
hy your next project should
use Eiffel
By Bertrand Meyer

O
ver its lO-yem- life Eiffel has evolved into one of the
most usable software development environments avail
able today. Other articles in this special section sum
marize its theoretical contributions; in this essay I will

address a more mundane subject: how practical software projects
can benefit, today, from the power of Eiffel. In so doing I will largely
rely on published assessments from both Eiffel users and book au
thors. In t:Kt, a quotation from one of the best-known books in
the object-oriented (0-0) tidd-OBU:CT-ORIENTED MODELING

AND DESIGN by James Rumb,lllgh and colleagues, the text that in
troduced the Object !\lodeling Tedmique object-oriented analysis
method-provides a good start:

Eiffel is arguably the best commercial object-mien ted language
available today.!

WHAT IS EIFFEL? First we should ddlne wh,lt the \\'0 rd EU:
fe! means. If you are thinking "n programming language," you are
not wrong (and the preceding quotl.ltiOIl shows that you are in
good company), since the programming language is indeed the
most visiblt: p;.u't; but it is only i.l reflection of smnl!thing broader:
a comprehensive approadl to the pwduction of quality software.
As Richilrd \\'iener wmtl':

Eift'd is more than .t bngu,lgc: it is it ff<UHework for thinking about,
designing ,1I1d implementing nbie(t-orientcd softw.lre . .!

The Eiffe;.'! approach indudes'1 mdhod (<1 "metiHldology," ifyotl
prefer) based on a !lumber of pervasive.' idei.1S such as design by
contract, se<.lmlc:ssfH.'SS, !'e\,crsibility, rigorous architectural rules,
systematic use of single and rnultiple inht.'riti.lm:e. static type check
ing, and Se\'el\ll others. Besidt..'s a method and u language, Eiffel
also means ptm:erful gr;.tphkal i.i!:vdl)lmlt,·nt ellvironments. such as
ISH Eiffcl. i.\\'aihlblc across .. l wide lHltllbt:r of indl1Str)'~stand<lrd
platforms ;Jnd suppnrting .1mllysis and dcsign as wdl ;\s imple
mentation, mi.lintclli.Uh:C\ ~md evolution.

The language itsdf, intl('cd (whkh \\,icnt.'r t.:alls "an dt~gant and
powcrfullangmlgc for nhkl.:t~nrientt·d problem solving"L is not
just a programming hmgu<lgt.' but cxtt'uds to thl.' ph'lses of systi:lll

construction that hoth prt'l~t.'dc .md fnllnw impicmcnt.ltitm. This is
sometimes h<lrd to '1(CI,.~pt if run havt,: h('cn raiscd in the view that
software dcvdopmt'llt must itw(lin,' a SCqUCIW: of separate steps;
that one should initially usc an analysis method and then at some
point switch to a programming hmgu;'lg.I.." with pl,.·rhaps a design.
method in-bt,twc:en. This view is d(,·triment~tI to the sothvare pro
cess ilIld to the qlhl!ity lIfthe resulting product, 'IS it does not sup-

port the inevitable back-and-forth hesitations that characterize
real software development.

Wisdom sometimes blooms late in the season. However careful
you may have been at the analysis stage, some great ideas will hit
you-or your implementers-past the point at which you thought
you had all the specifications right. vVhy renounce the benefit of
such belated but valuable ideas? Eiffel and the associated Business
Object Notation approach to analysis and design accommodate
them naturally, by providing a single conceptual framework from
the beginning to the end of the process.

Here Eiffel does not have much competition. The most bright
eyed Smalltalk or c++ enthusiast would not seriously claim that
one can do design, let alone analysis, in his or her language of choice.
And users of any of the popular 0-0 analysis notations know that
at some stage they must stop working on their model and move on
to the implementation in some programming language. Eiffel is
unique in helping you for all of these tasks, without ever introduc
ing the impedallce mismatches that characterize other approaches.

As a recent reviewer wrote:

As a design hmguuge, Eiffel continues to be a better model for object
oriented programming than Ada. It is even better than the new Ada
9X standard.,'

THE COMMERCIAL AND POLITICAL CONTEXT
In the next few sections I will tr}' to give you u glimpse of the tech
nical contributions of Eiffel or, more precisely, of what other peo
ple have written abc)Ut them. But of course the best technology in
the world requires infrastructure and support to succeed.

