the amount of gas used."

• Routine preconditions express the requirements under which
an operation is legal, such as "start_engine requires
shi fCpeda I_down" (on recent cars with shift transmission).

• Routine postconditionsexpress properties satisfied as a result of
executing an operation, such as "after a successful
resume_cru i se_con t ro 7, the speed is equal to the prev i ous 7y

_seCspeed."

THE LANGUAGE OF CONTRACTS

Contract elements (assertions) are, in their simplest form, boolean
expressions, as in the invariant clause

invariant
gas_mileage = (odometer - initia7_odometer)

(initia7_gauge / gauge)

(where the "=" sign of course denotes equality, not assignment),
or the precondition and postcondition (requ 1 re and ensure) of
the following routine:

http://www.joopmag.com JOOP 39

EIFFEl

starCengine is
- Try to start engine; set started to record
- wtlether successful.

require
shift_pedal_down

do

ensure
started implies engine.running

end

Boolean expressions state properties that mayor may not hold
at a certain time during execution, such as "is the engine run
ning?" That is exactly what we need for assertions, exceptthat in
a correct program we expect that the property will always hold
when needed. (This is why contracts are so useful for debugging,
enabling us to check reality against expectations.)

The operator imp 11 es is often useful in assertions, as here.
Defined from logic, a imp lies b denotes the property that, when
ever a is true, b also is. (In other words, a imp 11 es b is false in
only one case; a true and b false.) Here we are stating that unless
something went wrong, causing 5 ta rted to be set to false, exe
cuting 5 tart_engi ne will leave the engine running.

The assertion sublanguage extends the language of boolean
expressions by only one construct, the old notation, permitted

only in postconditions, as in

ensure
speed >= old speed * 1.1

which expresses that the routine must have increased speed by

at least 10%.

APPLYING BOOLEAN EXPRESSIONS

Although the theme of this article is to look at the limitations of
using booleap expressIons for contracts, we must first realize
how far the humble boolean expressions can already take us. As
a typical exam pie of the kind of contract routinely used in Eiffel
development, consider the procedure

extend (v: ELEMENT_TYPE)

which, in various lists and other collection classes of EiffelBase,
adds an element at the end of a sequential structure, Its postcon
dition reads:

·~.R~s.ourceCfi!nter.forDes.gn by CQ~tract
,As'thiS a,rticle goes to press, the new HContract Portal,» the re
sult of extensive research atpundthe Internet, goes live at http://
designbycontrflct.com, proviciing a weal1h of reSources on ev
erything having tociowithDesign by Contract for software qual
ity and comp~~ment -pased development. Along with introductory
articles, links are available to hundreds of pages al'oUD,d the Web,
C9nyerri~ntly otganizedby cate~o~ies.r-.la~guage$ (Bifid, Java,
C++), tbols,books,training, component standards, research de
velopni~nts) and others. A feedback form isalso~vailable, en
ablin~youtos1,\ggest any site thatthe,~stmayhave missed.

. ThesitewillcQutinue,to eyo:v~asit,1i~peld develops and
\. more people contrjbute' toady?nccesinbes~~hh,yContract.

40 JOOP JULY/AUGUST 2000

ensure
inserted: has (v)
one_more: count = old count + 1
one_more_occu r rence:
occurrences (v) = old (oc~urrences (v)) + 1

(The "assertion tags"-inserted, one_more, and one_more_
occurrence-document the assertion clauses and provide fur
ther debugging support. The postcondition is shown as it appears
not in the class texts but in their "flat-short" forms, including
postconditions inherited from ancestor versions.)

The first clause, labeled inserted, states that if after using ex
tendto insert vwe ask the question "Is vin the list?"-bycalling
the function ha 5, which determines whether an element appears

in a list-the answer will be yes.
The second clause, relying on the old notation, states that any

. call to extend increases the size (number of items) of the list
count-by one. The corresponding clause for more complex
structures would of course be more sophisticated. For example,
after a hash table insertion, the property is that the count has been
increased if the key was not already used before; this is straight
forward to express thanks to the imp 1 i es operator:

(not (old has (key))) implies (count = old count + 1)

The final clause of the example postcondition, labeled
one_mare_occurrence, states that if after the insertion we ask
for the number of occurrences of v, tben by using the function
occurrences (applicable, as is ha 5, to most container structures)

we will get one more than before. Again, this will be a bit less el
ementary for more complex structures.

