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Abstract 

A Chair of Software Engineering existed at ETH Zurich, the Swiss Federal Institute 
of Technology, from 1 October 2001 to 31 January 2016, under my leadership. Our 
work, summarized here, covered a wide range of theoretical and practical topics, 
with object technology in the Eiffel method as the unifying thread1. 

Overview 

Computer science (“Informatik”) has a brilliant past at ETH Zurich, most notori-
ously illustrated by Niklaus Wirth; but there has not traditionally been, and there is 
not now, a group or professorship with the name “software engineering”. The Chair 
of Software Engineering existed from 1 October 2001, when I was appointed on 
Wirth’s former position with the title of Professor of Software Engineering, until 31 
January 2016. Our slogan, covering both the products and processes of software,  
was to “help the world produce better software and produce software better”. 
This chapter is an account of what the Chair did towards this goal. It is divided into 
the following sections: 
 
1. Basic data. 
2. Conferences, journals, summer school and other outreach. 
3. Courses taught. 
4. Principle and experience of teaching programming. 
5. Pedagogical tools and MOOCs. 
6. Methods and tools for distributed software development. 
7. Language development and standardization. 
8. Software process and methodology, requirements analysis, agile methods. 
9. Object persistence. 
10. Verification: proofs, tests, automatic bug correction. 
11. Concurrent programming. 
12. Software for robotics. 
13. Assessment. 
 
While this order of sections facilitates the presentation it requires some patience 
from the reader, since the topics that accounted for most of the chair’s attention, 
resources and scientific results appear from section 10 on.  
                                                            
1 This article was prepared, but rejected, as a chapter for the proceedings [288] of the PAUSE 
symposium, which took place on the occasion of the Chair’s closing. The formatting retains 
some of the original Springer typesetting rules. 
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1 Basic data 

Faculty: 
 Me. 
 Peter Müller, assistant professor 2003-2008 (prior to establishing his own 

chair). 
 Jean-Raymond Abrial, guest professor 2004-2006 (to start the Rodin project 

which developed the Event-B rigorous program construction system). The 
rest of this article does not cover Müller’s and Abrial’s specific research. 

Completed PhD theses in the Chair: 23 from 2004 to 2017 (see list below). 
Over 60 master’s theses (including “diploma theses”, the name in the first few 

years before ETH transitioned to the “Bologna system” of bachelor’s and master’s 
degrees). Several hundred bachelor’s theses and student project reports. 

Start-up companies coming out in full or in part from the Chair: Comerge (soft-
ware development); Monoidics (software verification, acquired by Facebook); 
mtSystems (language translation); Propulsion Academy (mass programmer educa-
tion, propulsionacademy.com). 

Funding: over 8 million Swiss Francs (or dollars, or euros) of funding from 
sources including: 

 ERC “Advanced Investigator Grant” from the European Research Council 
on “Concurrency Made Easy”, 2.5 million euros (see section 11). 

 About 10 grants from the Swiss National Science Foundation. 
 About 10 grants from the internal ETH funding agency. 
 Foundations2: four grants from the Hasler foundation (including for the ro-

botics work presented in section 12) and one from the Gebert foundation. 
 Two grants from Microsoft Research, for curriculum development and con-

currency.  
 Two small grants from the ETH rectorate (studies administration) for cur-

riculum innovation, including MOOCs. 
 “Pioneer award” to Marco Trudel for commercial development of his lan-

guage translation tools. 
Senior researchers, defined here to encompass, regardless of actual administrative 
title, senior members who stayed for at least two years and exerted a significant 
influence on the development of our work, usually co-teaching courses and helping 
supervise PhD students3: 

                                                            
2 One of the distinctive features of Switzerland’s research scene is the presence of private 
research-funding foundations, usually resulting from a company founder’s large bequest. 
They target specific areas (for example, in Hasler’s case, IT and communications) and often 
follow a simplified process based on objectives rather than bureaucracy. 
3 The senior researchers typically continued to work on some of their earlier research themes, 
often with their former collaborators or supervisors. The corresponding publications appear 
in the bibliography but are not discussed in the text when they address topics outside of the 
group’s research scope. 
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 Manuel Oriol, who helped in shaping our research culture and particularly 
in establishing a professional publication process, as well as participating 
directly in several projects. 

 Sebastian Nanz, who was instrumental in the successful preparation of the 
Concurrency Made Easy ERC Advanced Investigator Grant project. 

 Carlo Furia, who played a key role in our verification work. 
 Martin Nordio, the heart and soul of the distributed programming teaching 

and research effort. 
 Marco   Piccioni, who alerted me to the rising role of MOOCs and ensured, 

through grueling work, the success of our three MOOCs. 
 Christian Estler, who developed the CodeBoard system for on-the-cloud 

programming, key to that success and also to non-MOOC endeavors. 
 Chris Poskitt, who introduced us to the culture of model checking. 
 Jiwon Shin, coming from Mechanical Engineering, who taught us serious 

robotics. 
Postdocs included (in addition to several of the PhD students listed next, staying on 
for a few months after the completion of their degree): Arnaud Bailly (concurrency), 
Đurica Nikolić (concurrency/verification), Georgiana Caltais (concurrency/verifi-
cation), and Patrick Eugster (verification).  

Peter Kolb (originally from ABB, then with his own company Red Expel) par-
ticipated from the start in our distributed software engineering course (section 3). 

The 23 graduated PhDs, in chronological order of defenses, are4: 
 Karine Arnout (later Bezault): patterns and components [34], work started 

on 1 April 2002 and defended on 31 March 2004 (must be some kind of 
record). 

 Markus Brändle: tools for teaching programming [46], a transfer to our 
group for the final part of a thesis under Prof. Jürg Nievergelt. 

 Piotr Nienaltowski: concurrency [76], the first thesis on SCOOP and the in-
spiration for remainder of our concurrency work. 

 Till Bay [95]: the Origo system for code and project management, a precur-
sor to GitHub. 

 Bernd Schoeller [96]: first dissertation on proofs, introduced the use of Boo-
gie and model queries. 

 Ilinca Ciupa [97]: automatic testing, including ARTOO (adaptive random 
testing for OO software), one of the first two AutoTest dissertations. 

 Andreas Leitner [98]: automatic testing, including test extraction from fail-
ures and contract-driven development, the other initial AutoTest disserta-
tion, an excellent example of two synchronized and complementary theses, 
both excellent. 

 Martin Nordio [119]: proof-transforming compilation. 

                                                            
4 Thesis topics rather than exact dissertation titles, which appear in the bibliography at the 
references given. See also the individual pages on the chair site at se.ethz.ch/people and the 
Mathematical Genealogy page www.genealogy.math.ndsu.nodak.edu/id.php?id=97792. All 
dissertations texts are available online. 
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 Michela Pedroni [120]: principles and tools for teaching programming. 
 Yi (Jason) Wei [186]: automatic testing and automatic bug correction. 
 Marco Piccioni [187]: object persistence. 
 Marco Trudel [213]: programming language translation. 
 Stephan van Staden [214]: separation logic. 
 Benjamin Morandi [235]: concurrency and its operational semantics. 
 Nadia Polikarpova [236]: concepts and tools for verifying object-oriented 

programs, with application to the EiffelBase 2 library. 
 Yu (Max) Pei [237]: automatic bug correction. 
 Hans-Christian Estler [238]: tools for collaborative development. 
 Julian Tschannen [239]: concepts and tools for verifying object-oriented 

programs. 
 Scott West [240]: concurrency, with particular emphasis on performance. 
 Mischael Schill [267]: concurrency with emphasis on verification and per-

formance. 
 Andrey Rusakov [268]: concurrency and robotics software. 
 Alexey Kolesnichenko [269]: concurrency and GPU programming. 
 Alexander Kogtenkov [272]: software verification and language design fo-

cusing on void safety (removing null pointer dereferencing). 
Other team members included Volkan Arslan (concurrent and event-driven pro-
gramming), Yann Müller (concurrency), Andre Macejko (support for MOOCs and 
other teaching); Claudio Corrodi (model checking), Michael Ameri (verification), 
Ganesh Ramanathan, Ivo Steinmann and David Itten (robotics), Lukas Angerer and 
Paolo Antonucci (tool support for teaching), Michael Steindorfer and Alexander 
Horton (automatic bug fixing), Daniel Moser (concurrency), Lukas Angerer 5. Ro-
man Schmocker, a research engineer in the CME project, played an essential role in 
the development of SCOOP, both the model and the implementation). We hosted 
student interns including several from the University of Cluj-Napoca, Raduca 
Borca-Muresan, Gabriel Petrovay and Ilinca Ciupa prior to her PhD, and from rom 
Nijny-Novgorod: Andrey Nikonov and Andrey Rusakov, the latter also as a prelude 
to his PhD. Peter Kiowski helped at the start of Informatics Europe. Three PhD 
students, Susanne Cech, Stephanie Balzer and Joseph Ruskiewicz, started in the 
Chair then moved to other groups. Patrick Schönbach, working from Germany, 
helped with the initial version of the Traffic library (section 4). 

The Chair had two successive secretaries, Ruth Bürkli and Claudia Günthart, 
whose role in the effectiveness of our work cannot be overstated, and who provided 
an indispensable measure of Swissness for a “mini-United-Nations” group where 
Swiss citizens were always a minority. They were essential in making sure we func-
tioned smoothly, overcame the inevitable bumps of daily life, followed Swiss prac-
tices and ETH regulations, and met our obligations to the university.  

Next employment, partial list: associate/full professor (Eugster at Purdue, Furia 
at Chalmers, Oriol at York), assistant professor (Polikarpova at UCSD, Yu at Hong 

                                                            
5 The names cited include those of master’s students who co-authored some of the publica-
tions in the bibliography. They are a small subset of the many master’s students we hosted. 



5 

Kong), research fellow (Poskitt at Singapore), Google Zurich (Nanz, Leitner, West, 
Tschannen, van Staden), Microsoft (Kolesnichenko), own startup (Bay at 
Comerge), Facebook (Calcagno, initially Monoidics startup), ABB Zurich (Oriol, 
Brändle), Roche (Nordio), Axa Rosenberg (Arnout), Praxis (Nienaltowski), Credit 
Suisse (Ciupa), Airbus (Brändle). 

Visitors included Professors Egon Börger (Pisa), Hassan Gomaa (George Ma-
son), Manuel Mazzara and Michele Mazzucco (both of Innopolis University, as part 
of a special agreement in which ETH helped train Innopolis’s future faculty), Emil 
Sekerinski (McMaster’s), as well as Cristiano Calcagno (Imperial College), Marie-
Hélène Ng Cheong Vee (Marie-Hélène Nienaltowski) (Birkbeck), Federica Panella 
(Politecnico di Milano) and Per Madsen (Aalborg). 

These visitors were part of our scientific relations with outside groups with 
which we had regular exchanges, including: 
 Eiffel Software, the Santa-Barbara-based company which I co-founded in 1985 

and where I worked prior to joining ETH: Emmanuel Stapf (chief engineer, and 
authors of several papers); Alexander Kogtenkov (who did a PhD as external 
student at ETH); Jocelyn Fiat (who provided many Eiffel-related student pro-
jects and helped guide them); Xavier Rousselot (who came up with the original 
idea behind AutoTest). Members of the Chair who spent internships at Eiffel 
Software include Andreas Leitner, Julian Tschannen and Roman Schmocker. 

 University of York (UK): Jim Woodcock, Richard Paige, Manuel Oriol (after 
he left us) and others. 

 York University (Another York, in Canada): Jonathan Ostroff. 
 University of Nantes: Jean Bézivin (co-founder of the TOOLS conference se-

ries), Frédéric Benhamou. 
 University of the Sarre, Saarbrücken: Andreas Zeller (who was instrumental in 

supporting our forays into empirical software engineering and automatic pro-
gram repair). 

 University of Karlsruhe: Walter Tichy. 
 Technical University of Munich: Manfred Broy, Martin Wirsing. 
 University of Limerick (LERO), Ireland: David Parnas. 
 Politecnico di Milano: Carlo Ghezzi and Dino Mandrioli (since the late seven-

ties!), Elisabetta di Nitto, Raffaela Mirandola, Giordano Tamburrelli (particu-
larly in the context of the DOSE projects described below), Letizia Tanca. 

 PUCRS (Brazil): Rafael Prikladnicki (also part of DOSE). 
 University of Pisa: Egon Börger. 
 Closer to home, the computer science department of the University of Zurich: 

Martin Glinz (requirements analysis), Harald Gall (empirical software engi-
neering), Abraham Bernstein. 

 On the other side of the Gotthard: at the University of Lugano, Mehdi Jazayeri, 
Mauro Pezzè. 

 University of Bern: Oscar Nierstrasz. 
 University of Lucerne (formerly Hochschule Luzern, partner in the Smart-

Walker effort, section 12): Alexander Klapproth, Dieter von Arx. 
 Czech Technical University, Prague: Pavel Tvrdik. 
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 Poznan University of Technology (Poland): Jerzy Nawrocki and Bartosz Wal-
ter (who participated in one of our research retreats). 

 University of Cluj-Napoca (Romania): Iosif Ignat (who, in particular dedica-
tion to his students, sent us a succession of excellent students for internships). 

 Imperial College: Sophia Drossopoulou, Jeff Magee, Jeff Kramer, Alexander 
Wolf. 

 University of Nice: Philippe Lahire (object-oriented techniques, Denis Caromel 
(concurrency), Isabelle Attali. 

 IRISA (Brittany): Jean-Marc Jézéquel, Noël Plouzeau, Yves Le Traon, Benoît 
Baudry (developments of Design by Contract). 

 University of Luxembourg: Lionel Briand, Nicolas Guelfi, Yves Le Traon. 
 JAIST (Kanazawa, Japan): Hiroshi Futatsugi (formal methods). 
 Rio Cuarto (Argentina): Nazareno Aguirre (distributed development). 
 Jiao Tong (Shanghai): Jianjun Zhao (verification). 
 University of Hong Kong: T.H. Tse (testing). 
 Polytechnic University of Madrid: Natalia Juristo (empirical software engi-

neering). 
 IMDEA Software Institute, Madrid: Manuel Hermenegildo, Gilles Barthe. 
 University of Washington: David Notkin, Michael Ernst. 
 MIT: Daniel Jackson. 
 Berkeley: Armando Fox (author of a highly successful programming MOOC). 
 Stanford: Gene Golub, Donald Knuth. 
 Purdue: Patrick Eugster, Jan Vitek. 
 University of British Columbia: Gail Murphy, Philippe Kruchten. 
 Polytechnic University of Catalonia: Pere Botella. 
 State University of Saint Petersburg: Andrey Terekhov. 
 ITMO University (also in Saint Petersburg, where I had a part-time position as 

head of the Software Engineering Laboratory from 2011 to 2014): Anatoly 
Shalyto (who recommended to me Nadia Polikarpova, first as a master’s stu-
dent), Vladimir Parfionov, Vladimir Vassiliev (rector). 

 Polytechnic University of Saint Petersburg: Mikhail Itsykson, Irina Shoshmina, 
Yuri Karpov. 

 Other Russian institutions including the universities of Nijny Novgorod (Vla-
dimir Gergel, Iosif Meyerov) and Tver (Vladimir Billig, skilled translator of no 
fewer than three of my books into Russian). Ever since I got to know the great 
Soviet computer scientist Andrey Ershov in 1975 and spent time in his Novo-
sibirsk institute in 1977, I kept ties with the Russian CS community, including 
Novosibirsk (Alexander Marchuk, Nikolai Shilov). 

 In Israel: Avi Mendelson (Intel Haifa then Technion), Amiram Yehudai (Tel-
Aviv), Joseph Gil (Technion, like Yehudai a long-time participant in TOOLS), 
Mordechai Ben Ari (Technion), Dan Berry (Technion, later Waterloo). 

 Monash University (Melbourne, Australia, where I had an adjunct position un-
til 2003): Christine Mingins, David Abramson, John Rosenberg. 
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 University of New South Wales: John Potter (object-oriented programming and 
formal methods), Carroll Morgan (formal methods). 

 Victoria University (New Zealand): James Noble (object-oriented methods). 
 IFIP working group WG2.3 on programming methodology, of which I became 

a member in 2003: everyone but particularly Pamela Zave, Michael and Daniel 
Jackson, Rustan Leino, C.A.R. Hoare, Ralf-Johann Back, Gary Leavens, Jay 
Misra, Patrick Cousot, Michel Sintzoff, Natarajan Shankar, Carroll Morgan, 
Michel Sintzoff (until his untimely death in 2010), Andreas Podelski… 

 IFIP TC2 (the oldest technical committee of IFIP, devoted to programming, 
where I was Swiss representative then chair): Robert Meersman (previous 
chair), Judith Bishop (previous secretary), Michael Goedicke (“my” secretary 
and successor as chair), Michel Sintzoff, Bashar Nuseibeh. 

 Ecma, the standards organization we discovered on the occasion of .NET stand-
ardization and chose for Eiffel standardization: Jan van den Beld (who as gen-
eral secretary helped us start the work), Patrick Charollais, Istvan Sebestyen. 

 Specifically, the Ecma Eiffel committee (TC49-TG4), which produced the ISO 
Eiffel standard as discussed in section 7. The most active members of this com-
mittee were Emmanuel Stapf and Alexander Kogtenkov from Eiffel Software, 
Mark Howard initially from Axa Rosenberg (an equity management firm in 
California), Eric and Karine Bezault also of Axa Rosenberg, Dominique Colnet 
and some of his colleagues from the University of Nancy (authors of the 
SmartEiffel compiler) and (more episodically) Christine Mingins from Monash 
University, Kim Waldén from Enea Data in Sweden, Paul-Georges Crismer 
from Groupe S in Belgium and Roger Osmond from EMC. In addition, mem-
bers of the Chair who often participated in TG4 language discussions included 
Volkan Arslan, Bernd Schoeller and Julian Tschannen. 

 Microsoft, particularly Microsoft Research (MSR) but also product groups. 
First the .NET effort (Project Seven), particularly James Plamondon and Jim 
Miller. Then verification researchers: Wolfram Schulte (thanks to whom I spent 
two fruitful short stays in Redmond), Rustan Leino, Michał Moskal (the last 
two supervised Nadia Polikarpova in an internship at MSR), Yuri Gurevich, 
C.A.R. Hoare, Mike Barnett, Tom Ball, Erik Meijer, Clemens Szyperski, Ni-
kolaj Bjorner and Pelli de Halleux from the PEX project, Nikolai Tillmann… 
A special mention is due to Judith Bishop, indefatigable convener of thrilling 
summer schools and other events, and indefatigable sponsor of our work. 

 Informatics Europe, particularly the founder group including Jan van Leeuwen 
(Utrecht), Christine Choppy (Orsay), Willy Zwaenepoel (EPFL), Hans-Uli 
Heiss (Berlin), Antoine Petit (INRIA), Manfred Nagl and Gregor Engels (Pa-
derborn), Enrico Nardelli (Rome), Letizia Tanca (Milan), and later Carlo 
Ghezzi (Milan) and Lynda Hardman (Amsterdam), Letizia Tanca (Milan), Vic-
tor Gergel (Nijny-Novgorod), Mark Harris (thanks to whom Intel generously 
sponsored the Informatics Europe Best Practices in education award), as well 
as the general secretary of the organization, Cristina Pereira, thanks to whom 
the organization was able to produce its yearly milestone reports on the state of 
things in European computer science education [203] [227]. 
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 ACM Europe (I was a member of the founding Council), particularly its presi-
dent Fabrizio Gagliardi (initially with Microsoft Research), Matthias Kai-
serswerth (then director of the Zurich IBM lab, later head of the Hasler Foun-
dation), Wendy Hall, John White (CEO of ACM), Vinton Cerf (President of 
ACM), Paul Spirakis, Michel Beaudouin-Lafon, Alain Chenais (later president 
of ACM), Alexander Wolf (also an ACM president during our tenure), Mateo 
Valero, Gabriele Kotsis, Marc Shapiro (who in another context had exerted a 
significant influence on the design of Eiffel’s exception mechanism), Paola In-
verardi (one of the first computer scientists to become Rector of a major uni-
versity), Avi Mendelson, Ricardo Baeza-Yates, Serdar Tasiran, Mark Harris 
and Carlo Ghezzi again, and in fact many of the other computer science lumi-
naries cited elsewhere in this article. 

 Semat: Ivar Jacobson, Michael Goedicke; OMG: Richard Soley. 
 EasyChair: Andrey Voronkov. 
 Springer: Alfred Hofmann (publisher of the LNCS series), Hermann Engesser 

(initial editor of Touch of Class [110]), Ralf Gerstner (his successor and patient 
editor of Agile! [228] and several other works). 

 The Hasler Foundation, one of the important sources of funding for research in 
computing in Switzerland, not only funded us but provided frequent opportu-
nities for interactions with other research groups. I co-edited the volume that 
resulted from one of the Hasler workshops [57]. 

 Within ETH, my teaching benefitted from expertise on algorithms by Peter 
Widmayer and on numerical applications by Walter Gander. (Both of them 
were my predecessors as department heads and also provided advice in that 
capacity.) To get started at ETH, I received help from Hans Hinterberger and 
Jürg Nievergelt. Niklaus Wirth was always a font of experience and support. 

Awards that I received during the existence of the Chair include ACM Software 
System Award, IEEE Harlan Mills prize, ACM Fellow, Ershov Lecture [191], and 
two honorary doctorates (University of York and ITMO University). 

A word is in order regarding the atmosphere in the group. After a year or two 
of setting up (and, for me, learning the job), the group quickly reached a smooth 
mode of functioning, with no visible tension — not a given for a team of sometimes 
as many as 20 members, coming from widely different cultural backgrounds and 
subject to many external pressures. Members socialized a lot with each other. We 
had occasional research retreats in the neighboring Alps — I can recommend “Pow-
erPoint Karaoke” for the evenings of such meetings — and (prompted by Manuel 
Oriol) yearly publication-planning workshops. The weekly research meeting, Tues-
days 14-16, involved organizational discussions, presentations by members of the 
group on their current work, students’ final reports on master’s and other projects 
(only for the most interesting reports, since we supervised too many students to fit 
them all6), and visitors’ talks. 

                                                            
6 When we had many student projects coming to fruition at the end of a semester, we orga-
nized special meetings devoted entirely to their presentations. The idea came in part from 
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With presenters ranging from novice (a 2nd-year student) to world-class guests, 
the technical interest of these weekly sessions and their relevance to each group 
member naturally had their ups and downs, but holding a regular meeting promoted 
communication and collaboration. Otherwise the risk would have been, given the 
breadth of topics addressed in the group, of splitting into micro-groups of one to 
three or four people. Instead, cross-fertilization regularly occurred. As suits a soft-
ware engineering group in academia, our work was partly theoretical and partly ap-
plied, but there never were a theory group and an applied group. Two examples of 
this intellectual mobility: 
 After a thesis on object persistence and databases, Marco Piccioni turned his 

interest to educational issues and MOOCs, triggering the interest of Christian 
Estler who had been working on tools for distributed programming, and Martin 
Nordio whose own thesis work was on formal modeling of programming lan-
guage concepts but who was also managing the DOSE distributed program-
ming project with students from ETH and other universities. The resulting col-
laboration, benefiting from all three contributors’ expertise, led to the 
Eiffel4Mooc, comcom and Codeboard platforms for cloud-based teaching of 
programming.  

 These ideas also attracted the interest of the formal methods and verification 
team, notably Julian Tschannen, Nadia Polikarpova and Carlo Furia, leading to 
the cloud-based version of the AutoProof program verification system. 

An example of the benefits of cross-fertilization was the spread of formal tech-
niques. Only a minority of the group members had formal (mathematical) specifi-
cation and verification techniques at the center of their research topic. But they 
spread the formal-methods mindset throughout the group. Soon many others who 
came from a background of more applied software engineering, with little or no 
prior knowledge of mathematical techniques started incorporating formal aspects to 
their work. The other way around, Martin Nordio is an example of a group member 
who came to do formal work and continuously produced results in that area even 
after his PhD while getting into more and more applied topics. 

These outcomes are just specific instances of a practice of collaboration with-
out which the group could not have functioned properly. Teaching introductory pro-
gramming required particular care because of the scale of the effort (up to 25 labor-
atory groups, each under the responsibility of an assistant) and the attention focused 
on first-year courses, whose final exam determines whether students can go on 
(about 40% do not). Every detail must be addressed to ensure that the administration 
does not get a dreaded “Rekurs” (a formal complaint by a student who failed). 