Eiffel has plenty of these. It hns been around for 10 years (the first
compiler was available from ISE at the end of 1986, but '!las started
.lhout u year earlier, so that this special section is right 011 track for
the anniversary). Cornpilers exist from three commercial sources
two in the U.S. and one in Ellmpe-with more to come. Free com
pilers exist from lSE (you can dc)wnload it directly from
http://wv .. rw.eiffel.com) and SiG (see the SimTc1 archive). Full graph
ical environments start at $69.95 (ISE's Personal E.iffel for \Vin
clmvs). The number of licenses sold is in the tens of thousands.
Reusable librnry classes are in the thousands.

The platfcmns covered range from Unix (all of Unix t the t~l
mOllS ;,lIld the arcane) and Linux to VMS, OS/2, Windows 3.1,
\:Villdows N'I\ Windows 95, and the Macintosh. The last maJor
phltform not yet addressed, MVS) will be added for the greatest
benefit of large financial and c(H'pomte users; IB~I has ,just an
nounced a partnership with ISE to bring MVS to Eiffel in 1996.

May1SSe
S9

Particularly impressive is the growth ofEiffel usage in education.
Eiffel is quickly becoming the language of choice for teaching mod

ern software technology, including, increasingly, introductory pro

gramming. A dozen excellent textbooks are now available from

Prentice Hall, Addison-Wesley, Macmillan, and others, with about

as many announced just for the coming months. (Someone was

remarking recently that there seems to be more Eiffel textbooks

than Smalltalk textbooks, even though Smalltalk has been around

for so much longer.) Addison-Wesley even has an entire book se

ries devoted to Eiffel: EIFFEL IN PRACTICE.

It is not just the professors who like the approach. Here is just

one typical comment on student reaction, from an institution

(Rochester Institute of Technology) having adopted Eiffel as its

first-year introductory language on a massive scale:

We were pleased to discover many of our more skeptical students
turning around and admitting that Eiffel was a "fun" language in
which to work.4

A recent COMPUTER WORLD confirmed the need for Eiffel in train

ing the high-powered software professionals of tomorrow. Quot

ing Amy Cody-Quinn from Management Recruiters International,

the journalist writes:

There is a big problem with people who say they know C++-but
they don't really know how to do objects. If they have Eiffel on
their resume, then we know they really have the proper under
standing of what they are doing. 5

But it would be a mistake to think of Eiffel as just an academic tool.

A little-known fact is that some of the biggest 0-0 projects ever

undertaken (at least the successful ones-other 0-0 languages have

had their share oflarge-scale failures) are being done in Eiffel. The

hot areas at the moment are banking and the financial industry (in

particular some very large derivative trading systems), telecom

munications, and health care. These are all areas in which all that

counts in the end is quality and time to market, so that project de

velopers need to select the best technology available. Quoting from

an article by Philippe Stephan, the system architect of such a project

(Rainbow, a major derivative trading system built with ISE Eiffel):

We evaluated three major object-oriented languages for the pro
ject-Smalltalk, C++, and Eiffel-and chose Eiffel Rainbow
currently comprises over 400,000 lines of code, for a total of ap
proximately 3,000 classes [Current figures are way over these
mid-1995 counts.] The developers feel very productive. This ",,ras
confirmed when Rainbow's financial backers brought in object
professionals to audit the project The auditors evaluated the
project during July 1994 and were impressed with the productivity
of the Rainbow development group.6

The development group in question is remarkable because only a

third of its members are software engineers. The others are profes

sionals from other disciplines (such as trading and financial analy

sis) who, Stephan writes, "can express business concepts in Eiffel

because they can focus on design and implementation, rather than
struggling with memory management problems and d.ebugging."6

The result has received lavish praise from such publications as

COMPUTER WORLD and analysts:

Industry experts briefed on Rainbow said they were impressed with

the results. CALFP is "progressive" in ... committing the organi

zation's mission-critical systems development efforts to this archi

tecture, said Richard Crone, senior manager of financial services at
KPMG Peat Marwick in Los Angeles. "\\'hat's unillue here is that

[CALFP is] delivering this system end-ttHmd using objecH1riented

technologies," said Henry Morris, a research analyst at International
Data Corporation (IDC) in Framingh"U11, t-.!{ass.:'

Along with these Eiffel megaprojects, YOll will also find myriad smaller
endeavors. Many consultants, in particular. have ttmnd it)!' themselves
the key competitive advantage that they l';.m gain ii'mn Eittel's excellence.