THE TIFlUTH AND THE WHOLE TFlUTH

The problem with the postcondition of extend is not what it says,
which is definitely part of the semantics of appending an item to a
list-the appended element will be in the list, with one more occur
rence, and the list's size will have grown by one-but what it doesn't
say. Appending an item should not affect the items previously pre
sent. But nothing in the postcondition expresses that property.

In ordinary cases, we can live with such incompleteness because
it would take a devious implementation of extendto stari modify
ingthe existing element. But in the long term, this is not a valid ex
cuse, because contracts should express all tl1e properties of interest,
and no one knows what twists bugs may tal<:e. So we must look for
ways of expressing all the relevant properties of classes and routines.

This issue has been known for a long time, of course. Many people
h~ve suggested addressing it by extending the contract sublanguage be
yond boolean expression...;; (which mathematicallycOlTespond to propo
sitional ca1cullls) to predicate calculus, with support for the operators
'\I (for all) and::l (there exists), known as quantifiers. But this may be
overkill, lisking the transformation ofEiffel into a full-fledged mathe
matical specification language, losing the advantages of the basic Design
by Contract mechanism: simplicity, ease of use, closeness to concepts
familiar to all developers, executability (to monitor assertions in de
bugging and testing ~node), and ability to wdte commercial Eiffel com
pilers of manageable complexity. Although the following approaches

do rely on new language facilities (agents, recently implemented in ISE

C
R
R
A
II

ac
'e'
01

01

t(

S
(

o
b

I
II

Eiffel), they leave the contract sublanguage unchanged. You will have
access to the power of quantifiers-and, in fact, to even more power
ful operators-but not as language constructs; instead, library classes
from EiffelBase will provide these mechanisms as functions.

Before moving on to these facilities, we must see what was al
ready available, in classic Eiffel, to address the problems cited,
since even there we were not quite helpless.

USING FUNCTIONS

Does the use of boolean expressions for assertions prevent us
from writing full-fledged contracts? In fact, no. Boolean expres
sions can include function calls. Thus we can add to the post
condition of extend a clause of the form:

same_initial_items (o7d twin. old count)

where t win is a function that returns the duplicate of a structure.
(twi n comes from the class ANY, ancestor to all classes, and so is
available to all classes). l11.ecall to twi nmayalso be written c 7 one

(Current), where c7 one, a variant of twin, also defined in ANY,

returns a duplicate of the object passed as an argument. Note that
in CUlTent versions ofEiffelBase, twi n (as c 7 one) is redefined in
the list classes to clone an entire list, not just the list header; this is
what we want here. The postcondition assumes that we have
added to the enclosing class (or an 'ancestor) a boolean
valued function s ame_ j nit i a ,_ items with two arguments:

same_initia7_items (other: like Current;
i: INTEGER): BOOLEAN

- Are all items of the current list, if any,
- in positions 1 to i. equal to those of list
- other at the corresponding positions?

require
i >= 0
i (= count
i (= other.count

This function is indeed easy to implement, for example, using a
local variable j:

from
start; other.start; j := 1
Result := True

until (j > i or not Resu7t) loop
Resu 7 t : = item = other. item
forth ; other.forth; j := j + 1

end

(This follows EiffelBase conventions: s tar t brings a list cursor to
the first element; item is the list's item at the cursor position;
forth advances the cursor by one position.)

With the addition of function s ame_ i nit i a 1_ items to the
class, we can express what we want: that the final items at posi
tion 1 to old_count (the original value of count, before the exe
cution of ext e nd increases it by one) are equal to the corresponding
items in a clone ("twin") of the original list.

FUNcnON ISSUES

Using a function such as 5 ame_ i n j t i a ,_ items solves the expressive-

ness problem: We can state the properties of interest about ext end,

but it raises two immediate issues, one theoretical and one practical:

• Assertions are supposed to be nonoperational properties of the
software; while code is prescriptive, assertions are descriptive.
Reintroducing functions-that is to say, routines-breaks this
distinction: s ame_ in i t i a ,_ items does not have an obviously
different status from the routine it is supposed to document,
extend (except that one is a function and the other a proce
dure). For example, a routine may produce a side effect; in a
function used in an assertion, this would clearly be unaccept
able. (See the sidebar entitled "Pure functions.")