For many of the PhD students this stint as assistant was their first teaching ex-
perience, and they needed all the help they could get from their seniors. The culture 
developed over the years made it possible to train and integrate new members 

                                                            
watching such sessions at Saint Petersburg State University (when visiting Terekhov). An-
other idea that I took from that Russian model was to insert after every final project presen-
tation a short assessment by the student’s direct supervisor (PhD student or postdoc), placing 
the work in context and discussing its contributions. Maybe this practice is common but I had 
not seen it before; I found that it increased the value of the sessions. 
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quickly. It involved both actual artifacts (an internal Wiki with Howtos, heaps of 
training materials from previous years, example exam texts in English and German 
written to minimize the possibility of student misunderstanding and complaints) and 
more immaterial elements in the form of advice and recommended procedures.  

Having a solid group culture was just as essential for research as for teaching. 
The typical beginning PhD student has great ideas — the reason for being hired as 
a PhD student in the first place — but no concept of how to write a scientific paper. 
(Occasionally, you find a born writer, able from the beginning both to conceive 
ideas and express them. But that is the exception.) This skill has to be learned; and, 
beyond general writing, the art of writing for this or that conference with its peculiar 
tradition and requirements. 

PhD students also need to understand the practical nature of research and 
their own personal role. A kind of rite of passage for the budding researcher happens 
the day you understand you are probably not going to discover relativity or vaccines 
or quanta or natural selection or NP-completeness. The consolation is that if you 
work hard you can add an increment or two to the existing body of knowledge. The 
group can help junior members survive that phase. 

Mentoring is an important part of such a culture. I quickly corrected my initial 
mistake of hiring (on the five positions, in addition to administrative assistant, that 
ETH gave me on arrival, and others soon obtained through grants) PhD students 
only. For their supervision, it was essential to have postdocs and senior researchers, 
equipped with more patience, plus fresh knowledge of the latest literature in their 
fields of expertise. 

Our group culture did not exist in a vacuum but benefited from our insertion in 
the department of computer science and ETH as a whole. While we may occasion-
ally have balked at some aspects of that institutional culture, being part of a univer-
sity focused on excellence in teaching and research, with resources commensurate 
with those ambitions, was a tremendous inspiration and daily boost. It was always 
interesting to see how other groups in the department were conducting their own 
business, and learn from them. Aside from the official communication channels, 
much peer-to-peer interaction occurred between groups at the level of PhD students; 
in particular, when Peter Müller left us to form his own group, his students remained 
close to ours and often served as teaching assistants in our courses. 

Within the group, much of the culture was the result of self-organization at the 
level of PhD students, senior researchers and the administrative assistant, so that 
many day-to-day problems would simply be resolved without even reaching me. 

The group culture as just described did not arise from a conscious design, it just 
grew organically as a result of the group members’ intelligence and dedication. I 
do not recall any discussion of “culture” as such. It just underpinned our mode of 
working. Only after leaving such an environment and attempting in vain to recreate 
similar conditions in a different setting does one understand how it was: how elab-
orate, how critical and how elusive.       
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2 Conferences, journals, summer school and other outreach  

The following is a partial list of “community” efforts (as they are sometimes called) 
in which we were involved: Informatics Europe; conferences organized; summer 
school; guests; journals; publications. 

2.1 Informatics Europe 

As department head in 2005 I was approached by Willy Zwaenepoel, my counter-
part at EPFL, to explore ways of making the voice of academic computer science 
(informatics) better heard in Switzerland. I suggested that the proper arena was big-
ger: Europe. Zwaenepoel brought up his experience with CRA, the successful Com-
puting Research Association in the US. We decided to hold a “European Computer 
Science Summit” (ECSS), gathering department heads and senior faculty from all 
over the continent. Finding them was very manual work, mostly from browsing the 
Web. We held the first ECSS at ETH Zurich in October 2005; the event was a re-
sounding success, the first time people in charge of academic policy, confronted 
with similar issues in education and research, could talk with their peers across Eu-
rope. The decision to found a permanent association, Informatics Europe7, happened 
then; we reported on our effort in the Communications of the ACM [51]. For the 
first years of its existence, Informatics Europe was hosted by our group; members 
of the Chair, notably Marco Piccioni, helped with the organization, and we hosted 
three of the first ECSS in Zurich. (The conference continues to take place every 
year, moving between European cities.) When the association was able to hire a 
general secretary, Cristina Pereira, she also worked in our offices for several years. 
Nowadays, of course, Informatics Europe has shed its ties to ETH and has its own 
office (still in Zurich). 

I was the first president, from 2005 to 2010, working closely with two vice 
presidents, Christine Choppy from Paris (Orsay) and Jan Van Leeuwen from 
Utrecht. We published (with Jørgen Staunstrup from ITU in Denmark), again in the 
Communications of the ACM, a paper on researcher evaluation [101] which at-
tracted significant attention. The subsequent presidents have been Carlo Ghezzi 
from Milan and Lynda Hardman from Amsterdam, to be followed in 2018 by Enrico 
Nardelli from Rome. Today the association is strong, with over 115 members8 from 
all over Europe, with a solid financial base, and growing. 

Informatics Europe took on itself the task of providing a forum and action cen-
ter for computing education and research in Europe. (The CRA is focused on re-
search, but we felt we had to cover education as well.) The ECSS conferences have 
been a magnet for senior people in the field, with an impressive roster of invited 
speakers from top university management, education policy, European research 
funding, the CRA (some of our early keynoters from CRA provided great guidance), 

                                                            
7 We played with a few names including one that, I am ashamed to admit, had my preference: 
euroTICS. I retrospectively shudder at the mockery we would have endured. Jan van Leeu-
wen fortunately brought us to our senses and came up with the final name. 
8 Members are not people but organizations: departments of computer science/informatics/IT 
etc. of universities, research labs of companies etc. 
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industrial research policy (Microsoft Research, Google, Intel and others were mem-
bers from the start), entrepreneurship (such as the founder of Skype). There is no 
other conference of that kind. 

From the start we engaged into the hard work of collecting basic data on the 
field; in particular, through the grueling and exacting work of Cristina Pereira, In-
formatics Europe produces (and continues to produce today) detailed reports on 
matters such as degrees, student numbers, representation of women, faculty salaries; 
see [203] and [227], and www.informatics-europe.org for the more recent reports. 

The report on salaries was particularly controversial; we hesitated before mak-
ing this information public, but decided it was important. For comparable positions, 
the ratio of professor salaries in different countries is over 4 to 1, even within West-
ern Europe with a comparable standard of living. PhD students and postdoc salaries 
follow a similar pattern. My interpretation of these figures is that European coun-
tries divide themselves into two categories: those that treat university professors as 
top talent, similar to senior engineers or higher management in companies; and 
those that view them as somewhat ameliorated high-school teachers. The difference 
is profound, and reflected in more than salaries. But that is for another article. 

Besides salaries, the reports provide unique data, growing every year, on other 
issues such as the (by far insufficient) number of CS graduates produced every year, 
and reveal the need for better branding of the discipline, which is known, even after 
translation into English, under some 20 different names in Europe. 

Gathering the data was a Herculean effort. There is simply no standard source. 
Each country has its own, often several of them, sometimes a ministry, sometimes 
a statistical institute, sometimes a professional association, sometimes individual 
institutions. Pereira made a crucial design decision at the start: we would only report 
results in which we had full confidence. My own idea was different: try to get as 
good as possible a picture as we could of the entire continent, then make it better in 
successive editions. She disagreed, and was right. The result that in the first report 
we could only cover a few countries, but with ironclad data. Then over the years the 
set of countries has grown, as colleagues find out with a shock that their country is 
not covered, complain, and are asked to provide a conduit to reliable data sources. 
But what the reports do include is supported by extensive research, attested by doz-
ens of footnotes in the text. Again and again we have witnessed the following inci-
dent: a colleague from country X sees the report and protests: “I work in country X 
and I know! Your figures (e.g. the for salary ranges) are wrong!” Each time the 
result is the same: it is not because you work in X that you know everything about 
X. The information has been checked and validated from official sources, and the 
footnotes explain the conventions. (For example the reports do not attempt to ac-
count for differences in the cost of living, taxation levels etc., since this is a task for 
economists and subject to subjective appreciation; they limit themselves to raw data 
and the relevant side factors.) 

Informatics Europe undertook several other reports, in particular the already 
mentioned work on researcher evaluation for informatics [101] [102]. In the US, 
top institutions and government agencies have recognized since the nineties that 
computer science has its own modes of operation not exactly amenable to the eval-
uation criteria of physics or mathematics. For example, whether that is healthy or 
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not, some conferences are more selective and prestigious than most journals. In Eu-
rope the battle still had to be fought, and our report, I believe, played a big role in 
explaining how to assess CS research. (The battle is ever recommenced. At the time 
of this writing, several countries, including major ones, are destroying any hope of 
ever joining the top ranks of research in CS and IT — and I do mean destroying — 
by imposing the Scopus or Web-of-Science h-index as the measuring stick. Good-
bye, my friends. Serious institutions in scientifically leading countries know better.) 

One of the most visible Informatics Europe services is the annual Best Practices 
in Education award, which recognizes innovative approaches to teaching9. 

Yet another Informatics Europe initiative took part in concert with ACM Eu-
rope, a new section (launched at ECSS 2009 in Paris)  of the US-based ACM. The 
topic of our first joint effort was the teaching of informatics in schools. The (some-
times animated) discussions led to a report under the leadership of the committee’s 
head, Walter Gander of ETH, and with my participation [190]. It makes a clear case 
for introducing informatics at the secondary and a primary school levels.  Shortly 
before our report appeared, a British effort for the Royal Society, directed by Simon 
Peyton-Jones, made a similar point; the idea was in the air. One of the contributions 
of the ACM-Informatics Europe work was to emphasize the distinction between 
teaching “digital literacy” (word processing and the like) and teaching informatics 
as a scientific discipline. The public and political decision-makers often confuse the 
two. Teaching teenagers to browse the web, hardly necessary anyway, is not the 
same as teaching the seminal concepts of informatics, what Jeannette Wing (a key-
noter at the 2007 Berlin ECSS) famously calls “computational thinking”. 

Besides such concrete results, Informatics Europe produced an immense 
amount of good will, collaboration (including between the Western and Eastern 
sides of the continent) and friendship. One of the most rewarding parts of the expe-
rience for me was the ability to step out at the expiration of my last term as president, 
let others take over a solid, stable and growing organization, and from the sidelines 
watch them take it to new heights. 

2.2 Conferences organized 

A partial list of conferences we organized: 
 We organized the first ECSS conferences (European Computer Science Sum-

mit) of Informatics Europe, just discussed: Zurich 2005, 2006 and 2008; Berlin 
2007 with Hans-Uli Heiss; Paris 2009 with Christine Choppy; Prague 2010 
with Pavel Tvrdik, 

 I had run the TOOLS conference series (Technology of Object-Oriented Lan-
guages and Systems) since 1989, with sessions in Europe (led by Jean Bézivin), 
the US (Santa Barbara), Australia (TOOLS PACIFIC, Sydney or Melbourne) 
plus a couple in China and Eastern Europe.  TOOLS played an important role 

                                                            
9 I have a weakness for the project that received the 2013 award: a collection of videos avail-
able on YouTube (www.youtube.com/user/AlgoRythmics), illustrating the main sorting al-
gorithms in the form of Central-European dances. See e.g. the Quicksort dance. 
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in the development of object technology, providing a friendly and bias-free en-
vironment for discussion of new ideas; many important concepts, such as de-
sign patterns, were first presented at TOOLS. The most prestigious scientists 
and technology leaders gave keynotes, including Adele Goldberg, Alan Kay, 
Philippe Kahn, Oscar Nierstrasz, Robin Milner, Tony Hoare, Eric Gamma, 
Dave Thomas, Ivar Jacobson, David Parnas and many others.  We continued 
the conference series at ETH, organizing several sessions in Zurich, as well as 
one in Malaga, courtesy of Antonio Vallecillo, and one in Prague, courtesy of 
Pavel Tvrdik. The Prague conference in 2012 was number 50; I felt it was time 
to declare victory —the title of the conference was “The Triumph of Objects” 
— and end the series on a high note. 

 In its last years the quality and friendly atmosphere of TOOLS attracted a grow-
ing set of satellite conferences. One of them was TAP, Tests And Proofs. Re-
alizing that the old fight between dynamic and static verification was increas-
ingly turning into complementarity, Yuri Gurevich and I started TAP in 2007 
[68] in association with TOOLS. It has become an important annual event and 
continues today in another setting. 

 With our growing interest in distributed development, we started, also in 2007, 
and also as a satellite event to TOOLS, the SEAFOOD conference series, Soft-
ware Engineering Approaches For Offshore and Outsourced Development. It 
ran through several successful sessions, with Springer proceedings [72] [103] 
[107] [130]. Playing our part in limiting conference inflation, we felt that 
SEAFOOD’s mandate could safely be handed over to the International Confer-
ence on Global Software Engineering, which had been started independently 
with IEEE support and in which we also participated actively (we received 
three successive Best Paper awards at ICGSE, 2012 to 2014, and Martin Nordio 
was PC chair in 2015). 

 Other conferences co-located with TOOLS (but organized by others) included 
the International Conference on Model Transformation (ICMT) and Software 
Composition. 

 A “Future Of Software Engineering” symposium, FOSE, was held in 2010, 
with speakers by invitation: David Parnas, Barry Boehm, Manfred Broy, Pat-
rick Cousot, Erich Gamma, Yuri Gurevich, Michael A. Jackson, Rustan Leino, 
David Parnas, Dieter Rombach, Joseph Sifakis, Niklaus Wirth, Pamela Zave 
and Andreas Zeller. Sebastian Nanz edited the proceedings, published as a 
Springer book. 

 We organized the first VSTTE conference (Verified Software: Tools, Technol-
ogies, Experiments), the embodiment of Tony Hoare’s Verified Software 
Grand Challenge ([283], see section 10.1) in 2008, leading to the first VSTTE 
volume co-edited with Jim Woodcock [86]. The VSTTE series has become one 
of the principal conferences in software verification. 

 With Nadia Polikarpova I organized the 2013 European Software Engineering 
Conference (ESEC-FSE, with the Foundations of Software Engineering Con-
ference) in Saint Petersburg. It remains the only major international software 
engineering conference ever organized in Russia. 
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 In 2015, I was in charge, together with my colleague Walter Gander and with 
the help of Chris Poskitt and Jiwon Shin, of a symposium organized by the 
computer science department in honor of Niklaus Wirth’s 80th birthday. The 
speakers, all by invitation, were Vint Cerf, Hans Eberlé, Michael Franz, me, 
Carroll Morgan (on the later developments of the program-refinement idea pi-
oneered by Wirth), Martin Odersky, Clemens Szyperski and Wirth himself. A 
memorable event. 

 We organized various Eiffel-related meetings, in particular several workshops 
on SCOOP and concurrency, with colleagues such as Jonathan Ostroff and 
Richard Paige, and a 2012 “Workshop on Advances in Verification for Eiffel” 
(WAVE). 

 With Richard Soley, I helped start Ivar Jacobson’s SEMAT initiative (Software 
Engineering Methods And Tools, I think I came up with the name), and with 
the help of Carlo Furia organized the first meeting. I stepped out of SEMAT 
after a while; see 8.6. 

 Jerzy Nawrocki from Poznan asked me to help grow the Polish software engi-
neering conference to which I had given a keynote in Warsaw in 2006. I sug-
gested to broaden the scope to the whole region, leading to the CEE-SET (Cen-
tral and East European Conference on Software Engineering Techniques) 
series. I have also been associated for many years with a conference bearing a 
similar name but based in Russia, CEE-SECR (Nick Puntikov, Andrey 
Terekhov), where I sponsor the best-paper award. 

 For some years we (particularly Bernd Schoeller) organized a regular seminar, 
FATS (Formal Approaches To Software), with both internal speakers and 
guests (se.ethz.ch/old/events/fats/).   

 I organized four meetings of the IFIP WG2.3 (Programming Methodology) 
working group: Prato, Italy in 2004 (with Karine Arnout), Santa Barbara in 
2011, Saint Petersburg in 2013 (with Nadia Polikarpova), Villebrumier in 2016. 

 As chair of IFIP TC2 (Technical Committee on Programming) I hosted a meet-
ing at ETH. 

2.3 LASER summer school 

Instructed by the experience of others’ summer schools10, we decided to organize 
our own starting in 2004: the LASER summer school (Laboratory for Applied 
Software Engineering Research), held every year except 2016 in Elba Island, Italy, 
with prestigious speakers including four Turing award winners (not counting future 
ones). LASER has become a well-known event.  The themes and speakers (in addi-
tion to me, since I have lectured in every session) have been:    
 2004 – Practical Techniques of Software Quality: Jean-Raymond Abrial, Ernie 

Cohen, Erich Gamma, Carroll Morgan, Pamela Zave (this kick-off session set 

                                                            
10 Particularly two in which I had lectured: the venerable Marktoberdorff summer school in 
Germany, created by F.L. Bauer (I was a student in 1975) and continued by Manfred Broy 
then our former ETH colleague Alexander Pretschner; and Alfredo Ferro’s long-running Lip-
ari summer school, organized in the year I was there by Egon Börger. 
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the tone for the entire series by including speakers from both the practical and 
theoretical schools  of software engineering). 

 2005 – Software engineering for concurrent and real-time systems: Laura Dil-
lon, Jay Misra, Amir Pnueli, Wolfgang Pree, Joseph Sifakis (the first of several 
sessions devoted to concurrency). 

 2006 –  Practical Programming Processes: Ralph-Johan Back (refinement), Mi-
guel de Icaza (agile), Erik Meijer (agile),  Mary Poppendieck, (Lean), Andreas 
Zeller (debugging) (another striking combination of theoretical and practical 
contributions). 

 2007 – Applied Software Verification: Thomas Ball, Gérard Berry, C.A.R 
Hoare, Peter Müller, Natarajan Shankar (star speakers on the state of the art in 
program verification). 

 2008 – Concurrency and Correctness: Tryggve Fossum, Maurice Herlihy, 
C.A.R Hoare, Robin Milner, Peter O’Hearn, Daniel A. Reed (concurrency 
again, with a new set of top contributors to the field).  

 2009 – Software Testing: The Practice And The Science, Alberto Avritzer, 
Michel Cukier, Yuri Gurevich, Mark Harman,  Tom Ostrand, Mauro Pezzè, 
Elaine Weyuker (a review of testing techniques from a diverse range of view-
points). 

 2010 – Empirical Software Engineering: Victor Basili, Joshua Bloch, Barry 
Boehm, Natalia Juristo, Tim Menzies, Walter Tichy (empirical software engi-
neering has grown explosively in recent decades, and the school gathered some 
of the people who created and developed the discipline). 

 2011 – Tools for Practical Software Verification: Ed Clarke (model checking), 
Patrick Cousot (abstract interpretation), Patrice Godefroid (model checking), 
Rustan Leino, (Boogie)  César Muñoz (PVS), Christine Paulin-Mohring (Coq), 
Andrei Voronkov (Vampire) (a dazzling review of verification tools). 

 2012 – Innovative Languages for Software Engineering: Andrei Alexandrescu 
(D), Roberto Ierusalimschy (Lua), Ivar Jacobson (UML), Erik Meijer (MSR 
languages),  Martin Odersky (Scala), Simon Peyton-Jones (Haskell), Guido van 
Rossum (Python) (this session with the “rock star” programming language de-
signers was the all-time best-seller). 

 2013 – Software for the Cloud and Big Data: Roger Barga, Karin Breitman, 
Sebastian Burckhardt, Adrian Cockcroft, Carlo Ghezzi, Anthony Joseph, Pere 
Mato Vila. 

 2014 – Leading-Edge Software Engineering: Judith Bishop, Harald Gall, Dan-
iel Jackson, Michael Jackson, Erik Meijer, Gail Murphy, Moshe Vardi,. 

 2015 – Concurrency: the Next Frontiers: Manfred Broy, Maurice Herlihy, Jeff 
Kramer, Jayadev Misra, David Parnas (another “rock star” session, preceded 
by a meeting of the scientific advisory board of the CME project (section 11), 
whose members were also the LASER speakers). 

 2017 (forthcoming at the time of this writing) –  Software for Robotics: Davide 
Brugali, Rodolphe Gelin, Ashish Kapoor, Nenad Medvidovic, Issa Nesnas. 

From 2017 on, the newly established nonprofit LASER Foundation has taken over 
the organization of the school. 
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2.4 Guests 

In addition to the speakers at LASER and the other conferences listed above, we 
had a constant influx of invited talks, some in the computer science department’s 
weekly seminar and others just hosted by us. One of the sources of talks, particularly 
in later years, was thesis defenses: the thesis committees included many prestigious 
international colleagues and whenever possible we took advantage of their presence 
in Zurich to have them give a talk. We had too many guest speakers to list them all, 
but a few that come to mind are Gilles Barthe, Jean Bézivin, Gérard Berry, Armin 
Biere, Roderick Bloem, Manfred Broy, Marsha Chechik, Patrick Cousot, Miguel 
De Icaza, Tom De Marco, Brian Fitzgerald, Patrice Godefroid, Michael Gordon, 
Adele Goldberg, Susanne Graf, Yuri Gurevich, Reiner Hähnle, Mark Harman, Jean-
Marc Jézéquel, Joseph Kiniry, Rustan Leino, Carroll Morgan, Erik Meijer, Scott 
Meyers, Jay Misra, Hausi Müller, Jonathan Ostroff, Joel Ouaknine, Richard Paige, 
Matthew Parkinson, David Parnas, Mauro Pezzè, David Redmiles, Martin 
Robillard, Bill Roscoe, Emil Sekerinski, Natarajan Shankar, Mark Shapiro, James 
Whittaker, Jim Woodcock, Andreas Zeller. 

For the CME Advanced Investigator Grant project of the European Research 
Council (section 11), we established a Scientific Advisory Board consisting of 
Manfred Broy (Munich), Maurice Herlihy (Brown), Jeff Magee (Imperial College), 
José Meseguer (Illinois), Jayadev Misra (Austin), David Parnas (Limerick), Bill 
Roscoe (Oxford) and Jeannette Wing (Microsoft). The Board held two meetings, 
one in Zurich in March of 2014, accompanied by seminars by members of the 
Board, and the other in Elba , on the occasion of the LASER summer school where 
the members were invited to speak, in September of 2015. 

2.5 Journal of Object Technology 

The Chair created the Journal of Object Technology (JOT) (http://jot.fm) and was 
for many years its publisher. Before JOT, the Journal of Object-Oriented Program-
ming (JOOP), started when object-oriented programming first became widely 
known after the first OOPSLA conference in 1987, played a major role in the de-
velopment of the field. I had participated in JOOP from the beginning, publishing 
numerous articles and columns and sitting on its editorial board. JOOP was part of 
a commercial enterprise, sold around 1999 to another company which promised to 
keep the journal alive but soon dumped it, at just about the time I arrived at ETH. 
The disappearance of JOOP left a gap which had to be filled; I was able to use the 
resources of the chair to start JOT. We (particularly Susanne Cech and Bernd 
Schoeller) put in place editing tools which enabled us to publish the journal online, 
with a pleasant graphic design and templates enabling the authors to do much of the 
job; when I advertised for an administrative assistant I specified that half of the 
position would be devoted to putting together JOT, and indeed both Ruth Bürkli 
and Claudia Günthart served as editorial assistants for JOT. I was the publisher and 
Richard Wiener from the University of Colorado was the editor-in-chief, as he had 
been for JOOP. Since 2002 JOT has served as an important resource for the pro-
gramming community. 
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There is a codicil to the JOT story. With the bureaucratization of science that 
defines the evolution of the academic community in this century, authors increas-
ingly told us that endorsement of publication venues by the Thomson-Reuters Web 
of Science (WoS) database was essential to their careers. I submitted JOT to WoS, 
a year-long process that ended with a negative answer, frustratingly since the pro-
cess is opaque, and inexplicably since JOT was clearly better than many computer 
science publications accepted by WoS. This rejection was a significant blow to the 
further growth of the journal. In 2010, an enthusiastic group of colleagues led by 
Oscar Nierstrasz from the University of Berne took over from us, introducing a new 
formula and a different reviewing process. The journal continues to enjoy a great 
reputation, at least among the cognoscenti since it is still lacking WoS recognition. 
A pioneering feature of JOT is that it has always been a truly “free” and “open” 
journal; not in the deceptive sense of “golden open access”, which is simply a dif-
ferent business model transferring the costs to taxpayers, but free to both authors 
and readers thanks to clever use of technology. Initially, as noted, the resources of 
the Chair were needed, but the new team as able to avoid even this small institu-
tional support by streamlining the publishing process further.  

