
and
ent

:

ing
once

tion

s,
any

r life-
not
of
they
bility
ide a
rors
ence

ical
and

ation,
ork
for

in a
nt

vised;

Cite as follows: Bertrand Meyer,Eiffel as a Framework for Verification, in VSTTE 2005
(Verified Software: Tools, Theories, Experiments), eds. B. Meyer and J. Woodcock,
Lecture Notes in Computer Science 4171, Springer-Verlag, 2007.
Eif fe l as a f ramework for ver i f icat ion

Bertrand Meyer

ETH Zurich, http://se.inf.ethz.ch
Eiffel Software, www.eiffel.com

Abstract. The Eiffel method and language integrate a number of ideas orig-
inating from work on program verification. This position paper describes the
goals of the Eiffel approach, presents current Eiffel-based verification tech-
niques using contracts for run-time checks for testing and debugging, and
outlines ongoing work on static verification.

1 Application areas

Advances in programming languages, especially object-oriented principles
techniques, have profoundly influenced the production of software. Most developm
teams are not ready to renounce these gains in expressive power, including both

• Static mechanisms: classes, information hiding, genericity, inheritance (includ
multiple and repeated), polymorphism, smart type systems, conversions,
features, contracts.

• Dynamic mechanisms: objects, references (type-safe pointers), excep
handling, dynamic object creation, automatic garbage collection.

Much of the work towards verified software explicitly gives up on these facilitie
preferring to use minimal programming languages; the goal is to remove as m
obstacles as possible in the quest for full verification, in particular proofs.

While this approach has been successfully applied to certain areas, in particula
critical systems for which the goal of verification overrides all other concerns, it is
realistic for the vast majority of industry applications. This is not just a matter
programmer comfort. Modern programming constructs are there for a reason:
make it possible to turn out systems faster and at lesser cost; they favor extendi
(ease of change) and reuse, both essential in industry practice; they also prov
decisive boost to software quality, by eliminating whole classes of errors — type er
in the case of static typing, memory errors in the case of garbage collection — h
easing the task of verification.

Such software engineering concerns are crucial to many industries. A typ
example is financial software. A development model that freezes the specification
then devotes two years to producing a program guaranteed to meet that specific
using a low-level language and extensive verification techniques, would just not w
in the world of financial systems: specifications change frequently and new ideas
products or strategies, critical to a company’s survival, need to be implemented
matter of weeks or days. It is for this kind of environment, overwhelmingly domina
in industry, that modern development techniques and languages have been de
managers and developers understand their benefits and will not forgo them.

2

tion
ight
nts of

land

that
ftware

the
so a
That
s: an
ming
sks,
wn to
n for
ject-

e [13]
s the
ion
Eiffel
but

ne of
all its

, is to
the

this
on of
d by

s a
lace
clid to

s of
d and
k
ct on
that

ople
tices
This does not mean that they ignore other aspects of verification. In fact verifica
is almost as desirable for mainstream applications as it is — for example — for in-fl
software. A software error in a financial system can cause loss of enormous amou
money; bad investments, whether or not on the advice of a computer program, can
the company’s CEO in jail for breach of fiduciary duty.

Our Eiffel-related work attempts to address the challenge of verifying software
takes advantage of the best programming language ideas and meets the so
engineering constraints on mainstream industry projects.

2 Eiffel goals

One of the distinctive features of the Eiffel approach is its effort to encompass
software engineering process as a whole, not just implementation. While al
language, Eiffel is more than anything else a method, covering the entire lifecycle.
method rejects the traditional separation of notations used at different stage
analysis notation (usually graphical), perhaps a design notation, a program
language. Instead it uses the same formalism — the Eiffel language — for all ta
from the most abstract and user-oriented stages of analysis and specification do
implementation, testing and maintenance. The use of a programming-like notatio
analysis goes back to the advice of Kristen Nygaard, one of the inventors of ob
oriented programming, who stated that “to program is to understand”; it is served in
Eiffel by high-level modeling constructs such as deferred classes and contracts; se
for examples of such uses of the notation for purely modeling purposes, such a
specification of a TV station’s scheduling, independently of any implementat
concerns and in fact of any software aspects. This means that as a language
attempts to cover not only the traditional applications of programming languages
also the realm of analysis notations, specification languages and design tools. O
the advantages of such an integrated, seamless approach, where the software in
aspects — description as well as implementation — is considered a single product
facilitate change, as there is only this one product to update. While retaining
attraction of “model-driven” approaches and their use of a high-level formalism,
technique avoids their separation between expression of intent and expressi
realization. Suchg a gap can be, for large programs developed over a long perio
many people and with many evolutions, detrimental to quality.