• More pragmatically, equipping classes with lots of special
purposefunctions,suchas same_i n iti a 7_i tems, for the sole pur
pose of providing the routines of primary interest (such as ex

t end) with appropriate assertions, is not a very enticing prospect.
True, this approach has precedent in the field of program prov
ing, where Owicki and Gries6 showed the usefulness of adding
special auxiliary variables to prove parallel programs; but we may
fear that our classes will soon become bloated with numerous con
tract -oriented features that confuse library users, especially novices.

Let us now see how the agent mechanism alleviates these problems.

INTRODUCING AGENTS

In a first step, short of getting rid of special functions altogether,
we can use agents to reduce their scope. Function 5 ame

_ i nit i a 7_ items decides whether all items between given positions,
in two lists, are equaL We can define a more elementary function

same_item (other: like Current; i: INTEGER):
BOOLEAN is

- Are items at position i in the current list
- and other equal?

require

>= 1
<= count

i <= other.count
do

Resu 7t := (Cth (1) = other. Cth (1))

End

where the function call i _ t h (i) returns the item at position i.
Then we can use a for _a 17 iterator to apply this function to ev
ery element. The postcondition clause becomes:

(1 1 •• 1 old count). for_all (_ same_item (other, ?))

This uses the agent mechanism as described in the earlier col
umn. 1 The tilde character "-" is the distinctive mark for agents,
so same_item ((other. ?) is an agent, that is to say, an ob
ject representing a routine ready to be called when requested: the
function sa me_ item, to be called on two arguments, the first of
which is other and the second an integer to be provided at the
time of each call. This second argument is represented in the agent
by a question mark, indicating that the value is not known when
we define the agent, only when someone calls it at runtime.

We pass this agent to a for _a 17 iterator applicable to integer
intervals: i 1 •• 1 j is the integer interval from i to j, using the
infix operator 1 •• 1 definedinc1ass INTEGER and yielding a result

http://www.joopmag.com JOOP 41

EIFFEL

Pure Functions

1 nc~rearetwo kinds of routines: functions, which return a re
and ptoc~dures, which do. no.t. Procedures produce side

l!h'~H,,,,,,,,,,, (that is, mfact, their raison d>~tre), but the Eifid method
I!';"a:clvisesprogram.mers to keep their functio.ns "pure" -with-

:" s,id,eeffects, that is. The methodological justifications are
Jil;~ero.~, and exp1ained in. detail in Object-Oriented Software
CO:nstrllctibn.5'Bllt for all kinds of reasons, alSo. explained in
thehook,thisvisa methodological guideline, no.t a language
r:ul~ep.f?~ce~,by compilers. You (or at least your functions)
;can actllaJIybe, quite impure if yo.u wish.

J;'9,;rQOJill'tra'Ict5, however, there is nothing funny about im
Y;.;,f~"~l:$sertIcm sho.uld be apurely descriptive pro.perty

,qf t1+e computatio.n. Evaluating it should never
'In ' ,it is an important rule of

+h~I+~)tTh".+h."r you tum assertion moni-
,,.,,,.ct",I'\tl" o~"'y!\JfL""'!LL,' J.~affeqt the semantics o.f a program

i,lgJj~t! @:l'1lVlciusJlyaffects its execution time}; this is why
so. useful fo.r testing and debugging.

l;i;?;;ol~(;)r¢pr~~¢j:)e',~'q1~~si~t:reneeded, then, to. define what co.n-
, ' , " :fuIlction, suitable for use in asser-

O:o.n$.< proceeding to add a notion of pure
'fi#ac;;:tio).J asa laIlguage construct. A future column will de-
scril;>ethis work in detail, but you may already notethat-'
p~p.d,rIlgthe actualirltrodll;ction o.f a proper mechanism-pure

a,.ll:~a,s+:y:,~\~l<,eYWQrd of tlie.language.

o.ftype INTERVAL; in class INTERVAL, the function for_a 7 7 returns
true if the function agent that it takes as an argument (..., 5 ame_ item

(?) in this example) returns true for all values in the interval. This
explanation may seem contorted because words are not good at
describing mathematical properties, but in fact the meaning is
very simple; the Eifid text is close to a mathematical formulation

'Vi el 1 •• 1 old count. same_item (1)

where \fis "for all» and E is "in."