In ensuring this spread ofEiff~1 throughout the.! intiustlY,
the benefit of che;'lp yet complete el1"vinmments such as
ISE EHfel for Linux hus been immensurable.

Also crucial to the development of Eiffd has been
the neutral status of its definition. now controlled by a
consortium ofvendors and users, the Nonpl'oih Inter

national Consortium for EitIeI (NICE). NICE has al
ready produced a library stimdard ~ll1d ('xpects in 1996
to produce the langlH.lge stamhm.i, which should shortly

thereafter enjoy a smooth ride through ANSI and other

international standards bodies.
The pace of Eiffel history has been .H:cdcntting in

the past few months. This has heen picked up by many

journalists. As Dan vVildeI' wrote:

With an open specification fm' hoth the language llnd
the kernel libraries, and support from multiple Vt~n
dol'S, Eiffel nuw stands p'lJiscd to t'lkt· on:!! Oracle

Syba$8
Ingres
ODae

DATABASES Versant THE CRITERIA Eitlel-the method, the language,
the environment-is bascd on tl small set of goals, ad
dressing the crucial needs ()f software quality .md pl'o-

(Relational, ()'O) Matisse

Figure 1.

60
.JOOP

http://www.sigs.com

ductivity. Quoting from a recent review of Tower Eiffel in BYTE
magazine:

Developers who want an object-oriented language that adheres to
the keystone principles of software engineering need look no fur
ther than Eiffel. 9

Or, as Steve Bilow wrote in a review of ISE's Melting Ice compiling
technology (which he calls "an outstanding marriage between
portability and development speed"):

Eiffel was designed precisely for the purpose of enabling software
developers to deliver high quality, reliable, efficient, extensible,
reusable code.lO

RELIABILITY The first goal is reliability. No other approach
available today has made the effort to give developers all the tools
that they need to produce correct and robust software-software
that will run without bugs the first time around. Crucial in this effort
is the presence of static typing (real static typing, not "a little bit typed"
as in tl10se languages that still keep C-like type conversions); assertions
and the whole mechanism of design by contract, about which more
than one Eiffel developer has said "this has changed my life" by en
abling him or her to specify precisely what the sofhvare should do, and
to track at runtime that it does it; disciplined exception handling;
automatic garbage collection, which eliminates a source of horrendous
bugs in C-based environments (and a large part of the code); a clean
approach to inheritance; the use of dynamic binding as the default pol
icy, meaning the guarantee that all calls will use the right version of
each operation; and the simplicity of the language design, which en
ables Eiffel developers to know all of Eiffel and feel in control.

The role of assertions and design by contract is particularly im
portant here. According to a recent article in the JOURNAL OF OB
JECT-ORIENTED PROGRAMMING:

The contribution ofEiffel is significant: it shows how invariants, pre
conditions, and postconditions can be incorporated into a practical
developer's view of a class. Wider use of Eiffel ... will encourage a
greater use of simple but powerfulmnthematics during development. I I

REUSABILITY The second goal is reusability. This has be
come a catchword, but Eiffel is the only approach that has taken this
requirement and its consequences all the way to the end. Quoting
Roland Racko in SOFTWARE DEVELOPl\iIENT:

Everything about [Eiffel] is single-mindedly, unambiguously, glo
riously focused on reusability-right down to the choice of re
served words and punctuation and right up to the compile time
environment. 12