2.6 Publications 

A list of the Chair’s publications appears at the end of this article. During the 
Chair’s existence I published two single-author books: Touch of Class (Springer, 
2009) [110], the introductory programming textbook resulting from my teaching the 
Introductory Programming class, and Agile! The Good, the Hype and the Ugly 
(Springer, 2014) [228]. Carlo Furia was one of the authors of a book on Modeling 
Time in Computing (Springer, 2012). Sebastian Nanz, as noted, edited the FOSE 
book. Manuel Mazzara edited the PAUSE proceedings (this volume). We (in each 
case one or more of Carlo Furia, Sebastian Nanz, Martin Nordio, Manuel Oriol and 
I, sometimes with external co-editors) edited some 20 proceedings volumes, most 
of them with Springer: TOOLS, SEAFOOD, TAP, LASER, VSTTE. 

As to conferences organized by others, we published in just about every ma-
jor international conference on software engineering, programming languages, ob-
ject-oriented programming, robotics software, empirical software engineering and 
computer science education. Best paper awards include ICGSE as mentioned, ICST 
(International Conference on Software Engineering), Intelligent Environments, 
ESEM (Empirical Software Engineering and Measurement). 

Keynote invitations include ICSE (International Conference on Software En-
gineering), ICSE Education track, ECOOP (European Conference on Object-Ori-
ented Programming, 2005 and 2015), the software engineering education confer-
ences of Spain, Hungary, Israel, Russia and France, IEEE education conference 
(CSEE&T, twice), ETAPS, Memocode, CBSE (Component-Based Software Engi-
neering), PSI (Ershov conference) and others. Several summer schools 
(Marktoberdorf twice, Turku, Lipari etc.). 
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3 Courses taught 

Our Chair was responsible for many of the software courses offered by the ETH 
computer science department; see the close-to-full record at se.ethz.ch/courses/.  By 
far the most work and passion went to the introductory programming course (2004-
2015), to which this article devotes a separate discussion (section 4). 

3.1 Environment constraints 

A word about the administrative context, particularly in comparison with US prac-
tice. In the period covered, the ETH went from a five-year “Diplom” degree to the 
so-called “Bologna” system of a three-year Bachelor’s and a two-year Master’s de-
grees. In most respects this was a theoretical change only, since we hastened to tell 
the students that only the master’s had any value11. So the typical US/UK/Australia 
distinction between undergraduate (bachelor’s) and graduate (master’s, PhD) 
courses does not apply. Instead, there are courses, essentially obligatory, in the first 
two years (known as “Grundstudium” or ground studies), and elective ones in the 
remaining years. PhD students must fulfill some (light) course requirements but 
there are no specific PhD courses. 

The “move to Bologna”, little more than a sleight of hand for our own students, 
did have a significant effect: at the master’s level it led to an influx of students from 
other institutions, attracted by the reputation of ETH, since the Bologna system en-
courages so-called “student mobility”. As a result the makeup of a typical post-
Bologna 4-th or 5-th year class at ETH is highly diverse, in contrast with the homo-
geneous nature of the mostly Swiss-German student body in the first two years. 
Diversity makes for fun but the change raised pedagogical challenges, since we 
could no longer assume anything about the master students’ prior knowledge12. 

3.2 Software architecture engineering 

Back in 2001-2002 there was little object-oriented content in the existing curricu-
lum and, even more surprisingly, no actual software engineering course, the closest 
being the 2nd-year“Programming in the Large” course. I gave some guest lectures 
on OO programming in Moira Norrie’s “Programming Languages Paradigms” and 
was soon asked to take over “Programming in the Large”, which I turned into a 
course on software architecture, covering in particular: 

 Abstract data types (as the theoretical basis for object-oriented program-
ming, using material from my earlier “OOSC” book [299]). 

 Design by Contract. 
 Design Patterns, covering most of the classic Gamma et al. patterns, with a 

strong emphasis on equipping patterns with contracts. 

                                                            
11 I was in favor of a true move to separate degrees, but in practice very few students, even 
in a discipline characterized by the insatiable thirst of the IT industry for software engineers, 
stop at the bachelor’s. 
12 Another technical point: I refer to “fall-semester” and “spring-semester” courses even 
though up to 2006 we had different semester dates with a “winter” and a “summer”.  
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 Object-oriented topics (after a year or two no one could complain any more 
about insufficient coverage of OO at ETH). 

 A course project using Eiffel. 
 A sprinkling of non-programming software engineering topics such as pro-

ject management, metrics, testing. 
When a reform of the CS curriculum in 2004 led to the replacement of “Program-
ming in the Large” by “Software Architecture”, the content was ready. I was re-
luctant about the next transformation, ca. 2009, into “Software Engineering and 
Software Architecture”, since I felt the topics required two separate courses; but in 
practice it was not hard to broaden the scope of the existing course. 

3.3 Software verification 

We introduced several new electives. Since the very beginning I taught a Software 
Verification course, which started out as “Trusted Components” (the new title was 
used from 2008 on). Software Verification was a survey course, increasingly bene-
fitting from the expertise of the co-lecturers (Till Bay, Manuel Oriol, Carlo Furia, 
Sebastian Nanz, Chris Poskitt, Đurica Nikolić) in areas such as abstract interpreta-
tion, other static analysis methods, model checking and real-time systems. It made 
it a matter of principle to cover not only static verification techniques but also test-
ing (with the help of Ilinca Ciupa, Andreas Leitner, Yi Wei, Yu Pei and the Au-
toTest tool they were developing, see section 10.3). It became increasingly exciting 
in the last years as our own AutoProof proof system (section 10.7) matured and we 
could use it for ambitious course projects involving the verification, by students, of 
significant programs. 

3.4 Concurrency 

In the same spirit, the spring-semester Concepts of Concurrent Computation 
course, starting as a seminar in 2005, covered major approaches to concurrent pro-
gramming and increasingly used our own SCOOP development for the project. I 
initially set up the course with Piotr Nienaltowski; then Sebastian Nanz took on a 
key role as co-lecturer, joined in the last years by Chris Poskitt. The predictably 
tentative nature of the first SCOOP implementations made the project somewhat of 
a challenge for the first generations of students; with the impulse of the CME project 
the later versions made advanced concurrent programming projects possible. 

3.5 DOSE 

As explained in section 6, we developed an increasing interest in issues of offshore, 
outsourced, and more generally distributed software development; “distributed” in 
the sense of projects whose developers are spread over several locations, often on 
different continents. The fall-semester course that finally became the Distributed 
Software Engineering Laboratory started in 2004. The succession of names reflects 
the broadening of its scope: “Offshoring and Software Engineering”, then “Soft-
ware engineering for outsourced and offshore development” from 2005, then “Dis-
tributed and Outsourced Software Engineering” (DOSE) from 2008 to 2012. The 
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course covered generic software engineering topics — as noted, there was no stand-
ard software engineering course — but focused on the issues of distributed devel-
opment. We had to improvise much of the content since there was little literature 
on the topic, and no textbook. Peter Kolb, with his industry experience and particu-
larly his practice of CMMI, was co-lecturer right from the start. 

In the 2007 session, we decided to practice what we were teaching and turn the 
project into a distributed development effort between several student teams (in most 
years, three) from different universities. The number of universities involved in any 
given year reached 12, with some 20 different institutions over the years. Some of 
the mainstays were Politecnico di Milano (Elisabetta di Nitto, Raffaela Mirandola, 
Giordano Tamburrelli, Carlo Ghezzi), which quickly became co-leader with us; 
University of Rio Cuarto, Argentina (Nazareno Aguirre); Polytechnic University of 
Madrid (Natalia Juristo); PUCRS in Brazil (Rafael Prikladnicki); University of 
Nijny Novgorod (Victor Gergel); and other universities in Switzerland, Russia, 
China, Korea, Vietnam and India. As one may guess, the logistics was a challenge; 
Martin Nordio was the one who made the whole thing work, assisted in various 
years by Roman Mitin (then a PhD student of Jürg Gutknecht), Julian Tschannen, 
and Christian Estler whose Codeboard development (section 5) was closely con-
nected with the course. 

DOSE provided many moments of excitement and many of anguish, and, as a 
living experiment in distributed development, material for a whole set of joint pa-
pers. Three typical anecdotes: 
 We carefully tracked commits by the various groups to the development serv-

ers. Seldom have curves be more flat in ordinary times, and more stratospheric 
in the hours, minutes and seconds before the strictly enforced deadlines. 

 The teaching team took care of dividing the work between the three teams of 
each group: typically, user interface, business logic (e.g. game logic since the 
projects often involved games) and database. The first time, we encouraged 
them to use Design by Contract mechanisms. Encouragement does little, so 
some groups ended up with date modules that did not check for invalid dates 
such as 31 September (that’s the job of the clients, of course), and client mod-
ules that assumed the dates they were getting would be meaningful (that’s the 
job of the date module, of course). We learned our lesson: in subsequent years 
the use of contracts to specify and protect APIs was no longer optional. 

 Those of us who thought they had seen all possible student excuses for missed 
deadlines were in for a bit of cultural diversity, as in “last night my Internet 
connection was down because the cable was eaten by a drunken bear”. 

Each session of the course went with its own drama, with the initial euphoria of 
students meeting new friends from the other end of the world, followed by despair 
and noises of dropping out at the time of the first code deliveries, and a generally 
happy resolution when they finally were able to deliver a result. 

3Many former students have told us how useful a preparation the course was 
for the challenges of software development in companies. 
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3.6 EiffelStudio projects: open-sourcing 3 million lines of code 

Eiffel Software’s EiffelStudio environment was initially closed-source. We decided 
to make it open-source in 2006, and in a lecture of the 2006 Software Architecture 
course I clicked the “big red button” on a slide: 
 

 
 
revealing the password for the Subversion repository. Much of the information 
about Eiffel is nowadays at eiffel.org [280]. Along with Emmanuel Stapf from Eif-
fel Software, Till Bay had been arguing for that change, and I took up his suggestion 
of letting ETH students loose into the 3 million lines of EiffelStudio code. 

From that semester on, students started (initially as part of the Software Archi-
tecture course project) making interesting contributions, proving that with strong 
information hiding, contracts and other Eiffel properties it is possible for a new-
comer to dive into a complex software system and zoom in on the relevant parts. 

Every semester (not just every year) since Fall 2006, we ran the “Software En-
gineering Laboratory: Open-Source EiffelStudio” project course, in which students 
contributed extensions, often taken over for improvement by other students in later 
semesters. Some important components of today’s EiffelStudio, such as the “Eiffel 
Inspector”, an extensive style checker and static analyzer, arose from such projects. 

3.7 Projects 

The EiffelStudio projects were just a part of numerous student projects at all levels. 
All PhD students and other researchers took part; a particular mention is due to Till 
Bay, who started the EiffelMedia project and had several dozen students contrib-
uting pieces (sound, video, advanced user interfaces), on which several of our 
courses relied. Michela Pedroni was another large provider of projects in connection 
with TrucStudio (section 5) and other pedagogical initiatives. 

In the early years the semester dates allowed us to give optional student projects 
over the break; many students, including first-semester students, rose to the chal-
lenge and produced impressive games using EiffelMedia. I was always envious of 
the impressive student presentations in Mechanical Engineering, showcasing robots 
and other stunning devices; now we had our opportunity to make our students’ work 
visible too and I booked the central hall of the ETH:  
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 Today using game development for teaching is common in universities includ-

ing ETH (the CS department has  a full program of game programming), but I be-
lieve we were the first to ask students to produce games on a large scale. Some of 
the games they developed were particularly impressive and sophisticated. 

3.8 Language courses 

Because I used Eiffel in my programming courses, I felt I had a responsibility to 
provide language-focused courses on other languages. I would have liked to offer a 
full “languages in depth” series covering all major languages, but that was too am-
bitious. C++ was addressed by a course on generics taught by Eugene Zouev (in 
Jürg Gutknecht’s group). We set up a Java course and a C# course, soon merged 
into “Java and C# in depth”, and taught by a team that included Manuel Oriol, Carlo 
Furia and Marco Piccioni. 

I also offered an “Eiffel in depth” course focused on the language itself, as 
opposed to the courses using Eiffel just as a tool to introduce general programming 
and design concepts. 

3.9 The Robotics lab 

A course that generated a level of challenge and excitement reminiscent of DOSE 
(or of Introduction to Programming as discussed next) was the Robotics Program-
ming Laboratory (RPL). We taught it three times, in the Fall semesters 2013-2015, 
under the leadership of Jiwon Shin and with the extensive involvement of Andrey 
Rusakov as assistant, in connection with the development of our robotics software 
activities (section 12). Everyone in universities nowadays praises interdiscipli-
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narity:  do away with discipline and department boundaries! RPL was an interdis-
ciplinary course, and showed that the practice is not so easy. It was open to students 
from computer science, mechanical engineering and electrical engineering (with ac-
tual proportions of about 40%, 40% and 20%), and we had to contend with different 
regulations in each department. (In the end we gave up trying to define a single 
scheme, letting each department, for example, decide how many units the course 
was worth for its own students —  for the same amount of work! —  based on its own 
practice.) The pedagogical challenges were interesting: computer science students 
had to be taught how to deal with real, physical hardware, and find out, for example, 
that a robot that you sent to point [x, y] is not necessarily, even in the absence of 
bugs, exactly at [x, y]. In their mindset, either there is a bug or the robot must be 
right where it is supposed to be. To mechanical engineering students, we had to 
teach the essentials of programming. The course as a whole is a combination of 
programming techniques,  software engineering and architecture (particularly de-
sign patterns), basics of robotic hardware, and robotics algorithms. We found few 
equivalents when looking at other institutions: there are lots of robotics courses, but 
not many focused on the software aspects. 

Like DOSE, RPL is project-based. The project consists of programming suc-
cessively harder tasks for a Thymio robot, an EPFL design intended as an educa-
tional toy. Since the limited Thymio sensors  does not suffice for the project’s ad-
vanced tasks such as obstacle avoidance, Rusakov concocted some hand-attached 
additions: 

 
 
Software development in the course uses the Roboscoop framework that we devel-
oped (section 12) and a mix of other Eiffel and C++ tools. 

RPL is a demanding course. Since the number of seats was limited to 16 and 
we had a waiting list, we tried to spot early those students who would later give up, 
so as to free positions for others. The first session was cumbersome for students as 
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well as instructors because when leaving the lecture room they had to unmount and 
remove the whole setup. In the next two years we managed to secure a suitable room 
just for us; the atmosphere of the course improved considerably, with the room be-
coming a mini-lab, equipped with a coffee machine and such, where students could 
work at any time of day or night. 

The students had a hard time, but increasingly succeeded in solving the ad-
vanced tasks of the project, and those who completed the course told us they learned 
a lot. Several went on to a robotics job. We did not just rely on such informal feed-
back but, as with other courses, published an article about the pedagogical experi-
ence [226]. 

3.10 Other courses 

Among other courses (the list given here is not exhaustive, see the more extensive 
record on the course page cited), we ran multiple times, initially with my colleague 
Daniel Kroening (now at Oxford) and then just by ourselves, the “Software Engi-
neering Seminar”, required of all master’s students in the software engineering 
track, in which they study and present a research paper from the recent literature. 

3.11 Teaching and research 

A general observation about our courses is that (in line with the Humboldt idea of 
a research university) we always thought of research and education together. We 
were fortunate that all the courses we taught (I cannot think of any exception!) were 
courses we wanted to teach. We constantly included elements of our research into 
our courses, including, as will be noted, in the very first semester; the other way 
around, we used the observation of students’ programming in our courses to inform 
our research, publishing (more, I think, than other groups in the department) in CS 
education conferences and journals. The DOSE course alone yielded numerous re-
search papers [78] [105] [124] [148] [157] [171] [198] [222] [225], many of them 
with colleagues from other institutions collaborating in the project, as described 
earlier. 

Such use of student observation for research requires, of course, great care. 
There are ethical issues involved: students are not guinea pigs; the purpose of a 
course is not to help the professor’s research but to educate students. Never should 
the first goal damage the second one. For example, it’s OK to study how well stu-
dents perform under method A or method B, but you cannot ask one half of the class 
to use A, the other B, and look at the results: if one is indeed better, you are putting 
the other group at a disadvantage! Similarly, if you are testing the students, the test 
should have a pedagogical value for them: it cannot be just for your own enlighten-
ing. But again it can be for both. An example trick we devised was to have a group 
learn A then B, with tests (interesting for them) in-between and at the end, and the 
other group do the same with B then A. If each step is short, say an hour of instruc-
tion, we reasoned that any pedagogical harm produced by following the less ideal 
of these two orders (assuming one is indeed better) would be minuscule. 

An example of such a situation occurred when we tried to find out if our 
SCOOP method of concurrency (section 11) was, as claimed, “easy to learn”. We 
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were introducing some concurrency topics into the Software Architecture course, 
which provided an ideal testbed to assess the ease of learning of SCOOP versus 
Java Threads, the other mechanism we were teaching. But we had to be doubly 
cautious, not only because of the ethical and pedagogical considerations just men-
tioned but also to guard against our own bias, since we could obviously be suspected 
of wanting SCOOP to be easier to learn. Sebastian Nanz, Michela Pedroni and I 
thought very hard about how to devise a study that would guard against this risk. 
The basic idea was to put all the possible biases against us. For example, students 
were new to SCOOP but many of them already had had some Java Threads expo-
sure, which went in the right direction. We made sure that the Java concepts were 
described in a clear tutorial and so on. We involved, for a control study, Faraz 
Torshizi from York University in Canada, where students, unlike ours, had only 
limited Eiffel experience. With the deck stacked against it, SCOOP still won by a 
small but significant margin. We were particularly pleased that the resulting paper  
[152], which explained in detail the methodological challenge and how we ad-
dressed it, won the best paper award at the Empirical Software Engineering and 
Measurement symposium (ESEM 2011) and was extended into a journal article 
[192]. 

Course-based studies such as those leading to the DOSE and SCOOP learna-
bility papers were a major step in a significant evolution of our group’s research, 
worth mentioning here even though the present section is about teaching (research 
proper starts with section 5). Some software engineering research is concept-driven; 
that had largely been my background. In the past two decades, more and more soft-
ware engineering work has been empirical, based on the quantitative study of soft-
ware artifacts and processes using methods (in particular statistical methods) from 
the natural sciences. Starting with Manuel Oriol, our great postdocs, plus collabo-
rators from other groups such as Alexander Pretschner, had extensive experience in 
the field and drew us to include ever more empirical backing in our work. A se-
quential reading of the bibliography (which is in approximate chronological order) 
shows this growing role, over the years, of empirical elements in work that origi-
nally was mostly concept-driven. 

4 Teaching introductory programming 

Introduction to Programming” is a first-semester course, compulsory for all entering 
computer science students, and part of the first-year exam which determines 
whether students will be allowed to continue. Not long after I started at ETH, the 
department head asked me if I would take over the course and teach it using Eiffel. 
I did not expect that request, for three reasons: 

 ETH rules require the use of German in first- year teaching (with progres-
sive introduction of English in the second year and its sole use at the mas-
ter’s level). Since I did not have a level of German allowing me to teach, I 
had considered such courses beyond my realm. (Prior to joining ETH, I 
had participated in a conference panel with the future colleague then in 
charge of the course, who joked that it was safe from me for that reason.) 
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 Coming from industry, I had little recent experience teaching large under-
graduate courses. 

 I did not intend to tread into the respected ETH tradition of using Wirth-
designed languages: Pascal in the seventies, then Modula-2, then Oberon. 

 I did not hesitate long, however, particularly after a courtesy check with the 
holders of that tradition confirmed I would not cause offense provided I waited a 
year to let the current holder teach the course one more time. The one-year respite 
was of great benefit. On the matter of German, more below (4.2). 

The design and delivery of the course mobilized con-
siderable energy within the Chair; most PhD students and 
postdocs served at some time or other as teaching assistant, 
and the teaching effort influenced several of our research 
developments. We published extensively on the correspond-
ing pedagogical issues, particularly in ACM SIGCSE and 
ITiCSE and IEEE CSEE&T, the main venues for computer 
science education. The course resulted in a textbook, Touch 
of Class [110], which other universities have also adopted.  

4.1 Background 

My interest in the topic of how best to teach programming predated my ETH as-
signment. Years earlier, barely out of school myself, I was put in charge of a uni-
versity-level introductory programming course, using Algol W and some dose of 
object-orientation, and published an article about our pedagogical approach [285]. 
More recently, I had had many discussions with academic colleagues using Eiffel 
in their courses, such as Jonathan Ostroff at York University in Canada and Chris-
tine Mingins at Monash University in Australia13. I had myself devoted considerable 
thought to the use of OO techniques and Design by Contract in introductory pro-
gramming, developing the concept of “inverted curriculum”, a name taken from a 
comparable approach to the teaching of hardware design, by Bernie Cohen of Lon-
don’s City University. My earliest papers on the topic [295] were published in 1993, 
and very much described the approach that would be applied at ETH, but I had 
written them from the comfortable position of someone in industry who can safely 
tell colleagues in academia what to do, without having to suffer from the results. 
(Usually, it is the other way around.) Now I had to apply my own precepts. 

I also had the opportunity to state these precepts. Sometime during my not-
quite-standard hiring process at ETH14, someone must have panicked and asked 
                                                            
13 The Touch of Class textbook cited below has a fuller list of acknowledgments. See the end 
of the “Preface for Instructors” at touch.ethz.ch.  
14 ETH professors are selected by the president. There is a committee, but its role is advisory 
and the president can short-circuit it, as happened in my case. It is clear from my later expe-
rience as a member of numerous hiring committees that if I had been subjected to the standard 
process myself I would almost certainly have failed it. I knew (at least in some way) how to 
do teaching and research, the main duties of a professor, but I was not a member of the caste 
and did not know the codes. An academic job interview is a ritual; everyone in the business 
knows how to answer the ritual questions, but I did not and it is likely that I would have given 
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whether with my limited professorial background I had any concept of teaching. I 
was asked to produce a “teaching statement”. Based on the principles that (1) if you 
have a chore to perform you might just as well do the best job you can and (2) even 
if the result is intended for a small local audience, in this case the department man-
agement, you might just as well be generous and let the whole world benefit from 
it, I turned that pensum into an article for IEEE Computer, “Software Engineering 
in the Academy”, my first publication as a member of ETH and the first entry of this 
article’s bibliography [1]. 

I taught the “Introduction to Programming” course without interruption in the 
fall semesters of 2003 to 2015, to some 5000 students altogether. ETH has good 
resources and organization, which enabled us to develop a strong infrastructure, in 
particular a dedicated group of assistants for teaching the lab sessions, made in part 
of PhD students of the Chair, who from year to year accumulated experience and 
training materials so that it was easy to accommodate newcomers. A weekly team 
meeting made it possible to check the progress of lectures and lab sessions and take 
the pulse of the students through the teaching assistants. More direct contact is also 
useful; in the later years I took to the habit of systematically visiting lab sessions 
myself. First-year compulsory courses are, as noted, under particular scrutiny be-
cause the stakes for the students. They require a well-oiled machinery, constant at-
tention to mishaps that could lead to crises, and a quick reaction when they arise.  