FIRST PROGRESS ASSESSMENT

How does the new Eiffel formulation, using function for _a 77

and an agent built from function 5 a me_ item, address the two is
sues raised: the danger o.f intro.ducing routines into assertions,
and the co.mplication of the class text?

It has solved neither of them completely. On the first issue, we
still have a need for auxiliary functions; it's only a small consola
tion that equa 7_ item is simpler and of a smaller scope (two list
items rather than two entire lists) than the original same

_ i nit i a 7_ items. On the second issue, ho.wever, we have pro
gressed significantly, in practice if not in theory. In theory, func
tions such as for _a 17 are just as bad as any other routines, side
effects and all. But in p1;'actice, such functions will be written once
and for all in a few high-level classes ofEiffelBase, a typical exam
ple of "trusted co.mponents"; we can hope to. make sure, through
all available means-careful design, verification by appropriate
tools, extensive public scrutiny-that they are of pristine quality
and do not include any questionable aspects such as side effects.

42 JOOP JULY I AUGUST 2000

The notion of a "pure" function, mentioned in a sidebar, can take
us closer to this goal.

So in practice we may consider that we have significantly re
duced the scope of the problem. We have rid ourselves of the non
trivial part of sa me_ i nit i a 7_ items, the algorithm that iterates
over a number oflist items, by making it a general feature ofli
brary classes such as INTERVAL rather than a specific and tricky
part of every application. But we still have to encumber ourselves
with application-specific, contract -only features $uch as sa me_ item,

which, however simple, can still clutter our classes, causing es
pecially undesirable complication in library components.

INTRODUCING IN LINE AGENTS

Our final technique will result from the preceding o.bservations.
We need the semantics of the agent same_item ((other, ?),

to pass it as an argument to for _a 77; this agent denotes a rou
tine object, which will tell us, given an integer i, whether the list
item at position i is the same as the one in the other list. The
agent gets this ~emantics through function sa me_ item. Can we
have that semantics, and the agent, without the function?

The notion of inline agent provides a solution. A caveat before
we see how it works: I have been careful, in earlier articles for this
column, to avoid vaporware by talking only about facilities that are
available; for example the first mention of agentsl appeared sev
eral months after the inclusion of this facility in ISE Eiffel4.2. At
the time of writing, inline agents are not yet released, although they
are slated for a future release. In software, as we all know, nothing
is ever certain until it's implemented (and even then ...), So, even
though at tl1e present stage I expect tl1e mechanism to be delivered
exactly as presented below, surprises are always possible.

The best way to present inline agent is to repeat the previous
postcondition clause

(1 1 •• 1 old count). for_all (.... same_item (other, ?))

remembering that the body of function same_item (other, 1) read

Resu7t := (i_th (1) = other. i_th (1))

and rewrite the postcondition clause using an inline agent in lieu
o.f the routine-based (noninline) agent. This gives:

(1 1 •• 1 old count). for_a77
(i: INTEGER I (i_th (1) = other. Cth (f)))

The meaning should be immediately clear: the argument of fa r _a 7 7

describes the same thing as tl1e original (a function agent) but
without the need for a named routine, because the routine's ef
fect is expressed directly where needed-inline.

The inline agent in this example is

i: INTEGER I (i_th (i) = other. i_th (i))

denoting an implicit function that, for any integer i, returns the value
of the expression to the right of the vertical bar. The vertical bar will
indeed be the mark of inline agents. Another example would be:

i, j: INTEGER I condition: BOOLEAN I condition and i > j

denoting a boolean-valued function of three arguments-two in
tegers and one boolean-returning true if and only if the boolean
is true and the first integer is greater than the second. This example
illustrates how to deal with several agent arguments of the same type
(as i andj) and of different types (separated by more vertical bars).

These inline agents all have, after the final vertical bar, an
expression, so they denote functions (routines returning results).
It is also possible to define inline agents that define procedures
(routines with no results), as in

i. j: INTEGER I do i := j + 1 end

which can be useful to iterate simple actions over a data struc
ture without having to define a specific procedure representing
these actions. It is easy, for example, using an iterator procedure
from class INTERVAL or a list class, to add every element of a list
of numbers to the corresponding element of another list. This
leads to a loop-free style of programming that may be attractive
in certain situations.