Eiffel benefits here from being a simple ("but not simplistic," writes
Racko) and consistent design, not a transposition from older, un
related technology. Beyond the language and the environment fa
cilities (such as precompilation), the crucinl help to reusability is of
course the presence of thousands of high-quality libraIY classes, such
as, in ISE Eiffcl (see Fig. 1), EiftelBase (a "Linnaean approach to the
reconstruction of software fundamentals"), EitlClNet t<)r client/server
communication, EiffelStore for relational and 0-0 database ma
nipulaticms, EiffClLex and EiffelParse for lexicul analysis and parsing,
EiffeHvlath for object-oriented numerical computation, EiffelVision

for portable graphics, the Windows Eiffel Library for Windows
specific graphics, and many others. Various suppliers have their own
libraries, such as the Booch components for Tower Eiffel and GRAPE

for EiffellS. Not even mentioning quality, the result is probably the
biggest repositOlY of 0-0 components available anywhere. The care
that has been applied to the production of these libraries also has
considerable pedagogical benefits: the way people learn Eiffel is by
learning the libraries-first to use them, then to adapt them if nec
essary, then to write their own software.

Part of the single-minded ness mentioned by Racko is the em
phasis on abstraction. In contrast with, say, S111a11talk, you do not
read the source code of a class when you want to use it. This may
be fine for a couple dozen classes, but not for a large, powerful li
braty. Eiffel introduces the notion of short f01'11I: an abstract version
of the class, keeping only the interface information, including as
sertions. This is an ideal tool for documenting classes but also for
discussing designs and presenting them to outsiders-managers
or customers-who need to know what is going on without getting
bogged down in the details.

Let me mention just one of the unique reusability-supporting
features of Eiffel, without which it is, in my experience, impossible
to have a long-term reuse effort. Rncko again:

The language's designer ... recognized that no reusable library is
ever perfect and, thus, that libraries are always in flux. So he built
a kind of version-control system into the language. Specifically,
there are language clements to demarcatt.! obsolete code that is,
however, still being supported. When these elements are referenced
by someone unaware of such code's obsolescence, the compiler
will issue a warning at compile time about the impending doom that
awaits persons who continlle the l't..'fen.'l1cing. l..!

It is this kind. of detail that can make or break the Sllccess of reuse
in a company.

EXTENDIBILITY Next comes extcndibility. With Eiffel,
modifying software is part of the normal process. As Philippe
Stephan writes of the external audit of his projet:.:t: "The auditors
rated the responsiveness of the development tl~am as very high."o

Chief among the method's support for extendibility is the care
tul design of the inheritance mechanism. Unlikt.~ Smalltalk, which
is fatally limited by the absence of multiplt! inheritance, the Eiffel
approach fundamentnll}f relies on multiplt..' inheritance to com
bine various abstrnctions into one. As Dan \Vildel' notes:

Most object-oriented languages do not attempt multiple-inheri
tance. The Iitemturc is full ()f elaborate explanations why. This is sad.
Eiffel demonstrates that multiple inherit<1JH':(, need not be difficult
or complex, <1nd it can also yield some quite pnlctknl results.1!

The approach also enforces a strkt form of infmmation hiding,
which means that a !11odult:· (tl client in EiJIcl design-by-contract ter
minology) that llses another's t:ldlitics (its supplier) is protected
against many of the changes that can be mnde later on to these fa
cilities. This is essential in preserving the coherent evolution ()f a
large system-and the sanity of its devt.'lopers.

EFFICIENCY Performance is almost as much an obsession

62
.JOOP http://www.sigs.com

caw

pas

in Eiffel as reusability. The software field is still, and will remain for
a long time, largely driven by performance considerations. (Do
not believe anyone who says that speed does not matter. If we get
faster computers, it is to do things faster and especially to do more
things-not to use more CPU cycles to run the same old applica
tions at the same old visible speed.)

There is 110 reason whatsoever to leave the mantle of efficiency
to the proponents of machine-oriented languages such as C/C++,
or to follow the path of Small talk, which sacrifices performance to
object orientation. With Eiffel, to use Steve Tynor's favorite phrase,
you can "have your cake and eat it." Thanks to a performance-ob
sessed language design and 10 years of research and competition on
compiling algorithms, the speed of Eiffel-generated code (in such
modes as what is known as "finalization" in ISE Eiffel) is as good
as that of hand-produced C code, or better.