4.2 An expensive way to learn a foreign language15 

As to the language of instruction, what German I had consisted mostly of my effort 
as a 12-year-old to learn enough German (and Italian) vocabulary to get the gist of 
Mozart’s operas and Schubert’s Lieder. To ask for directions in the streets of Zurich, 
I could use16  

Ist das denn meine Strasse? 
O Bächlein, sprich, wohin? 
Du hast mit deinem Rauschen 
Mir ganz berauscht den Sinn. 

which (on top of being less effective than GPS) was not sufficient preparation for 
teaching programming.  It was not hard to use the first minute of the first lecture of 
the semester to convince students, who at ETH in computer science have a good 

                                                            
a disqualifying answer at some point. It is for the reader to judge whether the non-bureau-
cratic, highly personal ETH hiring process for professors was, in my case, a benefit or a bane. 
15 The reader may want to skip this sub-section since it pertains to my personal circumstances 
rather than to principles of software engineering education. I am including it (with details 
confined to footnotes) because of its role in my application of these principles. 
16 Is this, then, my road? O little stream, pray tell me, where to? Your rustling has enrap-
tured me. Text by Wilhelm Müller from Schubert’s Die Schöne Müllerin. 
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level of English17, to let me continue in that language18.  For seven years in a row I 
taught in English; no student ever complained, but in 2008 someone found out19 and 
I was politely asked to cease flouting the rule. One of the techniques for learning a 
language is to stand in front of three hundred native speakers and teach them some-
thing you know and they don’t in a language they know and you don’t. It is expen-
sive (in my case, graciously funded by Swiss taxpayers), but it works. Little by little 
I reached a level where the proportion of end-of-semester student evaluations con-
sisting solely of “let the poor guy use English!” decreased from about 90% to some-
thing more reasonable, leaving place for comments about the actual course contents. 
Even after I became able to deliver the course contents in an acceptable way, the 
switch to German20 was still affecting the pedagogical quality of the course: my 
delivery was less spontaneous, and there was less interaction21. In the preceding 
years, I had constantly increased the interactivity of the class: with the stunning 
amount of teaching materials we made available to our students — copies of the 
PowerPoint slides, video recordings of the lectures from the current year and previ-
ous ones, lab session slides, tutorial notes, sample questions from previous years’ 
exams, homework texts and solutions, then the textbook Touch of Class, published 
in 2009 but available to students in draft while I was writing it  — I could afford 
occasionally to depart from the official material and improvise discussion sessions. 
Long before we heard the buzzword “Flip the Classroom”, we had the practice, a 

                                                            
17 People sometimes ask why I could not resort to French, one of Switzerland’s official lan-
guages. Although ETH used to be the only federal university and had French-speaking chairs, 
any such excuse went away with the creation of its sister institution EPFL in Lausanne in 
1968. Even a suggestion to use Italian is only good for cocktail-party chatting. Contracts for 
new non-German-speaking ETH professors stipulate that they must learn the language within 
a year and can obtain financial support for that purpose. 
18 The department’s studies director wrote a formal letter to the Rector requesting for me a 
special dispensation of the first-year German-only rule. No answer came. Surprised (ETH 
administration is usually punctilious), he raised the matter on meeting the Rector at some 
university function a few months later. The answer was that no answer would be forthcoming, 
since a rule is a rule and the answer could only be no, which would wreck the already sched-
uled course. As long as I could find an arrangement with the students and the Rector did not 
get any complaints, he had not received the letter. 
19

 Career advice for beginning academics: close the door. It seems that one day I left the 
auditorium door open and an administrator walked by, heard me, and raised a rumpus. The 
atmosphere had changed by then; ETH management was experiencing more pressure from 
politicians to use German. It is possible that without this chance discovery I could have con-
tinued in English. 
20 The reference here is to standard (“high”) German (Hochdeutsch), not “Swiss German” 
(Schwiizertüütsch), a separate language. Swiss-German speakers learn German at school, and 
it serves as the written language, Swiss German having no standardized written form. 
21 While you can learn to speak a foreign language through sheer hard work, understanding 
native speakers is a different challenge, compounded in the Swiss case by the unique vari-
ety of local variants, including those of foreign students from various parts of Germany and 
Austria. Understanding was always the harder part for me. 
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couple of times in the semester, of holding what we called a “Socratic lecture”: I 
would make the corresponding slides available in advance and announce that next 
time I would not cover them in the usual way, just come and wait for questions. The 
trick in such sessions is not to flinch: you must have the guts to stand there and wait 
for someone to speak up, even if nothing happens for fifteen minutes. That was the 
case the first time around (this is not usual ETH teaching style, and students felt 
awkward), then someone raised his hand and afterwards I could hardly stop the flux 
of questions. It seems to have been part of a general evolution of students’ attitude 
that there was more and more spontaneity as years went by22. In the German version 
of the course, things were more awkward. The students’ nervousness may have been 
gone, but I had become the nervous one, fearful of misunderstanding a question or 
just not understanding it. 

4.3 The right programming language 

Unlike the language of delivery, the programming language was never a problem. 
While countless educators have used Eiffel, others have told me over the years that 
they would really like to but cannot because management, or students, or their fam-
ilies (the supposed culprit varies) would never accept it23. In most cases this sup-
posed hostility of others is an excuse. Some ETH student evaluations criticized the 
choice of language, but they were no more numerous than what one would expect 
had the course used Java instead of C++ or C++ instead of Python. I always took 
care of explaining the pedagogical reasons behind the choice and pointing out that 
learning one more language, whether or not it ends up as your favorite, is a benefit, 
not a burden. Plenty of courses in the ETH curriculum give the students opportuni-
ties to learn Java (which many of them encounter before joining the program), C++, 
C, Javascript and other languages in wide use. In practice many students enjoyed 

                                                            
22 In end-of-semester evaluations the question about the merit of the Socratic lectures gener-
ally received a negative assessment. We can only surmise why; maybe a feeling that some-
how the professor was not doing what is expected of a professor — profess  — and instead 
unfairly asking the students to work. But after the initial awkwardness the sessions were in 
fact very lively, full of good questions that might not otherwise have received an answer, and 
in talking to students we felt the sessions were productive, even if they refused to 
acknowledge it in their evaluations. One of the benefits of tenure is that you do not have to 
kowtow to students for fear of negative evaluations. Instructor assessment is necessary, in 
particular to detect truly bad teaching, but should not discourage pedagogical innovation. 
After all, most adults can remember a teacher whose lessons turned out to be important in the 
long run but whom they resented at the time. The ETH policy on assessments is commenda-
ble: assessments are made public to the department members without comment; they cause 
no further action, except in the case of a grade of 2 or less (on a scale of 1 to 5), which requires 
a letter from the department head to the rector explaining the reasons for the bad assessment 
and describing measures being taken, in conjunction with the lecturer, to avoid a repetition 
of the problem.   
23 An excuse I heard more recently is that the Touch of Class textbook was too heavy for 
students to carry around. Indeed the first printing was big (Springer soon corrected the prob-
lem), but let’s be serious.  
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Eiffel and came to us in later years to ask for Eiffel-related topics for bachelor’s and 
master’s theses or other projects. Most of the student contributions mentioned ear-
lier started that way. 

One benefit of using Eiffel was to talk about the language as little as possible. 
With Java you have to start by explaining “static void main” and other esoterica. 
You end up teaching a Java course or, in other cases, a Python course or a C course. 
I did not want to teach an Eiffel course, but to deliver on the specification of the 
course: Introduction to Programming. Eiffel enabled us to focus on the concepts. 

There is, by the way, a benefit of using a non-majority programming language 
for teaching: this solution removes an increasingly frequent complaint of instruc-
tors, “Google programming”. With Java or another dominant language, a natural 
reaction of many students when given a programming exercise is to search for a 
ready-made solution, which they often find on the Web. While professional pro-
grammers also resort to this technique, it is not appropriate for students learning the 
basics. The amount of Eiffel code on the Web is considerable but nowhere close to 
the amount of Java, C++, Ruby, C# or Python code. 

4.4 Concepts and skills 

A central question in teaching programming today, already discussed at some length 
in the “Software Engineering in the Academy” article  [1], is whether to focus on 
concepts or skills. Teach only computer science concepts, and you produce people 
who are not ready for the practical software engineering tasks that industry needs 
filled. Teach only skills, and you produce technicians that do not have the big pic-
ture necessary for a successful career.  

The easy answer that we should teach both is not enough: education is a fixed-
pie business in which the total number of coursework hours is set. One has to make 
choices.  

I hit an example of the need to teach more than skills when giving some lectures 
in 2004 at a renowned Chinese university, which was proud that its software engi-
neering students were at the top. I devised a small questionnaire to find out for my-
self, and have used it often since. One of the questions, made up almost as a joke 
(but then the joke was on me) was: 

Your boss gives you the source code of  a C compiler and asks you to adapt it 
so that it will also find out if the program being compiled will not run forever 
(i.e. it will terminate its execution). Check one: 
1.  Yes, I can, it’s straightforward. 
2. It i hard, but doable. 
3. It is not feasible for C, but is feasible for Java. 
4. It is not feasible for C, but is feasible for Eiffel. 
5. It cannot be done for any realistic programming  language 
It is touching to see how many enthusiastic students select one of the first four 

options (#4 undoubtedly from an unconscious hope that the instructor must be on to 
something). Now one may argue that ordinary software development does not re-
quire dealing with undecidability, but it does not sound right that a competent soft-
ware engineer should have no idea of the issue. Particularly one coming out of a 
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good university. Electricians may not know Maxwell’s equations; but electrical en-
gineers should. 

Skills are critical too. Students do not have to know all the technologies of the 
moment; in fact they cannot, since they are too many of them, and they come and 
go anyway (ASP.NET yesterday, Angular JS today, something else next year). But 
they have to know some, both for their relevance to industry and to make sure soft-
ware concepts do not remain theoretical, as they would without an actual implemen-
tation using the tools of the moment. 

The philosophy we adopted was skills supporting concepts. Teach skills so that 
students get a good grip on the practice (and program a lot), and use these skills to 
drill the fundamental concepts of programming — [1] names some 20 of them, from 
abstraction and information hiding to recursion and invariant-based reasoning — into 
their heads. 

The skills part is not to be neglected. In recent years I have become involved in 
a new and successful effort, Propulsion Academy (propulsionacademy.com),which 
complements university efforts, often in collaboration with the universities them-
selves, to offer intensive programming education through 3-month programming 
bootcamps on topics such as Full-Stack Development and Data Science. Many of 
the students have university degrees already, including sometimes PhDs, and want 
to move to IT. Industry gobbles them as quickly as we graduate them. 

I did, by the way, as a sanity check, gave the termination-smart-compiler quiz 
to second-year ETH students, having undergone “Introduction to Programming” the 
previous year, and everyone gave the right answer.   

4.5 How to teach programming 

Other articles including [20], [23], [50] and the “instructor’s preface” of the Touch 
of Class textbook ([110], available at touch.ethz.ch) have detailed the rationale be-
hind our Introductory Programming course and the pedagogical issues and princi-
ples. Here are the principal ideas: 
 Use of object-oriented concepts right from the beginning and throughout, in-

cluding classes, inheritance (single and multiple), genericity, information hid-
ing, polymorphism, dynamic binding. 

 Emphasis on system skills, not just low-level programming. 
 Balance between concepts and skills as discussed above. 
 More generally, emphasis on concepts and skills that support lifelong career 

success. A concern that was particularly strong in the mid-2000s, leading for a 
few years to a decrease in computer science enrollments in Switzerland, was 
the competition from outsourcing to low-labor-cost countries (see also section 
6). While outsourcing has never threatened programming as a profession in the 
West — still today, there are some 1 million unfilled IT positions in Europe — 
its existence clearly means that an ambitious university should teach not just 
low-level programming techniques (for which there will always be a cheaper 
programmer somewhere) but engineering skills of lasting value. 
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 Use of Design by Contract throughout. While using a completely formal ap-
proach in an intro course goes too far (see the Lamport citation in [110]), teach-
ing students to document the semantics of their code through preconditions, 
postconditions and class invariants, and use these elements for effective testing 
(in the future, correctness proofs, see 10.7 and 10.8). 

 More specifically, constant emphasis on quality, through application of strict 
design principles from Touch of Class and the earlier Object-Oriented Software 
Construction [292] [299]: Information Hiding, Uniform Access, Open-Closed, 
Single Choice, Command-Query Separation and others. 

 Large coverage, including of topics often considered to fall beyond the scope 
of an introductory course, such as event-driven (publish-subscribe) program-
ming, higher-level functionals (agents/closures), some design patterns (undo-
redo, Observer0, elementary rules of programming with floating-point num-
bers, an introduction to lambda calculus and an introduction to non-program-
ming aspects of software engineering such as requirements.  

 Use of a specifically designed library of components, the Traffic library (graph-
ical simulation of traffic in a city). 

 In the later years, systematic use of a MOOC (online version of the course) and 
of advanced cloud-based tools allowing students to perform exercises and 
teaching assistants to evaluate them directly in a Web browser (see the next 
sections). 

 “Outside-in” approach, also known as Inverted Curriculum. 
The idea behind “outside-in” [295] [50] is to let students work, right from the be-
ginning, with sophisticated software elements (the Traffic library played this role). 
The traditional solution is to learn from the ground up, starting with small program-
ming exercises, which in the current state of technology (where everyone, even 
small children, uses computers to perform advanced tasks) are boring. With the out-
side-in approach, the students can rely on the given software components to produce 
interesting applications from day one. A pedagogical benefit is that to use the com-
ponents they have to go through the official programming interface (API); they 
learn the value of abstraction, information hiding and contracts through practice, 
rather than just through theoretical exhortations. The approach assumes components 
designed and implemented to high quality standards; the use of contracts, as sup-
ported by Eiffel, is essential. 

“Outside-in” also implies that students get exposed, early on, to lots of code. 
Any successful path to learning programming involves imitation of existing models. 
The components given to the students will play this role. The Traffic library was 
written very carefully, with systematic use of all the quality-enhancing techniques 
that we teach through the course. It provides a huge repository of models of good 
design, good APIs, and good implementation. 
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“Outside-in” also addresses an issue that vexes anyone 
teaching introductory programming today: the wide variety of 
initial student experiences. From systematic studies performed 
on all students over many years, we found (in a study with Mi-
chela Pedroni and Manuel Oriol [116]) the distribution shown 
on the right, with 18% of student having done no prior pro-
gramming, and at the other end of the spectrum 10% having 
written an object-oriented program of over 100 classes. How 
do you cater to such a diverse audience? You can tune the 
course down to the novices and bore the experienced students, or align it with the 
experts and lose the beginners, even though some may have other skills (particularly 
in mathematics) that qualify them for successful computer science studies. Working 
from components helps solve the problem. The novices can proceed step by step, 
“outside in” in the sense of using the components first strictly as consumers, through 
their APIs, then through a process of “progressive opening of the black boxes” dis-
cover how they are written. Hence “outside-in”. The more experienced students are 
welcome to go into the source of the components from the beginning. They are also 
encouraged to extend and adapt them. There is, then, something for everyone. 

The difficulty of assessing approaches to teaching programming is that the ef-
fect is long-term: one would need an extensive study measuring the academic and 
industry performance of students in the years after the course. Although we per-
formed constant evaluations of the course and the students, no such long-term study 
is available for our approach, or anyone else’s. I believe, however, that the course 
was highly successful, teaching thirteen successive classes of ETH computer sci-
ence students the skills necessary to understand programming in depth and become 
effective software engineers.  

5 Pedagogical tools and MOOCS 

Modern technology does not replace face-to-face teaching but can enhance the qual-
ity of the pedagogical experience. A combination of factors made it almost inevita-
ble that we would invest in educational tools: we were a software engineering group 
with a strong focus on practical programming; we were in charge of many important 
courses as noted above, and the particular challenge of teaching introductory pro-
gramming; MOOCS (Massive Open Online Courses) came of age during our time; 
I had always maintained a keen interest in issues of teaching programming; and so 
did several group members, particularly Michela Pedroni and Till Bay at the begin-
ning and Marco Piccioni, Christian Estler and Martin Nordio later on (as well as 
Marie-Hélène Ng Cheong Vee/Nienaltowski as a visitor), who all pushed for devel-
opments in this area. The results are of three kinds, reviewed next in sequence: 

 Concepts (Trucs) and tools (Trucstudio) for course design. 
 MOOCs, home-made and at edX (Introduction to Programming, “Compu-

ting: Art, Magic, Science” 1 and 2, agile development). 
 Tools for on-the-cloud programming (Eiffel4Mooc, Codeboard, plus 

CloudStudio discussed in section 6). 
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5.1 Trucs and Trucstudio 

The first effort stemmed from an attempt to think about the whole domain of teach-
ing a course with the benefit of object-oriented ideas, which provide a powerful 
modeling technique applicable to many areas. In January 2005 I introduced (in a 
paper published in 2006 by IEEE Computer [52]) the notion of Testable, Reusable 
Unit of Cognition, or Truc, arguing that any course or learning objective can be 
described as a combination of Trucs, with clear relations between them, such as 
usage and specialization, similar to the client and inheritance relation of object-ori-
ented programming. 

At that time, Michela Pedroni was already a member of our group; she had 
approached me two years earlier, while still a Diplom (master’s) student, about the 
possibility of doing her master’s thesis in the area of programming education. Her 
particular interest, after going through the ETH computer science curriculum, was 
to make the teaching of programming, which as a recipient she had found less than 
ideal. She went on to enroll in the PhD program and became a key contributor to 
the Introduction to Programming course. The notion of Truc provided a good basis 
for a PhD topic; she refined the concept much further and built a comprehensive 
environment, TrucStudio. 

TrucStudio [80] [120] looks at first 
sight similar to a modern IDE (Interactive 
Development Environment) as used by 
programmers, such as EiffelStudio or 
Eclipse, but with building blocks that in-
stead of classes, routines and other pro-
gramming artifacts are courses, lectures, 
Trucs and other pedagogical artifacts. In 
the screenshot on the right, they describe 
the pedagogical concepts involved in 
teaching certain aspects of object-oriented 
programming (although of course there is 
nothing specific to programming in Truc-
Studio, and the example could be about 
the teaching of Greek or of bird migration 
patterns). 

Trucstudio makes it possible in a convenient and intuitive way to create and 
modify courses, textbooks and other educational ventures. The tool that came out 
of the PhD was convincing and served to design several example applications. It 
attracted attention in both academic and industrial contexts internationally. The pro-
ject did not continue because we failed to obtain further financing. (In the local 
context, educational units typically do not have the resources to fund research24, and 

                                                            
24 The ETH unit in charge of teaching, the Rectorate, does have an interesting scheme for 
funding educational project, whose name is now Innovedum (www.ethz.ch/en/die-eth-
zuerich/lehre/innovedum.html), from which we did benefit for other projects. But the 
amounts involved only make it possible to fund some equipment, student help or other ex-
penses at those levels, not a PhD student or postdoc over one or more years.  
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research-funding bodies told us that they do not fund educational projects. We were 
of course asking for research funding, but that did not work because the work came 
from a computer science department and was viewed as education research, not CS 
research.) Trucs and TrucStudio are, in my view, a significant advance and are there 
waiting for someone to pick up the concepts, the research and possibly (at Source-
Forge) the tool. 

5.2 MOOCs 

The next major teaching-related move was about MOOCs. Marco Piccioni in par-
ticular kept alerting me, from 2001 on, to the MOOC phenomenon and its rapid rise 
worldwide. If we really thought we had some of the best software courses in the 
world, we should make them known to the world. He was persuasive, and I came to 
agree. We were not bright-eyed believers in MOOCs as the final recipe for all edu-
cation; we simply understood that they were a major development in pedagogy, of-
fering extraordinary possibilities, and that we should get into it. 

The institutional context was not encouraging. ETH does teaching and research. 
In research the reach is global, having enabled the university to reach the very top 
international stature25, an extraordinary feat for a university in such a small coun-
try26. In teaching, the focus for the Grundstudium (early years of the curriculum) is 
local: train Switzerland’s technical elites. MOOCs are by nature global, reaching 
out to anyone anywhere who wants to learn. For a typical US university, which 
wants to recruit the smartest (and fee-paying) students from all over, they are an 
excellent branding opportunity, showcasing their best teachers. For a government-
funded institution with negligible tuition fees, getting thousands new undergraduate 
applications from abroad is not part of policy goals27. These considerations did not 
prevent the sister and rival institution, EPFL in Lausanne, by nature more adven-
turous, from jumping right into MOOCs and producing dozens of them in French 
and English, in particular with the Coursera MOOC company (a venture created by 
Stanford professors). ETH reacted differently, promoting courses open to its stu-
dents only. The acronym, which did not trigger our enthusiasm, was TORQUE 

                                                            
25 University rankings became an international obsession around 2003 with the first “Shang-
hai” ranking. They are controversial, but no one would deny that they have at least some 
value; they have become an inescapable factor in academic policy. ETH, both across disci-
plines  and specifically for computer science, usually comes around number 10 worldwide, 
behind top US institutions such as Stanford, Berkeley, MIT and Carnegie-Mellon, and just 
behind Oxford and Cambridge. It is systematically number 1 for continental Europe.   
26 A superficial analysis would suggest that the budget for ETH (currently $1.7 billion, about 
2.5% of Switzerland’s federal budget) is outrageously high. In reality, ETH has been since 
its creation in 1855 one of the key engines for the transformation of Switzerland from one of 
the poorest countries in Europe to the richest non-natural-resource-based economy in the 
world.  
27 Studying at ETH is such an outstanding proposition, especially from a financial perspective 
as compared to top US, UK and Australian universities, that even with high entry standards 
for foreigners the university would be flooded with applications were it not for German-
language requirements.   
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(“Tiny, Open-with-Restrictions courses focused on QUality and Effectiveness” 28); 
we thought that Tiny as the first word and Restrictions as the fourth did not exactly 
reflect the institution’s relentlessly self-advertised passion for excellence, and the 
natural echo of “Torquemada”, with its hint of torturing students, did not exactly 
reflect our pedagogical ideals. (For such internally-oriented online courses, the ed-
ucation world at large uses a less gaudy acronym, SPOC, for Small Private Online 
Course, which the paper [224] reporting on our first experience uses in its title.) 

As late as the very last days of 2014 (after we had already produced our first 
homemade MOOC, presented next) many people at ETH were taken aback when 
reading a major interview of our brand new university president, promoted from the 
position of Rector where he was in charge of teaching policy. The journalist from 
the NZZ (the main German-language Swiss newspaper) grilled him on MOOCs, 
saying things like “Harvard, Yale, Stanford and others have been active in MOOCs 
in the past few years, hasn’t ETH been sleeping during all that time?”. He only got 
answers such as “The idea that one can read a text or look at a Web page and 
understand is an illusion”. All shook their heads in disbelief.  

From the beginning we thought that the MOOC (or rather no-MOOC) policy 
was unsustainable and that management would come around. In the meantime we 
were not going to wait patiently. In early 2013 Piccioni and I decided to produce a 
MOOC from the Introduction to Programming course, as a skunkworks project. (In 
most institutions I know, a negative decision from management would have been 
the end of the story. It is testament to the extraordinary ETH environment that I 
could simply shrug off the official policy and use the resources of the Chair, cush-
ioned by the grants we had accumulated over the years, to do our own thing quietly 
— as we had when we built Informatics Europe, the Journal of Object Technology, 
the LASER summer school and other achievements — without asking for anyone’s 
permission. Today the evolution of almost all European universities goes in the ex-
act reverse direction: ever more regulations, ever more constraints, ever more fear, 
ever more control, ever more forms, ever more interdictions, ever more caveats, 
ever more provisions, ever more codicils, ever more bureaucrats, ever more naysay-
ers, ever more signatures, ever more veto opportunities for those who wake up at 
night dreading the thought that someone, sometime, somewhere, might succeed. 
That, and not just the money, is why they are not ETH29.) 

                                                            
28 www.ethz.ch/en/the-eth-zurich/education/innovation/torques.html.    
29 I have never met, read or heard a single non-Swiss European  politician who has the slight-
est clue on this matter. The idea of ETH is that you hire good professors, give them good 
resources, decision power and a reasonable regulatory framework, and mostly leave them 
alone, exerting a posteriori controls. Another concept that other Europeans are constitution-
ally incapable of understanding is that it is OK, in fact inevitable, to use a system that is 
inherently (in an Isaiah-Berlin kind of way) imperfect. Once in a while you will hire someone 
who is not as “good” as you thought, or even some of the “good” people will squander some 
money. Only rarely is  an extra regulation the solution. Most of the time the right response is 
to accept that occasional mishaps are just the price to pay for the flexibility of the system and 
the creativity it fosters. One success justifies a hundred failures. 



38  

  We needed a platform and contacted two of the main MOOC ventures, 
Coursera and edX (a consortium started by MIT and Harvard), who courteously 
turned us down because they work with educational institutions as a whole, not in-
dividual groups. We were running out of options when Chris Poskitt brought to our 
attention the existence of the open-source Moodle framework, which we did not 
know even though we later found out that some units of ETH were using it. Moodle 
turned out to do what we wanted. Over the next few months we recorded our MOOC 
lectures, covering the entire Introduction to Programming course. 