Another aspect relevant to verification work is that the very design of Eiffel wa
direct result of verification concerns. In this respect Eiffel occupies a special p
among mainstream tools; one has to go back to research languages such as Eu
find the influence of similar concerns. In particular:

• Eiffel puts the notion of contract (specification of routines and classes in term
preconditions, postconditions and class invariants) at the center of the metho
notation. This idea, which of course follows directly from verification wor
(Hoare semantics, Z and other specification languages) has a profound effe
how software is developed. The most important practical observation here is
Eiffel users do not view these techniques as “formal” (and hence to many pe
formidable) methods, simply as good analysis, design and programming prac

3

than

c of
s of

on,
ich
and

fe O-

in

h”
ome
hat
is
tegy
ain,
ore

ent of
[7]).

uch
ugh
or
fine a
ow
ing

ined
bles

orm
the

e the
ile-

rrent
b

al
,

his

ract
es of
closely integrated with the development process, and no more difficult to use
standard programming constructs such as conditionals.

• The contract mechanism is closely integrated with the object-oriented fabri
the language and in particular with inheritance and associated technique
polymorphism and dynamic binding, through rules of invariant accumulati
precondition weakening and postcondition strengthening [13], variants of wh
are also present in other approaches using contracts such as JML [8] [9]
Spec# [1]. This makes it possible to harness advanced and potentially unsa
O techniques, in particular redefinition.

• Contracts are not a theoretical possibility but heavily used by Eiffel users
practice, as attested by studies of the actual code base [2].

• The exception mechanism of Eiffel differs from standard “try...catc
mechanisms by relying on the contract concept: an exception is not just s
event that will be handled by a special control structure, but the indication t
some operation failed to fulfill its contract; the task of exception handling
rigorously defined as an attempt to achieve the contract through another stra
or, if this is impossible, to pass on the issue to an agent higher up in the call ch
which might succeed in such a replacement strategy [13]. This gives a m
systematic way of handling erroneous and special cases, a delicate compon
software correctness (as attested for example by the famous Ariane 5 failure

• Eiffel development is supported by libraries of reusable software elements s
as EiffelBase [12], refined over two decades, and extensively specified thro
contracts. The MML (Mathematical Model Library) provides a technique f
completely specifying classes through models [16], and has been used to de
fully formally specified subset of EiffelBase. The advantage here is to all
complete specifications within the framework of the language, without add
higher-level, non-executable constructs such as first-order quantifiers.

• The type system includes powerful mechanisms of constrained and unconstra
genericity, multiple and repeated inheritance, tuples and agents. This ena
Eiffel users to construct sophisticated models and rely on the compiler to perf
advanced checks that amount to proofs of consistency. A recent addition to
type system takes these ideas further by sttically removing from the languag
possibility of void calls (attempts to dereference null pointers) through a comp
time check [14].

• A concurrency mechanism, SCOOP, extends the notion of contract to concu
programs of widely different kinds — multi-threading, multitasking, We
services, distribution —, with a precisely defined semantics [15].

• The language specification [4], while not formal, is strongly influenced by form
techniques; in particular it gives all static semantic rules in “if and only if” form
guaranteeing the validity of a construct if it satisfies certain properties. T
provides programmers with an increased confidence in their basic tool

The next two sections describe benefits that can be derived from Eiffel’s cont
techniques today, and new developments currently in progress to meet the objectiv
the verification Grand Challenge.

4

sis
h an
for the
w the
fered
ling
tailed

ons
even
pport

last
o the
ging
cles
case

ting
such
es and
cutes
gies,
hile
unts:
sed
the

g of
is the
atural
ly
for

more
tract

ent
act
tion
layed
ase.
they
an
3 Current applications of contracts

The traditional applications of contracts available in Eiffel include [13]: better analy
and specification (as compared for example to purely graphical notations) throug
encouragement to describe the precise semantics of system elements; guidance
design and implementation process through encouragement to state not only ho
software works but what it is supposed to achieve; automatic documentation, as of
in the EiffelStudio environment [5]; support for project management, by enab
managers to understand the essentials of a system without having to read the de
code; support for evolution, by leaving a clear trace of key design decisi
independently of implementation, and retaining the work of the best designers
when they have left; support for reuse; safe use of inheritance, as noted above; su
for debugging and testing, through run-time monitoring of assertions.