Sofuvare producers should stand up to their ideas. That is what we
do at ISE: apart from the runtime engine (a few thousand lines of C),
all of our sofhvare-thousands of classes, hundreds of thousands of
lines-is written in Eiffel, and it nms t11St. TY1"ical of the situation is n
recent incident with the EiffelLex lihraty: it still had <1 few C elements,
remnants of an earlier design. \Ve rewrote them in Eiffel-for a 30%
performance gain.

Why these gains? The answer is simple. The C/C-H approach of
doing everything by hand, under tight programmer control, works
well for small programs. Similal'iy, a good secretary has IlO equiv
alent for keeping one person's records. But in the Sllme way that no
humans can match the performance of a

code modifications, the folks at ISE have developed something that
they call "Melting Ice Technology." Essentially, this means that when
you make a [change 1 and you want to try it out, you simply "melt" it
into the system. You don't need to regenerate a bunch ofC code) so
your changes are integrated into the system proportionally to the
amount of code changed. Even in C and CH, 'make' still has to relink. lO

What this also indicates in passing is the technology choice made by ISE

Eiffel and aU current implementations: using C as the portable imple
mentation vehicle. By going through C, the compilers gain efficiency and
portability. This also makes Eiffel one of the most open environments
around; in contrast to the self-centered view that predominates in
Smalltalk, Eiffel software is born with a sociable attitude, ready to in
tert:lce with all kinds of other software written in C or other languages.
This, needless to say, is a key to the Sllccess of realistic applications.

WITH US, EVERYTHING'S THE FACE A good way to
think about Eiffel-the seamlessness ofit, the insistence on getting
everything right, the conviction that sofuvare should be beautiful
in and out, specification and implementation-is this little anec
dote that I steal from Roman Jakobson's essays on general linguistics:

In a far-away country, a missioI1tlry was scolding the natives. "You
should not go around nuked, showing your body like this!" One day
a young girl spoke back, pointing at him: "But you, Father, you are

cll1ltiml£'d (1/1 page 82

computer for managing, say, the records of a
bank or n city, no pmgrammer cun beat a so
phisticated Eift"el compiler for optimizing a
large program. Against the automatic ilppli
cation of inlining, static binding, memory
management, nnd other optimizations, the
human does not stand <l chalice.

Introducing Two Practical Boolzs on Eiffel ...

To have one's cake and eat it also means
not to have to choose between runtimt.! and
compilation-time performance. For PI't)
grammel'S used to the contrast between a
Smalltalk-like style of rapid turnaround and
the interminable edit-compile-link cycle of '
most compiled environments, the following
comments by 1)<111 \Vilder will be shOl.:king:

ISE Ebench lIses "melting ice technology,"
\·"hich allows incremental chnnges to run in
an interpreted mode. Only modified (lasses
arc recompiled. Changing one dass llnd
clicking the ~ldt button c<ltlsl.'d nnlr a ft~W
seconds of compilation ,\1)' test uppli
cation took 20 seconds to cum pile from
scratch in "melt" mmieY

Steve Bilow pmvicics further cxplanations:

Based on the obSCfvution that software devel
opment is an iteratiw pnh:CSS whkh is usu
ally focused on constructing systems from

In thl.' first "structU:t'L'st hook for !::iffc!,
Gore t,·mphasizl.'s tt~c:llt1iqul.'s lu L'xploit
tll(.~ power and cap<11,ilitics of BfreI for

dl.'signing amI impll.'mcnting go()(l
rcm:;,lhle softw<uc components.

Inlhis up-to-dalc guide, J (!>zcqucl provides
full covcrage of the most recenl version of
the language, focusing on Eiffcl's practical
usc in the devcl()pmcnt ()f large, mission-

critical softw,lresyslcms.

... in Addison-Wesley's Eiffel in Practice Series
Consulting Eclitor Bertrand Meyer

The series specifica.lly (ld(lresse's the pradic,<11 isslles of programmiuR \vilh the
Eiffellangua.ge .. lml its relationship to ohjcct-oricnlcci technology.

l=or more information htlp=',/\'I,1,,,w.aw.com cpo 'ciffeLhtml
Circle 110 on Reade:r Service Card

May 19S5
63