The recording was somewhat of an obstacle course. ETH buildings are not far 
from the University of Zurich’s hospital, the main one in the city. We had all grown 
accustomed to the sound of ambulances rushing to the emergency room, not a major 
nuisance since our building was on a quiet street a few hundred meters away. Never 
had we realized how loud and frequent these siren sounds actually were. We started 
hating the poor victims of heart attacks for spoiling our recording sessions. Even 
though Marco Piccioni, the recorder, was infinitely patient with my many false 
starts, spending many hours piecing together the takes, I again and again had to 
restart a lecture, usually interrupted just before the end right when I thought I had 
finally had done a good job on that particular topic without stuttering or panicking. 

We had no guidance and were devising techniques by ourselves. In retrospect, 
while professionals may criticize the quality of the audio or other technical aspects, 
the main deficiency of this first MOOC attempt was probably the length of many of 
the sessions, often going beyond the eight minutes or so that are (as we learned 
later) standard in the field. 

One of the main results of this effort was to provide an impetus for the work on 
on-the-cloud programming covered in the last section. The first version, Eif-
fel4Mooc, enabled students to perform Eiffel programming assignments from the 
browser, compiling and running them on the cloud. It evolved later on into Code-
board, applicable to other programming languages. 

The MOOC was released 
in time for the 2013 session of 
Introduction to Program-
ming; it is still available, 
hosted, after we gained some 
institutional recognition, at a 
page managed centrally by 
ETH [202]. It was first made 
available to our students, then 
released generally. The general release reached a non-ETH audience of only a few 
hundred people, far from the tens of thousands that one expects for a MOOC on a 
core topic. We would not have been able to handle support and exercises for such a 
large crowd anyway, but the experience taught us that to have real global impact we 
needed, regardless of the quality of the offering, the benefit of a global MOOC 
brand such as Coursera or edX. 
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The most interesting impact at that stage was internal. The MOOC was a big 
hit with ETH students. One of 
our concerns had been that it 
would provide another incen-
tive, along with all the other 
materials we provided (Touch 
of Class textbook, slides of lec-
tures and lab sessions, videos of 
previous years’ lectures and 
other documents), to skip class. In fact the attendance at lectures increased because, 
as students told us, the presence of MOOC made the learning of programming hip 
again. The Eiffel4Mooc tool provided a marked improvement of the interaction be-
tween students and teaching assistants: we could now see directly the students’ pro-
grams and as a routine matter try to compile and run them without them or us having 
to set up any particular environment. We could immediately see errors and misun-
derstandings and provide instant feedback. In students’ evaluations, the MOOC 
came out as one of the top benefits of the course. [224] provides an assessment of 
that first experience. 

In the meantime the institutional attitude towards MOOCs had improved. We 
were able to present our skunkworks effort to management and plead that “tiny” 
and “with restrictions” were not in the ETH spirit. ETH had already entered into an 
agreement with edX. It was devoting some resources and providing a supporting 
structure in the form of the Laboratory for Educational Technology with which we 
had already been collaborating for several years; its members, under the leadership 
of Olaf Schulte, were video-recording the Introduction to Programming lectures. 
Not everything was technically perfect yet; we no longer had the ambulance sirens, 
but the studio was under a corridor at the Rectorate and now it was passersby with 
high-heels who (more rarely) still forced us to redo takes. It would take another year 
or two for a fully state-of-the-art recording studio to be available. But we could 
move on to new MOOCs at a much higher level of professionalism, with the help 
of experts in recording technology such as Schulte and Artan Hajrullahu. 

For edX we started Introduction to Programming again, but generalized to an 
overall introduction to com-
puting, with supplementary 
material such as a roundtable 
between members of the 
group and a guest interview of 
my colleague Peter Widmayer 
on the goals and role of theo-
retical computer science. Be-
cause of the amount of material, we produced two courses 
[219][245], with more advanced material moved to the second 
one. Developing professional-quality movies is a huge amount 
of work, but also fun, as when we recorded the introductory 
sequence on the terrace at top of the ETH building, with post-
processing that made me appear by magic at one point and then 
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suddenly another, with Zurich in the background. The courses aired several times 
and in this case we did reach audiences in the tens of thousands, with a large fol-
lowing in several countries such as India. 

Emboldened by this success, Piccioni and I produced a third edX MOOC, on 
agile development, based on my book on the topic [228]. We tried to do the intro-
ductory sequence ourselves, but it did not pass muster with the experts, so we had 
to record it again in Zurich, this time on the newly redone plaza in front of the Zurich 
opera, suggested by our colleagues because of the ballerina illustration on the cover 
of the book. The agile MOOC [270] also enjoyed a substantial following. 

A MOOC, in the proper definition of the concept, is not just a video archive of 
a set of lectures, but an active event that runs regularly like a classical course, with 
exercises, laboratory sessions and the support of teaching assistants. While the three 
edX MOOC are available on the archive as given in the references, I have so far 
failed to obtain the small support that would be needed to run them again, even 
though this means benefiting from an investment already made, and even though at 
the time of writing they remain the only computer science MOOCs ever produced 
by ETH30 and a substantial part of the total record31. 

For the Chair and its members, the MOOC effort has been extremely reward-
ing. As noted at the beginning of this discussion, we are not naïve endorsers of the 
myth that MOOCs will replace other forms of teaching. Training programmers, for 
example, requires intensive human contact (as we are providing in Propulsion Acad-
emy, a programming bootcamp-style school that colleagues and I created after my 
departure from ETH, see propulsionacademy.com).  MOOCs are simply a remark-
able new instrument in the panoply of pedagogical tools. Many European universi-
ties have neglected that instrument, or joined the movement more belatedly and 
timidly. All the major initiatives and companies are US-driven. This lack of action 
(“being asleep”, as the NZZ journalist put it) is a historic mistake. 

For course authors, the effort of putting together a MOOC is exhilarating but 
huge. Less formidable today if you have good resources (such as EPFL’s “MOOC 
factory”), and decreasing as you gain more experience, but still huge. This is the 
reason while producing SPOCs (MOOCs without the “Open” part, intended just for 
an institution’s own students) is in general not attractive: if you are already doing 
your job seriously for your courses, by delivering the lectures, possibly having them 
recorded and providing supporting material, there is no incentive for the investment 
of an online course. The incentive comes when you can hope to gain impact and 
recognition worldwide. This is the same kind of motivation that leads professors to 
write not just course notes but textbooks.  

                                                            
30 Roland Siegwart from mechanical engineering and his colleagues produced a successful 
MOOC on Autonomous Mobile Robots.  
31 It is still the case in July 2017 that all ETH MOOCs (www.edx.org/school/ethx) come from 
three professors including, besides Siegwart and me, Gerhart Schmitt from the Department 
of Architecture with courses on cities of the future. The EPFL page, moocs.epfl.ch/, has sev-
eral hundred offerings.  
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MOOCs have become an indispensable part of the modern battery of pedagog-
ical tools. Our MOOC experience was immensely valuable, and many of the peda-
gogical lessons it taught us are applicable in other forms of education. Our ETH 
students told us again and again how much they benefited from the tools; just as 
gratifying was the ability to reach out to tens of thousands of external participants, 
learn from their questions and reactions on the course forums, and receive so many 
messages of thanks.  

5.3 Tool support for programming on the Web 

Any path to learning programming requires doing programming exercises, lots of 
them32. Prompted by our experience with Introduction to Programming, our effort 
to make the MOOCs effective, our distributed programming work (section 6) and 
the development of verification tools (section 10), we started developing tools ena-
bling students and more generally programmers to use the browser as a development 
environment. The current version, preceded by Eiffel4Mooc and comcom, is Code-
board, available at codeboard.io. The earlier versions were tailored to our needs and 
specifically to Eiffel, but Codeboard supports a number of other programming lan-
guages. 

A user of these tools can: 
 Enter code through a Web browser. 
 Compile the code by pressing the Compile button. 
 See any compilation error message, correct the error and recompile. 
 Run the code. 
 Specifically, run tests. The instructor can prepare public tests, with data and 

expected results available to the user, and secret ones, which can be run to help 
ascertain whether the code is correct. 
The tools can be embedded in a Web page; in the specific case of MOOCs, 

Codeboard offers specific interfaces to edX, Coursera and MOODLE. As an exam-
ple, the screenshot below, coming from the first “Computing: Art, Magic, Science?” 
edX course (courses.edx.org/courses/course-v1:ETHx+CAMS.2x+3T2015/info), 
shows an exercise on control structures. The “Your code here” parts (as highlighted 
below) are the places where students must insert their own code. The rest of the 
structure has been pre-filled. Instructors preparing the course can decide how much 
pref-filled context to provide, and how much to leave to the student. 

                                                            
32 Malcolm Gladwell’s theory that mastering any topic requires “ten thousand hours” of prac-
tice is controversial, but it certainly matches my observation of good programmers (Bill Joy 
was in fact one of his original examples).  
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The student can make the result of a compilation, execution or test available to 

others, most importantly a teaching assistant. 
The tools are not strictly limited to teaching or, for that matter, to programming. 

One of their applications is the online version of the AutoProof program verification 
system (10.7 and 10.8) at autoproof.org, serving as a tutorial but also usable simply 
to perform program verification online. 

An interesting master’s project by Paolo Antonucci [249] added further param-
eterization possibilities for the course preparer: a hint system enabling the student 
who gets lost to click a “Hint” button and get increasingly detailed hints. Such 
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mechanisms are in line with the earlier work on TrucStudio (section 5.1);  the dream 
was to integrate all these ideas and others into a sophisticated environment for pre-
paring effective interactive courses. 

Even without such developments, the pedagogical effect of these tools for 
cloud-based programming was nothing less than spectacular. They profoundly 
changed our interaction with the students and the effectiveness of the interaction 
with the teaching staff. In particular: 
 A constant source of trouble, sometimes despair, for novices is the difficulty of 

setting up a proper environment for the development of their programs. Profes-
sional programmers do not mind installing this or that tool, downloading a 
script, adapting a control file, trying various fixes when something does not 
work the first time around; they have colleagues (and the Web) to ask for help 
if they get stuck. For novices (in particular the 18% of our students, noted 
above, who have not done any programming before), any one of these obstacles 
can be terrifying. In an introductory programming course we want to assess 
whether they can write a program, not whether they can fight with the details 
of downloading and installing (a skill they will need, but can acquire later). 
With Codeboard and our other tools, we set up the environment for them. They 
have nothing to install since all they need is a Web browser. Then can focus on 
the challenges of programming, such as data structures, algorithms and correct-
ness, not on details of logistics. This approach frees and empowers a full new 
class of students who may have all the skills needed to become excellent pro-
grammers but would otherwise be blocked by side issues. 

 The exercise preparer can decide to include supporting code at the exact level 
desired. The example above involves two classes (shown on the left in the fig-
ure), BOOK and LIBRARY; for both of them some of the code is pre-written, 
and the student only has to fill the parts on which the exercise preparer has 
decided to put the focus. The pedagogical benefits are immense: the instructor 
can decide on a precise order of skills to teach and test. 

 Since some of the code is pre-written, it provides guidance to the students who 
later on have to write similar code themselves, in line with the earlier observa-
tion that much of the learning of programming occurs through imitation. 

One of the fundamental changes affected how teaching assistants could help stu-
dents encountering difficulties in solving programming exercises. The typical situ-
ation is “why do I get this compilation error?” or “it crashes, I can’t understand 
why!” or “I have no idea why that test does not pass”. In a standard setup the assis-
tant who wants to help has to ask the student to prepare and send a Zip of the project, 
unzip it, and try to reproduce the problem. Often this is only a first step in the pro-
cess: maybe the student is using Windows and the assistant Linux; maybe the assis-
tant cannot assemble the system because the student forgot to include some library; 
maybe what does not work for the student works for the assistant, or the other way 
around, because the setups are different. With Codeboard, the student just sends a 
link to the project, and the assistant immediately has access to the original code in 
the original setup. All the troublesome losses of efficiency disappear. Again and 
again we witnessed this tremendous improvement in our ability to help students. 
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It is interesting to note the objections that we kept hearing against such tools: 
concerns about student privacy. One needs of course to be extremely careful, as we 
always were (out of obvious ethical concerns, in addition to ETH rules). But an 
undue concern for privacy was part of the resistance to MOOCs and delayed the 
introduction of mechanisms that demonstrably help students. At ETH these hesita-
tions were particularly irrelevant, since in first-year courses the students’ perfor-
mance on exercises and homework has zero effect on their grades: the results, in-
cluding the possibility to go on with their studies, are entirely determined by end-
of-year exams. 

Part of the reason for these concerns was that the MOOC organizations such as 
edX and Coursera are US-based, and so are their servers. If that is the problem, 
rejecting technology is not the solution. The best solution would have been to de-
velop European-based MOOC technology, but since this did not happen students 
should enjoy the benefit of technology regardless of its origin33.  

Codeboard usage has grown far beyond ETH, involving courses in numerous 
universities and reaching tens of thousands of students. Like its predecessor tools, 
it provides a powerful example of how technology can help modern teaching. 

6 Methods and tools for distributed software development 

An early foray into tools for supporting distributed software projects was Till Bay’s 
Origo, developed for his PhD on a topic that he had himself defined [95]. He had 
recognized the emergence of complex software projects being developed over dif-
ferent locations, and the inadequacy of the solutions available then. Origo benefitted 
from numerous student contributions and integrated many novel ideas. For several 
years it hosted all of our projects, and attracted a steadily growing number of diverse 
projects from all over the world. Attempts to turn it into a commercial success did 
not interest venture capitalists in Switzerland, and Comerge, the company that Bay 
had founded, initially with Bernd Schoeller, went into other directions where it is 
thriving today. The success of Github in recent years proved that Origo was an idea 
with great potential, even if others realized that potential. Our own CloudStudio, 
discussed below, also continues the Origo work. 

A big impetus for our interest in distributed development was the extraordinary 
growth of outsourcing, one of the most significant developments in software engi-
neering during the last decades. The Indian software industry, the most visible ben-

                                                            
33 The Wirth 80th birthday symposium, which we organized in 2014, came at the height of 
the Snowden affair. In one of the breaks, I asked Vint Cerf, one of the invited speakers, 
whether he would be comfortable using a Cisco router if he were a sysadmin for (say) the 
German ministry of defense. He did not directly answer but said he could not understand why 
no one was developing a major Europe-based cloud solution along the lines of Microsoft’s 
Azure or the Amazon Web Services. Unfortunately, I knew the answer to that question, as 
does anyone who has tried to obtain venture capital for ambitious non-standard tech projects 
in Switzerland or Europe in general. As a typical and sad example, a request to the ETH 
venture kick-up mechanism to fund (for about 150,000 dollars) a preliminary effort towards 
commercial development of Codeboard was dismissed summarily.  
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eficiary of this phenomenon, grew from less than one billion dollars in the late eight-
ies to over 120 billion dollars in 2014. As mentioned earlier, this phenomenon had 
a strong effect on the mood in Switzerland in the early 2000s: computer science was 
no longer a popular topic for entering university students; enrollment had actually 
dropped. There were other factors, notably the burst of the first Internet bubble, but 
the fear of outsourcing was seemingly the dominant cause. In the view of many 
parents, there were no longer any good prospects in programming; “all the good 
jobs have gone to Bangalore”. 
  

In May of 2004 I gave an invited talk at a software engineering conference 
hosted by Siemens in its main site in Munich. Like everyone entering the huge Sie-
mens campus that day, I got a flyer from union representatives, complaining about 
the outsourcing of jobs and the danger to the employment of local workers34: 

 
 

                                                            
34 With the typical moderate tone of German unions, e.g. (second paragraph) “we know that 
not every job can be kept and that German society benefits from the international division of 
labor. However…” 
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Shortly thereafter, I saw 
the Call for Papers for the 
forthcoming International 
Conference on Software Engi-
neering, the main annual event 
in our field, which was going 
to be held in Shanghai (and 
which I had the pleasure of at-
tending). Given that China 
was already hosting a signifi-
cant outsourcing industry (fo-
cused for a large part on Japa-
nese customers), and more 
generally given the extraordi-
nary growth of outsourcing in software, 
one might have expected the conference to 
address that matter,; but in the long list of 
topics for the papers being solicited, it did not even appear!  

The creation of the DOSE course was the first step towards recognizing the 
importance of the phenomenon and integrating its study into software engineering. 
In our research as well as in the course, the focus soon moved away from outsourc-
ing to encompass the more general matter of distributed development. What matters 
more than where parts of the team are, for example India, is that they are not all 
together. We explored the consequences of distribution in many research efforts 
relying on techniques of empirical software engineering. 

Too many to list here, in fact (the list of articles relying on studies from DOSE 
appeared in section 3). They address such questions as the influence of time zones 
and distribution [157], collaborative debugging[198] and pedagogical aspects [148]. 
The distributed development experience, both at ETH and in my continued role at 
Eiffel Software, led to a new tack on the venerable software engineering technique 
of code reviews. A SEAFOOD contribution [87] and the resulting Communications 
of the ACM paper [91] proposed a process centered not on a meeting but on a doc-
ument. Most of the work is done in advance, in writing, on the document; the meet-
ing still takes place but is devoted to the most interesting part, points of disagree-
ment. The document follows a standard structure going from high-level concerns of 
choice of abstractions and inheritance structure (these are design and code reviews) 
down to implementation, comments and style. Originating from practice developed 
at Eiffel Software, where the development is distributed, this review methodology 
and the supporting document structure were quickly and organically adopted in our 
group. We performed many spirited and productive reviews. 

A more challenging research topic is configuration management. While it is 
one of the undeniable advances in modern software development that any reasona-
ble team keeps all code under a configuration management system, and while we 
always taught the principles in our courses (starting with the essentials in Introduc-
tion to Programming), I have always resented the complication and constraints of 
configuration management systems such as Subversion and Git. The whole idea is 
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very much 20-th century: you manually track versions, and manually reconcile 
changes with those of other developers, an often painful and always tedious process. 
I do not want to bothered by any such nonsense. I want to develop my code in my 
IDE (such as EiffelStudio), and trust that it will keep track of what I do and warn 
me when one of my actions might conflict with a change made by another devel-
oper. Prevention rather than cure; and when cure is necessary (if incompatible 
changes were made despite the warnings), as much help as possible to reconcile 
versions. Never again to I want to go line by line through a “diff” to decide what to 
retain and what to reject: 

 
 
 
 
 
 
 

 
 
To address that challenge I proposed the concept of view: each developer works on 
his own view of the code, but can also see other developers’ views to spot diver-
gences early. The IDE supports these concepts directly: 
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This screenshot is taken from CloudStudio, developed by Christian Estler on top of 
EiffelStudio for this thesis. CloudStudio provides a flexible environment for collab-
orative development, essentially avoiding merge conflicts. 

We found these ideas and the application exciting and started going out to pre-
sent them to companies. The reaction was sobering. In short, no one was interested. 
We were told that configuration management tools are good enough and that merge 
conflicts do not arise in practice. I do not believe it, but as Jules Romains’s Knock 
knew, in the land where people think they are healthy doctors have no business. 

We soon noticed, however, that the presentations were not only falling flat: as 
soon as we talked about applications to teaching rather than industrial development, 
people got excited. We decided that for the moment this is where the applications 
were, and the CloudStudio effort took on a new life in the form of the cloud-based 
programming education tools discussed previously (5.3). So in spite of industry’s 
rejection this work blossomed. 

I remain convinced that the multiview approach addresses a critical problem 
and solves it effectively. We have to wait until the patient realizes he is sick. 

7 Language development and standardization 

Much of programming (do not believe Leslie Lamport) is about languages. The core 
language of our chair, although by no means exclusive of others (C, Java, C#, Ja-
vascript…) was Eiffel, used in particular as the vehicle for the basic teaching of 
programming and much of our research developments. 
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Over the Chair’s life Eiffel underwent significant changes (7.1) and a process 
of international standardization (7.2). We will also look at efforts at language spec-
ification (7.3) and translation (7.4, only partly Eiffel-related). Finally (7.5) I will 
mention recent work towards a general theory of programming and programming 
languages. 

7.1 Modern Eiffel35 

This is not the place for a de-
tailed description of Eiffel and 
its evolution; for up-to-date 
information see the eiffel.org 
site [280]. Because many peo-
ple still keep their impression 
of the language from early 
publications [292] [293] [299] 
it is important to mention that 
the language has considerably 
advanced. Some of this evolu-
tion has been in new expres-
sive features, particularly 
agents, which represent an object-oriented version of “closures” in functional lan-
guages (see also [99], discussed at the end of section 8). C# similarly has a concept 
of “delegate”. What we found, in response to early concerns, was that agents do not 
compete with standard OO mechanisms but complement them.  

The development of Eiffel, particularly in the standardization processed de-
scribed next, follows explicit principles: 
 Simplicity. 
 Consistency. 
 Smooth evolution, respecting compatibility but not precluding progress. 
 Precision of the language specification. 
 Helping programmers develop software of high quality, particularly correct-

ness. 
. The view of simplicity is not the same as the well-known Wirth language 

design philosophy of devising small languages (Pascal, Modula 2, Oberon). Size is 
not the goal per se; ambitious languages cannot be miniatures36. Our goal with Eiffel 
is to maximize expressive power, using the motto that the language must “provide 
one good way to do anything”. The other key criteria are that the language should 

                                                            
35 The adapted photograph of the Zurich skyline (showing the limits of my Photoshop skills 
at the time) is from my 2002 inaugural lecture [11], which yielded an interview  [12] in the 
Neue Zürcher Zeitung (NZZ), the main Zurich newspaper.  
36  At the time of Ada’s release,  some people were criticizing the language, in a Wirthian 
mindset, for the size of its definition. Asked by an interviewer, Jean Ichbiah, the lead designer 
of Ada, responded that small languages solve small problems.  
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help programmers avoid mistakes, and avoid surprises (natural modes of expression 
should provide the naturally expected results). 

C++ provides a typical counter-example of the “one good way” principle. For 
the typical case of an operation that must be adapted to the run-time type of its 
target, you have two ways to proceed in C++: the traditional solution of indexing 
into an array of function pointers; and the OO mechanism of dynamic binding. How 
is a programmer, perhaps a novice, expected to choose? While such conflicts may 
matter less, in the C++ worldview, than the language’s goal of compatibility with 
C, Eiffel’s design tries to avoid them. There are no function pointers to begin with. 
As another example of the one-good-way principle, Eiffel has only one loop con-
struct, with a flexible syntax supporting common semantic needs. Among these var-
iants are “all” and “exists”, which have increased the language’s expressive power, 
making it possible to express first-order predicates such as 

across list as x all x.item > 0 end 
(for what standard mathematical notation would express as   x  list . x > 0). These 
notations are particularly useful in contracts, to express sophisticated specification 
properties. 

Eiffel’s agents are typical of the kind of extension that brings a major advance 
in expressive power. It suffices to compare the burden of implementing an instance 
of the well-known “Observer” pattern [282], with a class structure shown below in 
section 8.3, with the agent-based Eiffel solution [27]: for each type of event, the 
event producer defines a single instance et of a library class EVENT_TYPE (not a 
new class, just a variable denoting a run-time object); the subscriber declares its 
interest in the event type through et.subscribe (agent operation), where operation is 
the operation to be applied for events of this type; and to produce an event the pro-
ducer, for example a graphical library, uses et.publish (args) where args are the 
event arguments, type-matching the arguments of operation. The simplification is 
dramatic. This is an example of language mechanism that did increase the size of 
the language but that no one ever regretted or characterized as “featurism”. Both the 
Observer pattern and the undo-redo or “command” pattern (introduced in [292]), 
and their simpler agent-based versions, found their way as staples of the Introduc-
tion to Programming course. 

The goal of quality means neither that using Eiffel guarantees quality results 
nor that it precludes bad results. More modestly, it encourages the production of 
good software by programmers who understand the concepts of the Eiffel method, 
and guards them from some mistakes (including through the principle of least sur-
prise mentioned above). Top programmers, in their top days, will produce good 
software in any language. As Emmanuel Stapf has noted, the idea of Eiffel is to turn 
every one of your days into one of your top days. 