Inline agents are similar to ideas well known in other
areas: lambda expressions (in combinatory logic), closures (in
functional languages), and blocks (in Smalltalk). They do not re
place the noninline agents because, for many applications, agents
are based on existing procedures or functions. For any nontriv
ial computation, you should not write a complex inline agent,
but define the appropriate routine and use the tilde notation.

TOWARD FULLY CONTRACTED LIBRARIES

The example discussed illustrates one of the principal applications of
inline agents: expressing powerful contracts. With this mechanism

and other techniques developed in recent years, it now seems possi
ble to reach a goal that not so long ago would have seemed elusive: a
fully contracted version ofEiffelBase and other key libraries. A num
ber of people have made contnbutions to this effort (including Christine
Mingins in the Trusted Components project, James McKim and
Richard Mitchell in extending the concepts of Design by Contract,
Marcel Satchell in his work on Eiffeffiase, and Jean-Marc Jezequel in
his work on component testing). There is even a glimpse of hope that
we could benefit from the newest and most exciting approach to pro
gram proving, Abrial's Atelier B,8 to prove components.

Weare still very far from any such goal; things are, in fact,
only starting, and the difficulties are numerous. However, the
prospect of trusted components is worth the effort, and to ad
vance it we must take every advantage we can from the techniques,
old and new, of Design by Contract. •

References

1. Dubois, P; et al. "Eiffel: From Calls to Agents," JOOP, 12(6): 66-69, Oct. 1999.

2. Meyer, B. Reusable Software: The Base Object-Oriented Libraries, Prentice-Hall,
Englewood Cliffs, NJ, 1994.

3. "EiffeIBase: The Ultimate in Reusability," The Home Page for Object-Oriented
Technology and Eiffel, http://www.elffel.com/products/base/.

4. The Trusted Components Initiative, http://www.trusted-components.org.

5. Meyer, B. Object-Oriented Software Constructim, 2nd ed., Prentice-Hall, Englewood
Cliffs, NJ, 1997.

6. Owicki, S. and D. Gries. "Verifying Properties of Parallel Programs: An Axiomatic
Approach," Communications oftheACM, 19(5): 279-285, May 1976.

7. Talkitover-Software: EiffelBase Improvements, http://talkitover.com/eiffellbase.

8. Abrial, J. The B Book, Cambridge University Press, New York, 1996.

LETTER TO EDITOR _________________________ _

continued from page 1

always lead to inclusion of all relevant, or at least most of the
natural, features in the base class. Unless the problem domain
(in the example) requires handling of some dogs with one, and
some with two (or even more) appetites, such an incremental
extension seems somewhat unnatural, or reminiscent of poorly
designed extension.

Poorly designed class hierarchies are always problematic; this
is one reason there is great emphasis on requirement analysis and
adequate knowledge of the problem domain in all design method-
010gies. An adequate understanding of the problem domain should
clearly indicate the objects, relationships, and components in
volved in the problem. Without this knowledge, the ultimate goal
of greater software reuse, or even the primary goal of good design,
will.be out of reach, irrespective of the methodology practiced.

My second observation relates to the choice of appetite meth
ods. This choice of methods suffers from a major drawback-the
methods are independent of the second argument in the defini
tion. Each appetite always returns the same constant value. If such
is the case, making appetites a data attribute with fixed value
should be considered; but this will lead to a situation where no
multimethod is necessary since the appetite is no longer a method.

This is not to imply that multimethods are not needed, just
that they are not needed in the example selected by Saar.

As to the issue of encapsulation provided by classes (though
not fully supported by some OOPLs including C++), it has been
strongly advocated in literature for decad.es and is known to im
prove the quality of the software products. Breaking this encap
sulation must only be considered if the alternative offers tangible
advantages in the design of software-something the examples
used in the work are unable to substantiate.

Considering the problems caused by the unidimensionality of
the method dispatch (p. 13), the author refers to the example in
Fig. 1 stating «the methods have to be selected via both dimen
sions, i.e., predator and prey." This doesn't seem to be the case,
since the methods appetite in the example consider, and return
the result for, only the predator-to-prey relationship, and never
for the prey-to-predator relationship. Thus the mutidimensional
aspect is not visible in the example in any clear manner.

Multimethods may turn outto be useful facility to handle in
terclass relationships, something current research in this area
will determine in due course of time.

MasudMalik
Philadelphia University, Jordan, masudmalik@hotmail.com

http://www.joopmag.com JOOP 43