Recent developments have extended these techniques, in particular the
application mentioned. For a long time Eiffel developers have been accustomed t
benefit of having bugs detected through run-time contract violations during debug
and testing. This is a much more effective way than having to prepare test ora
manually. Two important tasks, however, have so far remained manual: test
preparation, and integration of failed tests in the regression testing database.

For the first task, we have developed the AutoTest framework for automatic tes
[3], which provides push-button testing of classes, without any human intervention
as preparing test cases. The basic idea is simple: AutoTest takes a set of class
automatically produces numerous valid instances of these classes, then exe
numerous calls to all their routines with arguments selected through various strate
waiting for a postcondition or invariant to be broken. This always signals a bug. W
the approach may at seem naïve, it is actually effective by the only criterion that co
it finds real bugs (not artificially seeded ones) in actual software, including relea
libraries and production applications. Work is proceeding to integrate AutoTest in
EiffelStudio environment and ensure automatic, continuous background testin
software as it is being developed. What makes a fully automatic process possible
presence of contracts, which provide the test oracles. Contracts are, as noted, a n
component of software for Eiffel programmers, allowing AutoTest to work effective
on software as it is written, rather than software that has to be instrumented
verification purposes. Here the approach benefits fromnotbeing a fully formal method:
while proofs require complete specifications, tests as performed by AutoTest (and
classically by monitoring contracts at execution) can take advantage of any con
elements, however partial, which the programmers have cared to write.

Building on some of the same ideas, the CDD tool (Contract-Driven Developm
[10]) integrates failures found during development, typically through contr
violations, into regression testing. The idea is that any failed test is precious informa
about the project and should forever become part of its test base, automatically rep
— without explicit requests by the programmer — after any new compilation or rele
It is a common phenomenon of software development that bugs have many lives;
will pop back even when thought to have died once or more. CDD, integrated in

5

very

sually
ences
uently.

the
—

odel
ehind
allet

for
ith
ture
roof

for
fact

help
rence

ity.
ems
ms,

with
with
urce
tion
enge

n
ices
and
ages

t?
.

experimental version of EiffelStudio, makes sure to reëxecute in the background e
test that ever failed.

For both AutoTest and CDD, a necessary task istest case minimization[10], which
for any execution sequence that led to a failure produces another sequence, u
much shorter, producing the same effect. This is essential if these execution sequ
are to become part of the regression test database and hence be reëxecuted freq

4 Proofs

Eiffel’s contracts have so far been applied mostly to dynamic checks, because
benefits are so clear and immediate. With improvements in proof technology
including semantic modeling, theorem provers, abstract interpretation and m
checking — it becomes attractive to support proofs, as has already been the plan b
Eiffel. Several efforts are in progress at ETH and elsewhere, in particular the B
proof environment based on BoogiePL, the development of a full formal semantics
Eiffel including its most advanced constructs (by Martin Nordio, in collaboration w
Peter Müller), and the formalization of SCOOP semantics [15]. We hope in the fu
to follow the lead of such developments as the Spec# framework and integrate p
technology, as unobtrusive as possible, into the EiffelStudio environment.

This will not remove the need for other approaches, in particular support
automatic testing and debugging. Proofs and tests, long considered rivals, are in
complementary, if only because not all proofs can succeed and a failed proof can
narrow down the issues and devise better tests. The Tests And Proofs confe
organized at ETH after VSTTE [6] has explored that complementarity.

Eiffel, as noted, was designed from the start with a central concern for verifiabil
The long experience of designing Eiffel software — including some very large syst
driving stock exchanges, simulating complex environmental or defense proble
managing billions of investment dollars, handling complex health care needs —
contracts and a constant search for quality provides the verification community
useful lessons; by contributing Eiffel concepts, tools such as the open-so
EiffelStudio, carefully crafted component libraries such as EiffelBase, specifica
libraries such as MML, as well as books and teaching materials to the Grand Chall
effort, we hope to help in the search for fully verified software.

References

[1] Mike Barnett, Rustan Leino and Wolfram Schulte:The Spec# Programming System: A
Overview, in Construction and Analysis of Safe, Secure, and Interoperable Smart dev
(CASSIS 2004), eds. Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet
Traian Muntean, Lecture Notes in Computer Science 3363, Springer-Verlag, 2005, p
49–69.