Also characteristic of the Eiffel ecosystem is the acceptance of language 
change. Backward compatibility is a critical concern as soon as there is an installed 
base of programs, but it should not be an obstacle to moving on when, a few years 
after an initial decision, the community realizes that there is a better way to handle 
a certain programming schema. Unless one actually changes the language, the result 
is either to remain with unsatisfactory constructs or to keep both old and new vari-
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ants, piling up features that make the language too complicated, in addition to bur-
dening compiler writers. The Eiffel process has a number of times discarded old 
mechanisms, making it incumbent on compiler writers to provide programmers with 
a reasoned transition path and, if appropriate, translation aids. This is the principle; 
the implementation requires careful engineering and delicate choices; there have 
been a few mishaps, but the general goal has been both to preserve existing program 
investment and to permit progress. 

As a result, Eiffel today is both the same language as the original, retaining the 
same spirit, architecture and view of the software development process (class-based 
structure, straightforward keyword-based syntax, simple OO with multiple inher-
itance and genericity, Design by Contract, information hiding, precise language def-
inition), and a visibly different one in its range of features. The focus on simplicity 
has led not only to removing some features but also to making the rest more general 
and consistent, removing limitations and avoiding special cases.  

7.2 Void safety 

Other than agents, the most important development of Eiffel in the past fifteen years 
has been void safety. Null-pointer dereferencing — the program crash or exception 
resulting from a call x.f where x is a null, or “void” pointer or reference — is (for 
Eiffel, was) the major remaining threat to the safety and security of program execu-
tion, including with object technology. The following figure from Alexander Kog-
tenkov’s thesis [272] shows the security attacks, in the Common Vulnerabilities and 
Exposure database, that involved null-pointer dereferencing: 

 
 

No less an authority than Tony Hoare wrote (cited in [133]):  
I call it my billion-dollar mistake. It was the invention of the null reference in 
1965. […] [It] led to innumerable errors, vulnerabilities, and system crashes, 
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which have probably caused a billion dollars of pain and damage in the last 
forty years. 
I had looked at the problem earlier [300], but with no actionable result. The 

decisive step was a late-afternoon chat with Erik Meijer during a visit at Microsoft 
Research in Seattle, where he introduced me to a void-safety mechanism that had 
been devised for one of the research languages, C I think, then under study at 
MSR. The mechanism never found its way into C# or any of the actual production 
languages of Microsoft, but this short demo clicked: when you see that someone 
else has been able to find a solution to a problem that you had consciously assigned 
to the “death and taxes” category (that is, not solvable any time soon), a mental 
block goes away and you may be able to find your own solution. I presented ours in 
an ECOOP keynotein 2005  [39]; it was a paper design, which we implemented in 
the years afterwards, also revising it extensively as a result of both practical expe-
rience and discussions in the standards committee. Once we had an implementation 
at Eiffel Software, we (including the two principal contributors to that implementa-
tion and to the discussions, Stapf and Kogtenkov) wrote a second paper of the topic 
on the basis of that experience [133]. Entitled “Avoid a Void”, suitably published 
in the Festschrift for Hoare’s 75th birthday, it states: 

Devising, refining and documenting the concept behind the mechanism pre-
sented here took a few weeks. The engineering took four years. 
That sentence, written in 2010, was optimistic. The design may have taken (in 

fact) an afternoon, but engineering took another seven years after 2010. Thanks 
largely to the work of Alexander Kogtenkov, we consider it final today (2017) — 
who knows. 

The reason things took so long is not the basic idea, which is simple, combining 
a type system mechanism, attached types, and compiler-performed static analysis 
to sanction guaranteeably safe cases, called “Certified Attachment Patterns”. The 
problems that have taken all that time are: 
 On the theoretical side, to take care of initialization. If you declare a variable 

as attached, meaning that it should never become void, you have to make sure 
that it is non-void on object initialization. Work by Peter Müller identified some 
of the problems and helped us finalize the Eiffel mechanism. 

 On the practical side, to handle existing code. Once you understand the basic 
idea, it is not hard to write void-safe code. The void-safety style becomes nat-
ural. But converting non-void-safe code, which by definition did not use this 
mindset, is painful. It took several years to convert the fundamental Eiffel li-
braries, and even today the core code of EiffelStudio is not void-safe. The effort 
will have to be performed at some point but it is large and tedious (and hard to 
justify since, through trial and error, the EiffelStudio code seems to be largely 
free of null-pointer dereferencing, although only void safety would turn this 
impression into a guarantee). All new code, however, is void-safe from the 
start. 

These difficulties explain why a significant part of the Eiffel community was ini-
tially reluctant to adopt void safety. As late as 2009 a message on the user forum 
stated:	
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Last night I had a dream. I was programming in [pre-void-safety- Eiffel 5.7. 
The code was elegant. There was no need for defensive programming just by 
taking full advantage of design by contract. Thanks to these contracts the code 
was easy to reuse and to debug. I could hardly remember the last time I had a 
call-on-void-target. It was so pleasant to program with such a wonderful lan-
guage. 
This morning when I woke up I looked at the code that had been modified to 
comply with void-safety. This was a rude awakening. The code which was so 
elegant in my dream now looked convoluted, hard to follow. It looks like asser-
tions are losing all their power and defensive programming is inviting itself 
again in the code.  

This criticism, which at first struck me (with my enthusiasm for void safety) as a 
refusal to move on with modern technology, were entirely justified. The mechanism 
had not been engineered well enough in its details to address the needs of practi-
tioners with extensive Eiffel experience, deep knowledge of Eiffel and OO princi-
ples, and a large code investment. The work of Kogtenkov, Stapf and others ad-
dressed this issues and it is fair to say that today the dissent is gone and every serious 
Eiffel programmer, including the former skeptics, not only understands the concep-
tual value of void safety but has accepted the mechanism as it is and develops void-
safe code from the start. 

Kogtenkov’s thesis is also an example of the growing use of formal methods in 
our work. While separate from the bulk of the verification work in AutoProof (sec-
tion 10), it demonstrates that the void-safety mechanism actually makes Eiffel void-
safe, in other words guaranteeing that execution cannot produce a null-pointer 
dereference. This result is far from trivial since the mechanism has become intricate, 
after all these years of tuning the initialization semantics to ensure that programmers 
can still use programming schemes that sound natural to them, including many 
which simple rules would wrongly flag as void-unsafe. The proofs have been me-
chanically verified using the Isabelle-HOL system. 

7.3 The standards process 

In the early days of Eiffel I was in charge of the language definition, reflected in the 
book “Eiffel: The Language” [293] and the working version of its planned revision. 
A process of international standardization made it possible to unproprietarize the 
language definition several years before the EiffelStudio implementation went 
open-source (as was described in section 3). In 1999, before ETH, I had become 
involved at Eiffel Software in a cooperation with Microsoft as part of the develop-
ment of .NET, initially under non-disclosure; I was associated with the formal pub-
lic introduction of .NET by Bill Gates and published an early article on it  just before 
I went to Zurich [301], as well as a video book, a kind of MOOC avant la lettre  [2]. 
The immediate goal of the cooperation was to produce a version of our Eiffel com-
piler for the .NET platform, but we became seriously interested in .NET and partic-
ipated actively in discussions with its designers, particularly about the design 
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choices in the object model37. Emmanuel Stapf, head engineer at Eiffel Software 
and a compiler expert, was the team member most active in this cooperation. When 
Microsoft decided to submit key aspects of the .NET technology to international 
standardization, through the Ecma consortium, he was invited to become a member 
of the committee and played an active role in the standardization of the. (In partic-
ular, since we had with Eiffel a powerful generic mechanism, different from Java’s, 
he made sure that the .NET generics were reasonable.) 

Ecma (formerly the European Computer Manufacturers Association, but no 
longer expanding its name) is a consortium of IT companies that stands behind 
many of the main standards in information technology. It is goal-oriented and less 
bureaucratic than the International Standards Organization, which must accommo-
date all the national standards organization that it federates. But (because in the 
early days ISO was not prepared to deal with the huge and urgent need for IT stand-
ards, while Ecma was) it has a special agreement with ISO enabling Ecma standards 
to become ISO standards through a fast-track process, avoiding the typical ISO 
multi-year approval course. The work in the .NET committee was friendly and ef-
fective. When the issue came up of standardizing the Eiffel language, Stapf natu-
rally proposed, on the basis of his experience, that we approach Ecma, which readily 
agreed to host us. 

The committee (Ecma TC49-TG4), which started its work in 2003, was at its 
core a small group, with a list of participants given earlier in section 1. The first 
version of the Eiffel Standard was accepted by Ecma in 2005 [36] and revised the 
following year as Ecma Standard 367, shortly thereafter becoming an ISO standard 
[60]. A revised version is in progress and we hope to have it out in 2018. 

While the Ecma process makes considerable use of electronic communication, 
the bulk of the work occurs in face-to-face meetings. Most of our meetings occurred 
at ETH, in California (Santa Barbara, site of Eiffel Software, or Orinda, site of Axa 
Rosenberg), or in Nancy or Villebrumier (France). The process leading to the cur-
rent (2006) standard involved eighteen 3-day meetings (with several more since 
then). In other words, the committee members, most of whom were not married to 
another member, lived together for two full months of their lives. This figure is just 
an indicator of how intensive such a standards process is, compounded in our case 
by the passion and focus on exactness that characterized our particular group. It was 
not rare to spend an entire afternoon on a paragraph, in a succession of fiery verbal 
fights and long periods of silence (as happens when every one of the members real-
izes, however passionate the last outbursts, that the problem is actually more com-
plicated than any of them thought), and restart on the same paragraph from scratch 
the next morning.  

The base work is exacting (the nice way of putting it) and tedious (the more 
immediate feeling). For Eiffel we pursued the goal of reaching as much precision 
as is possible without resorting to a fully formal (mathematical) specification. The 
practice of formal specifications helped considerably. One of the irritants in reading 

                                                            
37

 The discussions also involved other groups working with Microsoft, such as Jürg 
Gutknecht’s Oberon group at ETH. These were actually my first ever interactions with ETH 
and played a role in my joining the institution a couple of years later.  
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specifications of other languages is their practice of “only if” rules: listing necessary 
conditions for a construct to be valid. For example you can assign an expression e 
to a variable x only if their types are compatible. Oh, and x cannot be read-only. 
And, by the way… I do not want to be told, piecemeal, what I may not do! I need 
to be told authoritatively what I may do. I want a rule that tells me “the assignment 
x := e is valid if and only if…”, followed by an exhaustive list of conditions. This 
“if and only if” style has been the rule for the language specification ever since the 
original Eiffel book [293] and the committee stuck to it. Here for example is the 
validity rule for feature bodies in the standard: 

 

 
Such a rule represents a contract: it does not just tell the programmer the “only 

if” part, the conditions he has to satisfy for his program to be valid, but also provides 
a guarantee (the “if” part) that if these conditions hold then the compiler will accept 
the program and give it a meaningful, well-defined semantics for execution. That is 
why the discipline of producing such rules is so hard: you have to make sure you 
have envisaged all possible cases. 

The description is divided into clearly distinct levels: lexical, syntactic, validity 
and semantics. Validity consists of rules such as the one above expressing condi-
tions (such as typing constraints) imposed on constructs that are already correct at 
the syntax level. Each rule has a code, such as VFFB above, for precise reference. 
Semantic rules describe the execution-time effect of syntactically correct and valid 
constructs. 

Standardization efforts primarily document, disambiguate and solidify existing 
technology. They usually stay away from innovation (in the same way that Wikipe-
dia articles are not supposed to include “original research”). The period of Eiffel 
standardization coincided with a period of language evolution, we decided to allow 
ourselves more freedom and initiative than is normally the case in standards com-
mittee. Encouraging this approach was the small size of the committee, its informal 
nature (we were responsible to our institutions and, particularly in the case of in-
dustry representatives, to practicing Eiffel programmers with a vested interest in the 
stability and quality of the language, but did not have to report to national standards 
organizations with their specific agendas), and our sharing of Eiffel principles. As 
a result, many of the novel features of today’s Eiffel were introduced in committee 
discussions. We instituted a rule, inspired by the practice of Internet standards, that 
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we would not adopt any new mechanism until at least one compiler had imple-
mented it successfully. In practice we did not always follow that rule (sometimes, I 
must admit, out of my out premature enthusiasm for a new idea). More generally, 
we made mistakes, and many times we had to revisit a matter that we had thought 
settled. While aware of the need for a revised version, however, we are proud of the 
achievement. The standard has stood the test of time and is the basis for all Eiffel 
work today. I believe that beyond Eiffel the style and rigor of this work sets an 
excellent reference and example for other standards efforts. 

Standardization work is not a frequent activity for academics, and for institu-
tions that count things like publications and patents does not give any academic 
brownie points. Certainly not a good use, for a career-conscious researcher, of eight-
een full-time 3-day stints.  If your goal is to increase your Scopus h-index, this is 
just about the last activity to consider. Yet I never for a minute regretted investing 
my time in this demanding but rewarding work. 

7.3 Formal specification of Eiffel semantics 

A fully satisfactory language description should have a version that is not only in 
the style of formal specifications but actually formal. When and if the Eiffel stand-
ards committee embarks on such a project it will benefit from earlier efforts.  

Incentives for precise specifications arose from the intricacies of concurrent 
programming. 

One of the principal contributions of Piotr Nienaltowski’s thesis [76] was to 
replace the ad hoc and somewhat messy rules for avoiding SCOOP traitors in my 
earlier work (chapter 32 of [299]) by a simple and elegant type system with infer-
ence rules. (A “traitor” in SCOOP is a variable that denotes an object in another 
thread, hence subject to special semantics, but is not declared accordingly, so that 
its treatment will be wrong.) 

As part of his own work on concurrency, Benjamin Morandi needed more pre-
cision than was available in the existing definitions of SCOOP semantics. He turned 
to José Meseguer’s operational semantics and MAUDE system [289] and produced 
(with Sebastian Nanz) a detailed specification which includes many non-concurrent 
aspects as well, resolving many potential ambiguities of an informal description. He 
took a new look at the delicate matter of exceptions in a concurrent context [170], 
providing what I believe is the proper conceptual basis for addressing this issue. 

Also notable is the work (particularly by Martin Nordio, initially in his thesis 
work on proof-preserving program transformation in the context of .NET, and Jul-
ian Tschannen, also initially involving Peter Müller and Cristiano Calcagno) to ver-
ify advanced Eiffel mechanisms such as exception handling and agents [106] [127] 
[177]. The work on specifying exceptions formally also involved looking into the 
mechanisms of other languages. Nordio gained considerable insight into the Java 
and C# exception schemes. A quiz he devised involving the Java/C# “finally” con-
cept illustrates the subtleties; inevitably, when one presents the examples to expert 
programmers in these languages, they guess some of the program results wrong. 

My work on aliasing is discussed in section 10.10. 
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7.4 Language translation 

A language-related development is Marco Trudel’s work, starting with his master’s 
thesis, to provide production quality translation between programming languages. 
The source language is typically C and the target language Java or Eiffel. The goal 
of this work [169] [178] is, as expressed by the title of the second of these refer-
ences, to go “beyond the easy stuff”. It is not that hard to produce a translator from 
C to an OO language that processes a significant subset of C. But C as used in 
practice includes many tricky constructs such as function pointers, pointer arithme-
tic and signal handling. The tools cover all of C and do not just perform a literal 
translation; they analyze the source for meaningful data abstractions so as to pro-
duce not just a program expressed\ in an object-oriented language but an object-
oriented program. 

7.5 Theory of Programs and FLIP 

Recent work, still in progress, addresses the general nature of programs and pro-
gramming language. What I found is that it is possible to describe all programming 
concepts — truly all, including concurrency — on the basis of extremely simple ideas 
from elementary set theory; in fact, three operations suffice, defined from elemen-
tary set operators such as union and restriction. 

This effort, described in [253], can be called a theory of computation; it does 
not compete with the traditional theoretical approaches (Turing machines and such) 
because it has a different focus: to model the concepts of programming and pro-
gramming languages in a way that reflects their practical use. 

The theory has the potential to explain all form of programming, object-ori-
ented for example, although the existing article only covers the basics. It could also 
(a claim not supported by concrete evidence so far) serve as a new basis for verifi-
cation. An as yet unimplemented idea is to use the theory to build a “Formal Lan-
guage Innovation Platform” (FLIP, where “formal” applies to “innovation plat-
form”, not “language”) to foster experimentation with language features, with 
support for of immediate generation of prototype compiler generation and formal 
semantics subject to mechanical verification of consistency, and the availability of 
construct libraries (assignment, for example, has a general semantics and does not 
need to be re-specified and re-implemented for every new language variant). Veri-
fication is essential: when you play with a new language feature, you want to be 
able to prove (without having to produce an entire theory of the language including 
all the constructs irrelevant to your new idea, hence the importance of libraries) that 
it satisfies certain properties. For example, Eiffel is void-safe, as demonstrated in 
Kogtenkov’s thesis and SCOOP is free of data races. As another example, [303] 
shows that the revised Java memory model is sound, but the effort requires an entire 
book; the FLIP idea is that you start from a verified description of the rest of the 
language and just add the elements needed to verify a new specific property. 

 Or maybe the theory has no immediate practical application, but I believe that 
it illuminates the nature of programming and could at least serve as the basis for 
teaching the discipline. And if even that does not happen, the article has helped me 
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clarify, if only for my own benefit, a view of programming, until then informal, that 
has for a long time underpinned all my theoretical and practical work.   

8 Software process, methodology, agile methods, requirements 

Programming methodology, a thriving field in the seventies and eighties, is some-
what out of fashion; even the IFIP working group WG2.3 that bears this name, 
which provided us with so many insights and whose meetings were always such a 
fascinating experience, does not much address its own official topic but is mostly 
about software verification. Methodological issues, however, have constantly been 
at the center of our concerns.  

8.1 Agile methods 

In one of the very first lectures I gave, probably in the spring of 2002, I covered 
principles of object-oriented design. A third-year student came to me at the end of 
the lecture and asked me why I was even bothering to broach these topics. (ETH 
students are polite, but he clearly meant “why are you wasting our time?”) No one 
does design these days, he said. Everyone knows (he said “everyone” but his tone 
clearly meant “everyone but professors of software engineering”) knows how to 
proceed: produce the “simplest [program] that could possibly work”, per the Ex-
treme Programming (XP) slogan, then refactor until it is good enough. 

I was stunned. I had not realized how far XP and agile ideas had trickled down, 
all the way to undergraduate students. The comment also highlighted a feature of 
today’s teaching of software topics: we have to contend with other sources of infor-
mation. There was no teaching of agile methods (and very little of software process 
and such software engineering topics) at ETH at the time; students received such 
nuggets of knowledge, right or wrong, through summer internships in industry. 

That particular nugget was of course wrong. Design is as essential as it ever 
was. Refactoring is a great idea, but refactored junk is still junk. The right approach 
is to design a first version of as high a quality as you can manage under your con-
straints, then take a critical look at it and improve whatever needs improvement. 
The encounter with that student was helpful because it alerted me to preconceived 
ideas that students were getting from other sources. Understanding such preconcep-
tions enabled me to address them and make later lectures more effective38.  

In the following years I became increasingly aware of the importance of the 
agile phenomenon. The 2006 change of EiffelStudio’s status from proprietary to 
open-source, mentioned in section 3, went with a change of development model for 
Eiffel Software, partly as a result of suggestions from Till Bay, to a time-boxed 
development of two releases a year, straight out of the agile principle that time over-
rides function. Marco Piccioni alerted me to the importance of Scrum. I realized 
that in the matter of software process management the gap between academia and 

                                                            
38 Educators should be more aware of this phenomenon of incorrect prior knowledge. In most 
sessions of “Introduction to Programming”, in which I often used lecture breaks to show 
various videos on side topics, I played the ground-breaking and eye-opening “Private Uni-
verse” video from Harvard [274].  
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industry was of uncommon proportions: in most companies (outside of the CMMI 
zone, mostly inhabited by big US defense contractors) the buzz and much of the 
practice was only about agile methods, and most software curricula universities 
taught nothing about them. Some gap is normal (if universities did exactly the same 
as companies, we would not need universities), but a total disjunction of that kind 
is not alarming. 

I decided to educate myself in depth about agile methods; in fact I read all the 
books and many articles, immersing myself into agile Web sites and forums. I de-
cided that to get into something for good you have to sing the company song. I 
became a Certified Scrum Master39. The more I learned the more I was struck with 
the agile paradox: its mix of very good, uninteresting and very bad ideas. In software 
methodology, it is usually fairly easy to distinguish productive ideas from bad ones; 
but here the best and the worst are inextricably mixed. 

My 2014 book Agile! The Good, the Hype and the Ugly [228], and the many 
professional seminars I gave on the topic, are a result of this experience. (I worked 
again from the principle that I have often applied: that a good way of learning about 
a topic is to teach it, and an even better way is to write a book on it.) The software 
architecture/engineering and DOSE courses took in a growing amount of material 
on agile methods, and in the DOSE context we made a study of their effectiveness 
in a distributed context [171]. 

The book is both a tutorial and a critical analysis, with “critical” in the sense of 
“critique” and not of “criticism”. Almost all of the agile literature is the adulatory 
kind, with authors exhorting their readers to get on their knees and start applying 
the gospel. I was neither in the preaching business nor intent on criticism for criti-
cism’s sake. I was interested in analyzing agile methods from a software engineer-
ing perspective, as another contribution to the field and not, as one would sometimes 
believe from reading agile authors, a revolutionary replacement for everything that 
came before. I was even more interested, with a practitioner’s focus and the benefit 
of concrete experience with agile methods, to help people sort out the useful and in 
some cases brilliant elements of the agile advice from the inconsequential parts and 
the truly damaging ones. 

Two examples illustrate these extremes (read the book for more examples, and 
more analysis of these two): 
 The most catastrophic advice is the rejection of upfront work, particularly the 

agile scorn for upfront requirements and the rejection of upfront design, which 
had found its way into the mindset of that student in 2002. Like several others, 
this agile rule is based on a valid criticism of some exaggerated traditional prac-
tices, specifically the temptation of many traditional projects to spend too much 
time in foreplay and not enough on the real thing (writing programs); the phe-
nomenon has given rise to the term “analysis paralysis”. But highlighting the 

                                                            
39 Revelation: of the exams I have taken in my life, this one was not intellectually the hardest. 
It was definitely the most expensive; you have to take a workshop, which was in fact worth 
the high price tag, and pay your certification renewal fees every two years. The business 
scheme, populating the industry with Scrum Masters who want to recoup the investment and 
become apologists for Scrum, bringing new recruits to the fold, is brilliant. 
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importance of code does not mean throwing away all the rules of good engi-
neering. I immodestly believe that the “cluster model” of the software process 
which I first described in the nineties (prompted by ideas from Jean-Marc Ner-
son, co-founder of Eiffel Software, and Frédérique Sada, who had been using 
Eiffel in her project at Thomson), particularly in my book “Object Success” in 
1995 [298] and in more detail in the second edition of OOSC [299], and which 
Eiffel users have widely applied, provides a more sophisticated and effective 
guide for how best to reconcile the need for early production of code with the 
indispensable role of upfront tasks. 

 Among the brilliant ideas is the “closed-window rule”; the name is mine, since 
the agile literature does not have one, but it does have the concept itself. It is 
the rule that during a project iteration, a “sprint” in Scrum, no one, regardless 
of rank, is permitted to add functionality. It can only work under two assump-
tions: the iterations have to be short (a few weeks), otherwise the wait would 
become intolerable; and there has to be an escape mechanism for truly urgent 
changes, in the form of the possibility to cancel the sprint and start afresh. The 
closed-window rule is a powerful stabilizing force for software systems, forc-
ing everyone to think twice about proposing new functionality. 

For me, Agile! also served as reassurance that I was able to produce short books. 

8.2 Contract discovery 

Among other work performed by the Chair that falls in the “methodology” category, 
two important early projects, performed with Karine Arnout, explored methodolog-
ical hypotheses. The first was a kind of sanity check. Eiffel programmers see con-
tracts in every problem. The rest of the world typically does not. Are the contracts 
just in our minds? In less pleasant words, are we like the psychiatrists in the first 
scene of One Fly Over the Cuckoo’s Nest, who turn out, when the asylum’s real 
doctors show up, to be the inmates? To answer that question we turned to the .NET 
collections library, which for fundamental data structures has classes in one-to-one 
correspondence with those of EiffelBase, --ARRAY, STACK and such. We looked 
at the .NET version, and, by analyzing the code, found that, sigh of relief, we are 
not the crazy ones: the contracts are there, non-Eiffelists just emulate them by var-
ious awkward mechanisms such as exceptions or error messages. For example if a 
structure is full you cannot insert an element into it. That is not a design decision 
but a constraint. (A “domain” rather than “machine” property in the classic Jackson-
Zave requirements work, see e.g. [284].) You can address it in various strange ways, 
but the simple solution is to have a precondition not is_full in the insertion proce-
dure. Anything else obfuscates the essential property. 

The resulting article [22] [26] attracted some attention, but the reaction took 
me by surprise. While I thought the study supported the view that one should make 
contracts an explicit part of the software specification and design process, people 
took it to mean that they can be extracted from non-contracted code! Tony Hoare, 
for example, told me that this work was a great first step and that now we should 
work on a tool to analyze code automatically (our study was a human analysis, alt-
hough with some tool support) to produce the contracts! The focus seemed to me, 
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as it still does, misplaced: contracts are a methodological tool and a powerful tool 
in analyzing problems and building software. 

Extraction tools can of course help. Partly thanks to Hoare, I became aware in 
Michael Ernst’s Daikon contract extractor [279] and we (particularly Ilinca Ciupa 
and Nadia Polikarpova, who built an Eiffel front-end for Daikon, CITADEL) used 
it extensively in our work [108]. But contracts cannot all be inferred: were inference 
the only source, all the contracts would reflect is the program as it is, bugs included. 
The aim of contracts, and specifications in general, is to provide a description, sep-
arate from the code itself, of what that code is supposed to do. Correctness in soft-
ware (as the first lecture in “Software Verification” always recalled) means ade-
quacy to a specification; the specification comes from the code, the code is correct 
by definition. (All that contract extraction can yield in this case is the discovery that 
the inferred specification is inconsistent, a useful but limited result.) The code be-
comes defendant, executioner (AutoTest), judge and jury (AutoProof). 

Contract inference is, then, inappropriate for the key specification elements of 
a software system: routine pre- and postconditions and (possibly) class invariants. 
The programmer should specify what the code is supposed to do. Inference (“what 
the code should do is what it does”) would be useless or pernicious at that level. 
Where inference is useful is for contract elements that are a technical necessity of 
the verification process rather than fundamental elements of the specification, par-
ticularly loop invariants (the focus of Daikon), which many programmers find tedi-
ous to write. 

The results of the empirical study reported in [108] confirm this analysis. The 
study compared contracts written by programmers (in Eiffel code) and those in-
ferred by CITADEL/Daikon. The two categories are largely disjoint. 

Loop invariants area fascinating concepts. I have long (at least since 1980 
[290]) been convinced that the invariant is the key property behind any loop, the 
loop itself being just an operational appearance. Over the years I edited algorithm 
entries in Wikipedia to add the invariant. (For example the entry for Levenshtein 
distance [304], if only because I only understood the algorithm myself once I was 
able to figure out the invariant.) The 1980 article described the invariant as a weak-
ened version of the loop’s goal (postcondition), and described a few weakening 
heuristics. Carlo Furia and I took up this work and tried to make it more systematic 
[131], realizing that there are very few other useful heuristics. The resulting tech-
niques of static invariant inference were implemented but are not yet integrated into 
AutoProof.  Invariant inference, which may use dynamic [216] as well as static 
techniques, is one of the most important open issues in making full software verifi-
cation practical (see section 10). 

The other kind of invariant, the class invariant, is just as important. Work still 
in progress [265] attempts to develop a comprehensive yet simple methodology for 
class invariants in the presence of aliasing and other OO mechanisms. 

8.3 Contracts do not crosscut 

In early work in the Chair, Stephanie Balzer, with the help of Patrick Eugster, ex-
amined an assertion often made by the proponents of the then-fashionable method-
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ology of Aspect-Oriented Programming (AOP): that aspects could serve to intro-
duce contracts when the programming language does not support them. That asser-
tion is not central to AOP; it was typically an example among several of what AOP 
could potentially do. It was common in the aspects literature, though, so it was fair 
to look into it. 

What the analysis found and reported in [53] 40 is that the simulation of con-
tracts by aspects is not practical. Specifically, useful aspects must be “crosscutting”, 
meaning independent of each other. As the paper demonstrates, contracts do not 
crosscut other important aspects. 

The AOP community has ignored the paper and the result.  

8.3 Pattern componentization 

The efforts just described are from recent years. Coming back to the early days, the 
other joint work with Karine Arnout was on the componentization of design pat-
terns. Patterns [282] are a major advance in programming technology, but from the 
start I was troubled by their nature: methodological recipes, not reusable compo-
nents. Much of the pitch for OO (particularly from me [291] [292] [297]) has been 
based on the prospect of reusing software elements, in the sense of true “as is” reuse. 
Compared to components, patterns seem like a return to pre-reuse days when, to 
sort an array you would look up a textbook and program the algorithm. Patterns are 
at the level of system architecture rather than individual algorithms, but the idea is 
the same: a pattern is a pedagogical concept (a “Truc” in the sense of section 5.1) 
For example, the Introduction to Programming course explains the Observer pat-
tern, teaching students to understand and apply the following class architecture41: 

 

                                                            
40 This paper was not checked carefully enough and has small problems of form; for example 
some of the program texts are not in correct Eiffel. The analysis itself is solid, however. It 
had proved its point, so there was no further development of the work. 
41 Extract from a PowerPoint slide for the English version of the course. See section for a 
simpler solution using Eiffel’s agents. 
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The concept’s inventors are adamant that patterns are not components42.  
A component is better than a recipe. The recipe must be learned anew by each 

programmer and implemented anew for each new program. The component is there 
once and for all. Could we address the technical limitations and turn the fundamen-
tal design patterns, starting from the “classical” ones in [282], into off-the-shelf li-
brary components? This was the task set to Arnout and led to the core of her PhD 
[34]. The answer was largely positive: most of the classical patterns can, under the 
right conditions, be turned into reusable components, which make up the patterns 
library that she produced. 

The main condition, self-serving as it sounds, was to use Eiffel constructs. In 
particular, Eiffel’s agents were essential; they had no counterpart in Java at the time, 
so that our componentization could not have worked in that language. (A 1997 white 
paper from Sun Microsystems proudly declared that agents/closures/delegates were 
a terrible idea and that Java would not have them. It took fifteen years for wisdom 
to set in and closures to come into Java43.) Contracts, although not formally indis-
pensable, also helped considerably.  

The first pattern composition paper, showing the way, was just by me [27] and 
was an in-depth study of publish-subscribe schemes including a componentization 
of the Observer pattern, with many other methodology topics along the way. It in-
cludes a discussion of where agents/closures fit in the object-oriented approach and 
complements other OO mechanisms such as polymorphism and dynamic binding. 
(In [24] Volkan Arslan, Piotr Nienaltowski and Karine Arnout generalized that 
work, which handled the sequential case of event-driven computation, to a concur-
rent setup.) It is a sign of the interaction between research and education in our 
group (and of the whole idea of a research university) that the result immediately 
became, in suitably adapted form for our first-semester Introduction to Program-
ming course; the treatment appears in chapter 18 of the Touch of Class textbook. 
Next two joint papers based on Arnout’s elegant work applied the componentization 
idea to two other fundamental patterns: Factory [54] and Visitor [56]. 

8.4 Multi-requirements 

Beyond the simplistic and damageable “user story” techniques of the agile 
school, everyone in software recognizes the importance of requirements (the proper 
definition of a system’s goals and constraints).  In the software engineering com-
munity, requirements engineering forms its own community (and has its own IFIP 
working group). While not exactly part of it, I have always devoted much attention 

                                                            
42 Erich Gamma is based in Zurich, a pleasant coincidence (I once bumped into him at the 
intermission of Die Zauberflöte at the opera house) which provided many opportunities for 
spirited discussions. 
43 The page used to be at java.sun.com/white/index.html and has (also wisely) been removed. 
archive.org yields nothing, probably because of the dynamic (JSP) nature of the page. To 
avoid a copyright violation I am reluctant to make my own snapshot of it publicly available, 
but anyone interested can ask me for a private copy. 
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to requirements and have benefitted from numerous discussions with such require-
ments luminaries as Pamela Zave, Michael Jackson, Axel van Lamsweerde and 
Martin Glinz. 

The object-oriented approach as I see it encompasses the full software lifecycle 
and is particularly productive at the requirements stage, based not on popular ideas 
such as use cases, but on the application of the same OO abstraction principles and 
constructs (classes, inheritance, Design by Contract) as steps of design and imple-
mentation. A core idea is “seamlessness”, the ability to move smoothly back and 
forth between all those steps — especially back, in the case of change — without 
having to change concepts and notation. Eiffel intends to be that common notation, 
accompanying the development throughout.  

These ideas have been around for a while and are explained in pre-ETH publi-
cations. (The EiffelStudio environment provides tool support for them in the form 
of the Eiffel Information System, developed for a large part by Tao Feng at Eiffel 
Software, though which one can directly link elements of the Eiffel code and spe-
cific sections or paragraphs of a requirements document produced in Microsoft 
Word, PDF or other formalisms, providing full traceability from requirements to 
design and code. Further work is in progress through Florian Galinier, Jean-Michel 
Bruel and Sophie Ebersold at the University of Toulouse.) The new development at 
ETH is the concept of multirequirements, published in the 2013 Festschrift volume 
for Glinz [196]. It puts together into a comprehensive framework a number of tech-
niques that my colleagues and I had been applying for a while. The core idea is that 
different people need different views of requirements, some graphical (UML or of-
ten for Eiffel users the BON notation), natural-language (as with a requirements 
document written in English) and formal. They should be compatible, however, to 
avoid divergences and inconsistencies. The formal version, expressed in Eiffel ac-
cording to the seamless method, serves as the reference, since it is the only one with 
a sufficiently precise semantics. Others can be generated from it or (at least in the 
case of graphics specifications) translated into it. The presentation of requirements 
uses a freely interlaced narrative of the three views, a bit in the style of Knuth’s 
Literate Programming [286] although based on a radically different view of pro-
gramming. 

The article has not been particularly well received so far. Part of the reason is 
its style of presentation: possibly a bit too clever for its own good it uses, without 
advance explanation, the very approach that it is promoting, using the notion of 
requirements as its own example “system”. The result is disconcerting, if only be-
cause you may have to read the article twice to understand it. But the form of the 
article is not the only obstacle. The concept of seamlessness shocks most people, 
particularly requirements experts. The idea that a programming language, at least 
one designed with goals of expressiveness, is perfectly able to express requirements 
just as well as implementation and design, breaks conventional wisdom and is hard 
to swallow. 

In recent work at Innopolis University, Alexander Naumchev has taken the idea 
further by adding verification mechanisms thanks to AutoProof (section 10), and 
better integrating domain constraints. 
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8.5 Other methodology work 

Among many other methodology-related developments, three projects are 
worth evoking: 
 The canard that “real programmers don’t write contracts” persists, in spite of 

Chalin’s study [276] confirming that programmers given a notation and meth-
odology naturally include contracts in their code. Estler, Nordio, Piccioni and 
Furia performed an extensive empirical study [222] of millions of lines of code 
in Eiffel, JML (contract-equipped Java extension) and C# with Microsoft’s 
“Code Contracts”, to analyze precisely how programmers use contracts and. 
since the study includes revisions, how contracts affect program evolution. 

 I performed a semi-rigorous comparative analysis of functional and object-ori-
ented programming. Having done some of my early programming in Lisp, 
closely followed later developments such as Scheme, Miranda, ML, OCaml 
and Haskell, often from talks by the designers, I was sensitive to both the at-
tractions and the limitations of the functional approach. The recent re-emer-
gence of functional languages is intriguing. A request to a contribution to a 
book on “beautiful architectures” provided the opportunity to contrast the func-
tional and object-oriented approaches to architectural design [99]. The chapter 
is somewhat in the style of my later Agile! analysis [228]: trying to sort out “the 
good, the hype and the ugly”. Starting from a published example in an article 
intended to showcase the benefits of functional programming, it analyzes and 
how the result lends itself to extension and reuse, in comparison to an object-
oriented version. To me the OO approach is the clear winner; in addition it 
subsumes it thanks to functional-style mechanisms such as agents (7.1), which 
make it possible to treat functions of any level of abstraction as objects. 

 In connection with Ivar Jacobson (the enthusiastic driver of the effort) and 
Richard Soley, I helped start the Semat project, an attempt to provide a general 
framework for software projects and their terminology. I co-wrote the original 
article [112] and organized the initial meetings and Web site (with Carlo Furia) 
but let others take over afterwards and am no longer active in Semat, although 
I remain interested in the goal of a comprehensive framework. 

9 Object persistence and databases 

Another line of research lies at the border between our official area of software 
engineering and another discipline, databases. 

The work was hard to start because of fashion effects; as soon as funding agen-
cies saw the words “database” (or “persistence”) and “object-oriented” in the same 
document, the immediate and final reaction was “been there, done that”: “it failed, 
go away, get a life and stop wasting our time”. (Paraphrasing, from various rejection 
letters.) The effect was just the same on prospective PhD students; one PhD effort, 
then another, started on the topic, only to stop after a year or so when the students 
decided to leave for something sexier. Finally, with Manuel Oriol’s help I found 
someone, Marco Piccioni, who cared about the problem, fashionable or not, under-
stood it, and got down to work. 
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Along with the rest of the programming community, I had in the 90s seen the 
fanfare announcing the arrival of object-oriented databases, then the quick demise 
of the idea due (along with the natural reaction to a technology that has been hyped 
before being ready to deliver) to two factors: the neglect of many issues fundamen-
tal to database practitioners, such as transactions, locking, concurrent access control 
and, more generally, the so-called ACID properties; and the quick moves of Oracle 
and other relational-database companies, which convinced the market that an incre-
mental evolution of their offerings was a safer bet. The result was the emergence of 
object-relational interfaces, based on a simple idea (take an object in the OO sense 
and store it as a row of a table in the relational sense), which turned out to work in 
practice. The EiffelStore library, based on an idea of Jean-Marc Nerson, was the 
Eiffel version of this technique, present almost from the beginning. Because OO 
database advocates had cast the issue as a battle with relational technology, and lost 
that battle, many people considered the matter solved, explaining the reluctance to 
fund any research on related topics. 

Issues remained, though. Two were of particular relevance: seamlessness and 
versioning. 

“Seamlessness” is a convenient term for the general goal of facilitating the in-
terplay between the OO and relational sides. Right from the start, Eiffel has had a 
powerful persistent mechanism to store (“serialize”) the entire object structure in 
one instruction (I had discovered the power of such a mechanism when using the 
SAIL language, which had it, at the Stanford AI lab in the seventies, and would not 
have wanted to work without it). That mechanism, known as “STORABLE”, had 
several versions, the original one written in C and a more recent one all in Eiffel. 
There was also the separate EiffelBase object-relational handle. Too many tools. It 
was urgent to unify everything. My original idea was that one should just program 
in an OO way and forget about persistence, which would just happen automatically; 
all that one might want to specify is which objects, occasionally, should not persist. 
That view may come back at some stage but in the current state of the art it turned 
out to be naïve. The more immediately useful task was to unify all the models and 
provide a consistent, sound and practical solution. This is what Piccioni’s work did. 
It is reflected in a publications [93]  (based on a student project by Ruihua Jin) and 
his thesis [187] and just as importantly in library developments such as ABEL. 

This part of the work actually had some trouble getting accepted by the depart-
ment’s doctoral committee at the stage of Piccioni’s thesis plan; the comment was 
that it sounded too much engineering and not enough as research. What were the 
research questions to be addressed? Our first thought was, well, yes, we are a chair 
of software engineering! Indeed much of our work is applied; the typical PhD thesis 
from the group does not have many theorems, although some do. That was not a 
good answer. We soon realized that the doctoral committee (through its chair, Moira 
Norrie) was right. Even applied work must, if it is applied research work, define 
the research questions clearly. A good software development project, however suc-
cessful and productive, does not necessarily make a good PhD thesis in applied 
software engineering. Piccioni’s goals were indeed research goals, so we were able 
to define the research questions clearly and get the plan approved. I am mentioning 
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this episode because it illustrates again where the quality of a top academic institu-
tion lies. While the basic ingredient of quality is to hire the right professors and the 
right students, the process also requires checks at some strategic steps. Many uni-
versities that I have seen institute too many of these checks, and, more damagingly, 
the wrong kind of checks: bureaucratic requirements of providing documents, cer-
tificates, notarized signatures, and of collecting signatures of people who are too 
overwhelmed by administrative requests to give much attention to what they sign. 
Such checks are proxies for the real ones; they focus on form, not substance. Sim-
plifying the process makes it possible to insert, at one or two crucial steps, a useful 
check focused on content. The committee did not just check that the forms had been 
filled properly but read the thesis plan and came back with criticism. What matters 
is not just that the criticism was justified (had we disagreed, there was room for 
discussion) but that focus on the substance of the research. No one, by the way, was 
intruding into the research itself, or the critical advisor-to-PhD-student relationship. 
The members of the committee, while all professors in the computer science depart-
ment, were not trying to influence the topic or second-guess the thesis advisor; their 
task was simply to enforce standards of scientific quality, applicable across all areas 
of the discipline. 

The other persistence-related topic, which did not raise such problems, was 
versioning. There is little discussion of this topic in the literature, aside from my 
own analysis in Object-Oriented Software Construction (chapter 31 of [299]), 
which in my opinion (in line with the general absence of any pretense at modesty in 
this article) still provides the appropriate conceptual framework. Popular or not in 
the literature, the problem is fundamental in the practice of software development. 
Assume you are a major bank and have 100 million “bank account” objects, in-
stances of the class ACCOUNT, stored in your database. A programmer adds or 
removes an attribute (field) in the class. What happens to the stored objects? 

My guess is that most people use some ad hoc solution, for example adding a 
field with a default value. But if you have any concern about correctness, that is 
dangerous. If the change was (as a simplistic example) to add a “balance” attribute, 
whereas account objects until now only had lists of deposits and withdrawals (from 
which the balance could be computed, but now we want to store it at all times in the 
object), then 0 is not a proper value for the fields added to the existing objects. It is 
in fact very wrong. The right value is the sum of deposits minus withdrawals. 

The versioning work produced two papers, [114] (incorporating the results of 
a student project by Teseo Schneider) and [188], as well as an IDE extension, 
ESCHER, to visualize and control what happens to objects over successive evolu-
tions of the software.  

10 Verification, static and dynamic 

Verification may in this article have waited until section 10, but it was always (and 
for me, long before ETH) at the center of our attention. 

Various subdisciplines have different ways of understanding the term “verifi-
cation”. We will use it in the most general sense, covering both parts of what in the 
software engineering community is often called Verification and Validation or 
V&V, with the first component assessing the “how” and the second the “what”. In 
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the academic programming community verification has come to mean proofs, while 
for people in industry it basically evokes tests; we are interested in both. 

10.1 The vision: Verification As a Matter Of Course 

Many research teams interested in verification focus on one approach, such as 
model checking, or testing, or Hoare-style proofs. Our view is that the problem is 
hard enough to justify summoning any idea that helps. The broad spectrum of our 
effort lead to the slogan “Verification As a Matter Of Course” or VAMOC, with 
two key ideas: 
 Unlike some heavy-duty approaches based on formal specifications and proofs, 

do not try to impose a radically new software process and tools, but let devel-
opers work in the context of modern software development, with a good IDE 
and a language offering all that makes it worthwhile to get out of bed in the 
morning and go to work: classes, single and multiple inheritance, dynamic 
binding and the like. Hence “As a Matter Of Course”: the process should be to 
develop software normally, adding a verification component. 

 The verification machinery should support verification in a discreet way, ap-
plying different tools, some dynamic (tests), some static (static analysis, proofs) 
to comb the code for bugs, filtering them to avoid overwhelming programmers 
with information, and reporting them. 

This VAMOC vision could also be called “verification for the people”. 
It is close to Tony Hoare’s “Verifying Compiler Grand Challenge” [283] and 

was influenced by it. In the early 2000s, Hoare was agitating for launching a large 
international cooperative project, in the style of human genome sequencing, to pro-
duce a compiler that would also verify the code it compiles and, if successful, guar-
antee the correctness of the result. No funding agency launched such a grand pro-
ject. Hoare’s talks encouraged verification research, however, and our effort is a 
direct attempt to implement the Grand Challenge. 

We often used, to explain 
the VAMOC idea of comple-
mentary techniques, a metaphor 
apposite to Switzerland. The 
Gotthard tunnel connects the 
(sometimes rainy) German-
speaking North to the (some-
times sunny) Italian-speaking 
South. At the time of construc-
tion in 1882, the two drilling teams met and held a big celebration. In just the same 
way, the EVE environment presented next connects dynamic and static techniques 
of verification. It is not just that we use both, but that we use them together; some 
of the ideas we developed, such as model-based specifications (section 10.9) are 
just as useful for one as for the other; [153] describes some of that interaction. 

 
The following picture illustrates the VAMOC and EVE scheme.  
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We applied both the static techniques on the left and the dynamic ones on the 
right. As explained in [256], the idea of the “arbiter” is to assess how significant a 
verification result. There is a full scale from -1 (demonstrably incorrect) to +1 (de-
monstrably correct). A successful proof yields +1 if the prover is sound (Auto-
Proof comes close), a failing test -1. With a complete prover, a failed proof would 
yield -1 (no sound prover can be complete because of undecidability results). A 
passing test slightly increases trust.  

 
The arbiter idea is the future of verification in the VAMOC style. It was imple-

mented, although not yet included in any released version of the environment. 

10.2 EVE 

What does “released version” mean? For a Chair of software engineering the results 
include not only papers, the traditional academic artifacts, but programs. Where do 
these programs go? Most teams produce research prototypes; that is what we did 
too, until I realized that the approach was self-defeating. Typically, the prototype 
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would work well enough for a demo in the master’s project presentation or the PhD 
defense, and the day after, or when the student left, there was no usable result. The 
code was in some repository, but it no longer compiled with the current version of 
the compiler, or it had a dependency, documented or not, on some external software 
product that was no longer available, or some piece was missing. It was hard or 
impossible to help someone who wanted to use the tool after seeing an impressive 
demo or reading the published paper; another student asked to take up the work 
would waste time getting it back into shape.  

I made the decision to forbid research prototypes. No exceptions: all software 
had to go into a single base product. Having become open-source (section 3), Eif-
felStudio could have been that product, but that approach was not realistic: Eif-
felStudio, whether closed- or open-source, is a production tool used by companies 
for mission-critical projects, and undergoes a carefully managed release process. It 
would not be acceptable to endanger it with the latest results of research, where 
creativity is encouraged but can lead to mistakes. 

The solution was to create a research branch of EiffelStudio, called EVE, the 
Eiffel Verification Environment. In general, branching is a terrible idea in software 
engineering [228], leading to the merge nightmare evoked in section 6, so we had 
to devise the process carefully. Our process would not affect EiffelStudio: EVE 
would  be free to include all the additions and adaptations we wanted, not interfering 
with the production branch, but it had to compile and run under its current version: 
they did not have to care about our work, but we had to be adapt it to theirs. 

While the idea sounds simple, there had been so much divergence in the Chair’s 
early developments that it took a year and a half for Yi (Jason) Wei to implement 
the EVE process and integrate the major software results produced thus far, in par-
ticular the early versions of AutoTest. Once all was in place, however, keeping EVE 
in sync became a well-oiled process, successively handled by Wei, Tschannen and 
Schill, of reconciling the EVE branch with the EiffelStudio “trunk” every Friday 
afternoon before leaving for the week-end. 

Some of the EVE tools, notably AutoTest, migrated to EiffelStudio, after un-
dergoing productization (what is good for research and student use is usually not 
good enough yet for production use). Other tools, notably AutoProof, have not 
crossed over yet.  

10.3 AutoTest 

Eiffel has always used contract elements (preconditions, postconditions, class in-
variants and others) as tools for testing. By enabling run-time contract monitoring, 
programmers find bugs much faster, and much closer to the source, than with the 
usual methods of programming. It has long  been for me a source of bewilderment, 
and continues to be, why the whole world has not switched to this mode of devel-
oping software44. 