[2] Patrice Chalin:Logical Foundations of Program Assertions: What do Practitioners Wan
ENCS-CSE Technical Report 2005-05, revision 02, Concordia University, June 2005

6

erlag,

ical

s in

tion
,

.

er:
g

ies

ct-
on

o at

d

ence,
f.
[3] Ilinca Ciupa, Andreas Leitner, Lisa (Ling) Liu and Bertrand Meyer:Automatic testing of object-
oriented software, in SOFSEM 2007: Theory and Practice of Computer Science, January 20-
26, 2007, ed. Jan van Leeuwen, Lecture Notes in Computer Science 4362, Springer-V
2007, available atse.ethz.ch/~meyer/publications/lncs/testing_sofsem.pdf.

[4] ECMA Technical Committee 39 (Programming and Scripting Languages) Techn
Group 4 (Eiffel):Eiffel Analysis, Design and Programming Language, ECMA and ISO
standard, June 2005, revised November 2006, available at

[5] Eiffel Software: EiffelStudio open-source download atwww.eiffel.com.

[6] Yuri Gurevich and Bertrand Meyer (eds):TAP: Tests And Proofs, First International
Conference, ETH Zurich, February 12-13, 2007, revised papers, Lecture Note
Computer Science 4454, Springer-Verlag, August 2007.

[7] Jean-Marc Jézéquel and Bertrand Meyer:Design by Contract: The Lessons of Ariane, in
Computer (IEEE), vol. 30, no. 1, January 1997, pages 129-130, also atse.ethz.ch/~meyer/
publications/computer/ariane.pdf.

[8] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby and David R. Cok:How the
Design of JML Accommodates Both Runtime Assertion Checking and Formal Verifica,
in Science of Computer Programming, vol. 55, no. 1-2, March 2005, pages 185-208
available atdx.doi.org/10.1016/j.scico.2004.05.015.

[9] Gary T. Leavens and Yoonsik Cheon:Design by Contract with JML, draft paper, available
(with other JML documents) from JML Home Page atwww.eecs.ucf.edu/~leavens/JML/

[10] Andreas Leitner, Manuel Oriol, Andreas Zeller, Ilinca Ciupa and Bertrand Mey
Efficient Unit Test Case Minimization, in proceedings of Automated Software Engineerin
2007 (ASE 2007), to appear.

[11] Andreas Leitner, Ilinca Ciupa, Manuel Oriol, Bertrand Meyer and Arno Fiva:Contract
Driven Development = Test Driven Development – Writing Test Cases, in proceedings of
ESEC/FSE 2007, to appear.

[12] Bertrand Meyer:Reusable Software: The Base Object-Oriented Component Librar,
Prentice Hall, 1994.

[13] Bertrand Meyer:Object-Oriented Software Construction, 2nd edition, Prentice Hall, 1997.

[14] Bertrand Meyer:Attached Types and their Application to Three Open Problems of Obje
Oriented Programming, in ECOOP 2005 (Proceedings of European Conference
Object-Oriented Programming, Edinburgh, 25-29 July 2005), ed. Andrew Black, Lecture
Notes in Computer Science 3586, Springer Verlag, 2005, pages 1-32, als
se.ethz.ch/~meyer/publications/lncs/attached.pdf.

[15] Piotr Nienaltowski:Practical framework for contract-based concurrent object-oriente
programming, PhD thesis, ETH Zurich, February 2007, available atse.ethz.ch/people/
nienaltowski/papers/thesis.pdf.

[16] Bernd Schoeller, Tobias Widmer and Bertrand Meyer:Making Specifications Complete
Through Models, in Architecting Systems with Trustworthy Components, eds. Ralf
Reussner, Judith Stafford and Clemens Szyperski, Lecture Notes in Computer Sci
Springer-Verlag, 2006, available atse.ethz.ch/~meyer/publications/lncs/model_library.pd

http://se.ethz.ch/~meyer/publications/lncs/testing_sofsem.pdf
http://www.eiffel.com
http://se.ethz.ch/~meyer/ publications/computer/ariane.pdf
http://se.ethz.ch/~meyer/ publications/computer/ariane.pdf
http://dx.doi.org/10.1016/j.scico.2004.05.015
http://www.eecs.ucf.edu/~leavens/JML/
http://se.ethz.ch/~meyer/publications/lncs/attached.pdf
http://se.ethz.ch/people/nienaltowski/papers/thesis.pdf
http://se.ethz.ch/people/nienaltowski/papers/thesis.pdf
http://se.ethz.ch/~meyer/publications/lncs/model_library.pdf

	Eiffel as a framework for verification
	1 Application areas
	2 Eiffel goals
	3 Current applications of contracts
	4 Proofs
	References