                                                            
44 It is also fair (even if grossly vain) to mention that I can hardly give a conference talk in a 
new place, however exotic, without seeing some locals come to me at the end to tell me that 
discovering these ideas from my books and articles changed their lives. 
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The ideas (the root of which comes from verification work in the seventies —
Wirth and Hoare’s Algol W already had an ASSERT instruction) have spread in 
part to other approaches, from testing-oriented assertions in JUnit to the Java Mod-
eling Language and Microsoft’s Code Contracts, exposing a wide audience to some 
of the benefits. The full idea of Design by Contract, however, treats the correspond-
ing constructs as a built-in part of the programming language, method, requirements 
process (see section 8.5) , implementation process, proof process when available (as 
discussed below), and, most relevant for this discussion, testing process.  

These elements are not new. The new question was: how much can we auto-
mate the test process further? “Test automation” came into vogue with JUnit and its 
predecessor “XUnit” tools. But they only automate one part of the testing process: 
running the tests. This step was a significant advance, but it left to manual work two 
of the most labor-intensive and tedious parts of testing: 
A. Generating test cases. 
B. Generating test oracles, the test success criteria. You can run a million tests and 

learn nothing if you do not determine which ones succeeded and which failed. 
The impetus to innovate in this area came from a suggestion by Xavier Rousselot, 
during a discussion with Emmanuel Stapf and me when he was finishing his student 
internship at Eiffel Software in Santa Barbara in June of 2003. His idea, which we 
found to be more suited to an academic research project at ETH than for a commer-
cial development, was simple: use classes and their routines for A, and contracts for 
B. Then we can have fully automatic testing. 

After a proof of concept by Karine Arnout under the name “Test Wizard”, the 
full-throttle AutoTest project started for good, involving in particular the PhD theses 
of Ilinca Ciupa, Andreas Leitner and Yi (Jason Wei), with key supervision by Ma-
nuel Oriol and help from Stapf and others at Eiffel Software45. 

A good summary of AutoTest appears in an IEEE Computer article, “Programs 
that Test Themselves” [113]. Testing-related references in the bibliography of this 
article include [55] [63] [64] [65] [67] [71] [81] [82] [83] [92] [97] [98] [108] [113] 
[123] [149] [156] [164] [186] [189] [193], plus the bug-fixing references cited be-
low in section 10.6.  

 The core ideas behind AutoTest are: 
 Add automatic testing (in the sense outlined above) to a basic XUnit-style 

framework. In other words, manual tests remain; automatic tests are a comple-
ment, not a replacement. Our empirical work [64] [65] shows that they are com-
plementary in uncovering bugs. 

 Generate objects by using the constructors of the classes under test. 
 Generate tests by calling routines on objects. 
 To select objects on which to call routines, alternate between newly created 

objects and objects from a pool resulting from previous creations and routine 
calls. The pool is necessary to avoid working only with young objects. For ex-
ample if you are testing operations on a list class, you want to make sure that 

                                                            
45 Microsoft Research’s PEX, by Bjorner and de Halleux, is an elegant effort starting from 
some of the same ideas and combining them with symbolic execution. It is now part of Visual 
Studio under the name IntelliTest. 
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some of the tests will use big lists, which can only result from repeatedly calling 
insertion routines on previously created lists. 

 To select arguments for routines, use various heuristics for basic types (for ex-
ample, in the case of integer arguments, 0, +1, -1, MAXINT, MININT and so 
on), and for object (reference) arguments use the pool, with heuristics such as 
object distance discussed below. 

 If a precondition is violated in a call by AutoTest, skip the call: this is just 
AutoTest trying to call a routine in a case that the routine’s specification has 
explicitly ruled out, so it is just wasting CPU cycles. 

 Minimize such waste. This is the whole matter of optimizing object selection 
for precondition satisfaction, which Wei in particular studied in depth with Ma-
nuel Oriol [123] and implemented in AutoTest. 

 Shoot for postcondition violations. They are the real prize! If AutoTest calls a 
routine with its precondition satisfied and, on exit, the postcondition fails, we 
have hit Bingo. Also precondition violations, in routines called by other rou-
tines (not directly by AutoTest), and invariant violations. 

The implementation of these ideas took several years and PhD theses, supported by 
many auxiliary efforts. A sign of success is that today the essential elements of Au-
toTest found their way into the standard delivery of open-source EiffelStudio. An 
even more concrete sign is the number of bugs that AutoTest uncovered in an en-
tirely automatic fashion. Some of these bugs were in EiffelBase and other widely 
used libraries where they had laid dormant for many years46. 

EiffelBase was indeed our major practicing ground for AutoTest, and for Au-
toFix as discussed below. Possibly too much; I yearned for more testbeds, but one 
of the limitations of AutoTest in its current form is that it works best with mostly 
self-contained software. If you have too many dependencies on external stuff, as in 
an application library, you need some way to give AutoTest information about it. 
We had ideas on how to address this issue, but ran out of time before we could try 
them. 

The other main issue with current AutoTest is performance. For reliability and 
resilience (the testing tool should not fail when a test fails, since failing tests is 
indeed the whole purpose of the game!) the tool uses a multi-process architecture, 
which penalizes speed. In current uses of AutoTest, which we call “test while you 
lunch”, this is not a major limitation: periodically, start an AutoTest session on a 
number of classes, go to lunch, and when you come back the tool has found the bugs 
for you. In the VAMOC spirit of a guardian-angel kind of tool that is constantly at 
work, behind the scenes, to dissect your code and alert you to potential problem, the 
speed is typically not sufficient for such interactive feedback. This is largely an 
engineering problem, but we have not yet been able to get to it. 

                                                            
46 About one of our testing papers relying on EiffelBase, an anonymous referee commented 
that he did not believe the results because he had never seen production code with so many 
bugs. Perhaps EiffelBase was indeed substandard. Or perhaps not (as I suspect). Without a 
systematic application of such techniques to other software, which also assumes that it is 
specified by extensive contracts such as those of EiffelBase. So we do not know for sure. The 
paper was accepted. 
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10.4 CDD 

Complementing the basic AutoTest ideas discussed above is the concept that An-
dreas Leitner proposed under the name “Contract-Driven Development” or CDD 
[71], a response to the Test-Driven Development (TDD) of Extreme Programming. 
In TDD writing code follows from writing individual tests; the idea of CDD is to 
go one level of abstraction higher by using specifications (contracts) instead of tests. 
A central insight was the following observation on the debugging process. Typi-
cally, you are trying out your program interactively; you hit a bug: 

 

 
What happens next? You find out what was wrong, you fix the bug, and move on 
with your program and your life. But that is a pity: a piece of wisdom that the soft-
ware engineering community has learned over the years is that bugs should remain 
part of your life, like the misdeeds of your youth of which your great-aunt never 
fails to remind everyone in every family reunion. The software engineering notion 
is “regression suite”: the collection of useful tests, to be run for each new iteration 
of the code. It is particularly important for the regression suite to include every test 
that has failed at any time in the history of the project, because of the particular 
software problem of “regression”: old bugs coming back. But in the informal inter-
active approach to debugging suggested above, the failure occurred during an inter-
active session, not as part of a formally recorded test. 

The “Test Extraction” mechanism of AutoTest, following from the CDD anal-
ysis, automatically generates a test from a failure in such a case. Going from the 
idea to its realization required addressing a number of delicate problems: every ex-
ecution is different, and the program evolves, so we have to do our best to recreate 
the original conditions when possible. Test Extraction is part of the research version 
of AutoTest but not yet of the production version in EiffelStudio (largely because 
of these difficulties). 
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10.5 General testing results 

The work on AutoTest, and its systematic validation on numerous libraries and other 
programs, moved our group’s work firmly into empirical software engineering, and 
enabled us to address many general issues of testing, far beyond the application to 
AutoTest and its target language. Here is a small selection of the insights we gained. 

First, I should mention a principle that we always applied to our testing re-
search: we never once seeded a single bug. Most empirical testing research works 
on software into which faults have artificially been inserted (“seeded”, or “in-
jected”). Although research by Lionel Briand provides some empirical justification 
for fault injection, this approach always felt wrong to me, since it is difficult to 
guarantee that the injected bugs are representative of real ones. We did not need to 
inject anything since we were working with real software (mostly, Eiffel libraries) 
with a 25-year record of its evolution including all actual bug reports (in the Eif-
felStudio repository) and which in some cases still had some bugs. It is always better 
to try your ideas on the real thing rather than a mockup. 

Our empirical studies derived several non-panacea (or “no silver bullet”) re-
sults. For example [92] compared “Finding Faults: Manual Testing vs. Random+ 
Testing vs. User Reports” (the title), respectively using manual test results from the 
repository of EiffelStudio evolution (a rich source of empirical software engineering 
data, going back to the early nineties), and early version of AutoTest, and bug re-
ports from user in the fields. It found that they uncover largely complementary kinds 
of faults (bugs). For example AutoTest systematically tries extreme values such as 
MAXINT but human testers almost never do. 

Another seemingly disappointing result comes from early work, performed in 
part by Raluca Borca-Muresan, a student intern from Romania [65]. The idea was 
to look into failures found by AutoTest and decide, on the basis of human analysis, 
what the source of the fault is in each case. The study found that a substantial pro-
portion of contract violations reflect bugs in the contracts rather than the code. On 
the surface, this results seems to provide an argument against Design by Contract: 
why bother adding assertions if some of them are going to pollute code that was OK 
to start with? The argument does not hold, however: “OK” is a subjective assess-
ment, which can only be based on some higher-level human view of what goal the 
code was truly trying to achieve. If you cannot specify that goal precisely, there is 
something wrong, and you will not be able to verify the code, since verification 
means comparing implementation to a specification. The more directly actionable 
result of the study is that (as anyone who has tried his hand at formal specification 
knows) writing contracts is hard too, even if not of exactly the same kind of diffi-
culty as writing code. [65] is a short paper and the study was limited; it would de-
serve to be run again, with the benefit of recent empirical work on the practical use 
of contracts such as  [222]. 

Yet another comparative study of different kinds of contract leading to a com-
plementarity, no-panacea result is [108]. In this case, the techniques found to be 
complementary are contracts written manually and those that, in the light of our 
experience with DAIKON, can be inferred automatically using dynamic techniques. 



75 

The search for effective testing techniques in AutoTest led us to improve exist-
ing techniques of “Adaptive Random Testing”. ART [277] (also the subject of scru-
tiny by Briand, with Arcuri) uses values selected largely at random but with some 
bias so as to provide reasonable coverage of the input domain (for example, in the 
case of two integers, the four positive/negative combinations). Ilinca Ciupa came 
up with the idea of “object distance” to make ART possible not just for basic values 
but for objects as well. The idea, described under the acronym ARTOO in an ICSE 
2008 paper written with Andreas Leitner and Manuel Oriol [83] 47, is to spread ob-
jects too, the way ART spreads for example integers, by maximizing their distance, 
defined through a number of parameters of both the corresponding classes (for ex-
ample how far apart they are in the inheritance structure) and the field values in the 
objects themselves. Our studies did evidence the benefits of applying ARTOO to 
vary the objects in the pool. 

Another insight that I learned largely from Ciupa is about the proper focus in 
testing research. Many articles we saw proclaimed victory when they could evi-
dence a shorter “time to first bug” than the previous method. This criteria is not the 
right one for two reasons: 
 We need to find all bugs, not just the first. Maybe the first bug comes very 

quickly and the second bug will take two hours. 
 Many of the strategies that are so good at finding the first bug get there thanks 

to a complex setup. But the time for that setup may eclipse the actual testing 
time! Any objective results must take everything into account, setup time and 
testing time. 

These observations led us to a strict discipline in our testing work. We learned not 
to fall in love with our own brilliant ideas of testing strategies. What counts is not 
how convincing the idea sounds on paper, but how many bugs it will find in how 
long. We decided that this criterion — B (t), the number of bugs (real ones, not 
seeded faults) found after t seconds of test execution, setup and teardown time in-
cluded —would be the only one we applied to our empirical testing work. 

Another lesson we learned, with initial insight coming from Manuel Oriol, was 
had to do with testing coverage. Industry mostly uses branch coverage as its esti-
mate of how extensively a program has been tested. A common rule of thumb is 
“release at 80% coverage”. Common in theory at least; in projects that I have seen 
the threshold can be as low as 30% or even 20%. But even a higher threshold is, in 
light of our experiments, not that promising. We had the software to test (Eiffel 
libraries); we had the bugs (we often used older versions from the repository, with 
many faults corrected later); we had the completely automatic technology (Au-
toTest); and we managed to acquire the computing power: a good dozen servers 
that, for a while, did nothing else than run AutoTest of code, day and night. This 
infrastructure was necessary in part because AutoTest relies on a number of heuris-
tics, such as how many values to use in ART and what proportion of objects to 
create versus reusing objects from the pool, so we also used the process to optimize 
these parameters experimentally. 
                                                            
47 I told Ciupa that the paper was not ready for submission. She sent it to ICSE anyway. At 
the time of writing it has 177 citations on Google Scholar. 
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The following experiment results by Oriol and Yi Wei, published in “Is Cov-
erage a Good Measure of Testing Effectiveness?”[164], show coverage as the gray 
line and cumulative bugs found — the “B (t)” mentioned earlier — as the thick line. 
The various figures correspond to different classes in EiffelBase. 

  
 

  
The picture is striking: in all cases the tests, all generated automatically by AutoTest 
(there were no manual tests) reach high coverage quickly, sometimes 100% cover-
age very quickly. But in most cases the process continues to find new bugs! 

With all the due reservations on the specificities of the study, it seems to pro-
vides strong evidence that coverage is not good enough. 

If coverage does not provide the answer, what information can industry projects 
use to address the crucial practical problem of when to stop testing? This study and 
my experience suggest that the best predictor of remaining bugs is past bugs. Look-
ing at the charts above, I think that if I were following the results of AutoTest for 
any of the given classes I would have a good intuition for when the likelihood of 
remaining bugs has reached a low enough level. 

A precise, actionable answer to this question would be of extraordinary interest 
to software practitioners, particularly managers, for whom the question of when it 
is safe to stop testing is paramount. The same team of Wei, Oriol and me, with Carlo 
Furia as well as Andrei Tikhomirov from ITMO took the work further, generalizing 
the empirical basis by including results from Yeti, an AutoTest-style tool devised 
by Oriol at ABB after he left our Chair [189]. It got it closer to the magical formula, 
but work remains. 

  Testing was largely a new research area for me when I came to ETH. As noted, 
it played an essential role in introducing our group to empirical research. My “Seven 
Principles of Software Testing” in IEEE Computer [89] (see also a follow-up [109] 
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in response to reader comments) distills some of the theoretical and practical wis-
dom that our work (up until 2008) on this key area of software engineering,  

10.6 Automatic bug fixing 

Towards the end of his thesis work on AutoTest, Andreas Leitner came up with an 
intriguing suggestion: move on to not only detecting bugs but proposing fixes, again 
building on the Eiffel advantage of contracts, which give a specification of the in-
tended semantics. He also discussed the concepts with Andreas Zeller in Saar-
brucken, who was keenly interested in the topic. We soon started parallel connected 
projects (using provided by the German and Swiss national research agencies for 
connected projects in both countries). Yi Wei devoted a substantial part of his thesis 
work to the tool naturally called AutoFix, and Pei (Max) Yu, who joined us shortly 
after, almost all of his. Martin Nordio and Carlo Furia also played important parts, 
and we worked in close collaboration with Zeller and his student Valentin 
Dallmeier. AutoFix publications include [115] [128] [154] [155] [215][237][246]. 

AutoFix, finding a bug through AutoTest, suggests fixes based on a comparison 
of the passing and failing states. The aim is not just to find a fix, which by itself is 
trivial (just add an “if” instruction to yield the expected answer in the so far errone-
ous case) but a high-quality answer. The ultimate criterion of quality is, in conform-
ance to our cardinal rule of working with real bugs on real software, whether the fix 
suggested first by AutoFix will match the fix that the human programmer actually 
applied. In tests with earlier versions of EiffelBase from repository, AutoFix met 
this goal in an impressive 42% of cases. 

We were not the only ones to get into automatic bug repair; this new research 
field was born and quickly developed just as we got our first results. We wanted to 
ascertain these results and did not rush to publication; others who did and received 
visibility had to retract some of their claims later on. 

AutoFix suffers from the same engineering need as AutoTest, mostly in fact 
because of AutoTest and not of the AutoFix process. This issue must be addressed 
before AutoFix can fit the VAMOC vision of identifying problems in real time 
while a programmer is developing code, and providing immediate feedback, in this 
case a suggested fix. But even without this interactive capability AutoFix is a sig-
nificant advance, built on solid ideas and validated through meaningful examples, 
and a potential basis for significantly improving the programmer experience. 

10.7 Proofs: the road to AutoProof 

Using contracts as dynamic test oracles is great, but the idea and ideal had always 
been that they should lead to correctness proofs. With the progress of proof tech-
nology, this ideal is within reach. Our main tool towards it is AutoProof [127] [132] 
[151] [153] [177] [186] [193] [194] [221] [230] [236] [239] [256] [257] [259] 
(autoproof.org [273]) is the regularly updated Web site).  

We never attempted to develop a proof engine. The reasoning was that provers 
are a specialized technology and that others with expertise in the field were already 
working hard on proof tools such as Isabelle, PVS and Coq. Our expertise was on 
the programming side; we should rely on their efforts. 
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The first attempt at using an existing prover failed. The idea behind bringing 
the Event-B project to ETH was to combine B and particularly its powerful prover 
with object-oriented development. It takes two to tango; the Rodin team had its own 

interests and the B prover remained bound to its original goal, supporting the re-
finement-based B process. Object-oriented development is more geared to a bot-
tom-up process which favors reuse and change [291] [292] [299]. I believed that it 
would be possible to overcome this obstacle48 and bring the two approaches together 
but that did not happen. 

The search for a prover continued; one of the benefits of hosting so many sem-
inars, conferences and summer schools is that one gets exposed to many good ideas 
and developments. One of them was the work on verification done at Microsoft 
Research, by Rustan Leino together with Mike Barnett, Wolfram Schulte and others 
on the Spec# language. Spec# was an extension of C# with Eiffel-like contracts, in 
the line of earlier work on ESC/Java at Digital’s research center in Palo Alto and, 
like ESC/Java, incorporating a proof tool. Spec# as a language did not have a long 
life because it was geared to a particular version of the C# language and did not 
follow later evolutions of C#. But the prover, Boogie, turned out to be remarkably 
successful thanks to an API design that did not tie it to the source language, defining 
instead an Intermediate Verification Language (IVL) which verification systems for 
languages other than C# can target. Bernd Schoeller, supported by Peter Müller who 
knew Boogie well, was the first in our group to point out the suitability of Boogie 
for verifying Eiffel. Boogie is the prover at the heart of AutoProof, as built in the 
following years by Julian Tschannen, Nadia Polikarpova with the help of Carlo 
Furia and Martin Nordio. 

10.8 AutoProof 

The best way to get familiar with AutoProof is to go to the autoproof.org site and 
try the tool online. Thanks to the online programming tools presented in section 5.3, 
AutoProof is available there, serving as a tutorial but also simply as an online ver-
sion of the tool. The tutorial includes examples of increasing difficulty. One of the 
first is a bank account class which I have often used in talks. In trying to verify the 
original text, AutoProof proves the correctness of the routines deposit and withdraw 
but fails on transfer:  

                                                            
48 I owe to Michael Butler the observation that in a B-like refinement process the invari-
ants can serve as the basic guiding tool for handling change. 
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If I ask the audience what is wrong, experts in verification will usually spot the 
problem quickly, but many times an audience of even experienced OO programmers 
goes blank. The routine is written as follows49: 

transfer (sum: INTEGER; other: ACCOUNT) 
  -- Move `sum’ from Current account to `other’ 
 require 
  sum <= balance 
  other /= Void   -- The other account exists 
 do 
  withdraw (amount) 

other.deposit (amount) 
 ensure 
  balance_decreased: balance = old balance - amount 
  other_ increased: other.balance = old other.balance + amount 
 
 end  

The implementation and specification seem right at first (you are invited to 
ponder them before reading on). The reason AutoProof cannot prove its correctness 
is that in fact it is not correct: if the `other’ account is the same as the current object 
(Current in Eiffel, “this” in Java etc.), the first postcondition clause will not hold. 
Once spotted, the problem is easy to fix: either add the precondition clause 
other /= Current or adapt the implementation so that it does nothing when 
other = Current. This example is illuminating since it illustrates a type of bug that 
is both: 
 Very possible to produce in the practice of program writing: when writing the 

transfer operation, a programmer typically thinks by default about the standard 
case of transferring to a different account (why would one transfer money to 
the same account?). The experience of AutoProof talks — when no one in an 
audience of experienced programmers sees the problem after looking at the 
code for a few minutes — supports this conjecture.    

 Very possible to arise in the practice of program execution:  sooner or later, the 
same-account case may occur. 

 Often hard to debug: such wrong run-time effects typically manifest themselves 
rarely (like concurrency bugs) and may remain undetected for a long time. 

AutoProof finds it right away in its attempt to prove the correctness of the class.  
One of the characteristics of AutoProof is that it covers the full Eiffel language. 

Other successful verification tools, such as Spark Ada, limit the programmer to a 
restricted programming language, or, as in the case of Event-B, a specific mathe-
matical notation, not benefitting from advances of modern programming languages, 
and translated to an actual programming language only at the very end of the pro-
cess. The VAMOC idea is to let the programmer benefit from the full power of a 
powerful OO language, but then it means the tools must support all of it. In such 

                                                            
49 With void safety (section 10.2) this second precondition clause is not necessary. Auto-
Proof does not yet take advantage of the void-safe mechanism. 
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efforts the last mile — the last constructs to be equipped with a formal semantics and 
the corresponding verification rules — are among the hardest.  Work on agents [127] 
and exceptions is typical; see also [177] and [239]. Because a programming lan-
guage is an evolving target it is hard to guarantee 100% coverage, but AutoProof 
handles all the constructs that Eiffel programmers use in practice. 

AutoProof handles full correctness: proving that a program meets a certain 
specification. Other forms of verification, such as model checking and abstract in-
terpretation, do not require writing such a specification, but only provide specific 
results, in the form of a guarantee that the program will not cause certain undesired 
event. Full correctness means that we have to provide more annotations, in the form 
of contracts, but then the prover guarantees what the program actually does. 

In the VAMOC spirit of integrating every bit that helps we also used model 
checking, particularly for concurrency under the influence of Chris Poskitt [258] 
[266]. Another technique complementary to the Hoare-style framework, not used in 
AutoProof, was separation logic in Stephan van Staden’s and Cristiano Calcagno’s 
work [126] [214]. 

Object-oriented programming, with its rich run-time object structures, raises 
delicate verification problems, particularly in connection with aliasing and the se-
mantics of invariants. A considerable literature exists on these issues, proposing 
many solutions such as “ownership types”, but not converging on any single one 
that has been widely accepted. Started by Nadia Polikarpova, the “semantic collab-
oration” approach [221] [236] attempts to unify and simplify the best of these ideas 
and is the basis for the handling of invariants in today’s AutoProof. I find the con-
cepts still too difficult for daily application by ordinary programmers, in the 
VAMOC style, and am working on a simpler solution [265], but it is for future 
versions of the tool. 

The most visible achievement of AutoProof is Polikarpova’s complete correct-
ness proof of the EiffelBase 2 library [257]. EiffelBase is the standard Eiffel collec-
tions library (arrays, stacks, queues and other “Knuthware”).  It soon turned out that 
taking the original EiffelBase and verifying it would not work. EiffelBase 2 is a 
rewrite, largely but not fully API-compatible with it and using a simpler inheritance 
structure. It covers the same ground, and is used instead of the original EiffelBase, 
for example, in the Traffic library (section 4.5). It may one day completely replace 
EiffelBase. 

The verification of EiffelBase 2 shows the power of the AutoProof approach. 
The library is sophisticated software, using the most advanced language mecha-
nisms and dealing with complex data structures. The result also shows the limits of 
the approach: it required many months of work by experts in the field (mainly 
Polikarpova), in fact by the very builders of the technology. Some of their experi-
ence can be taught to others, but generalization to the programmer community at 
large, in the VAMOC spirit, requires further simplification. That is the aim of my 
current work mentioned above. 

These observations detract in no way from my view that the mechanized proof 
of EiffelBase 2 is a milestone in the history of verification and more generally of 
the quest for quality software. 
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10.9 Model-based specifications 

Proofs of full correctness require a specification of the full behavior. The basis for 
our specifications is the notion of contract as expressed by the preconditions, post-
conditions, class invariants, loop invariants and “check” instructions that Eiffel pro-
grammers include in their code. Are contracts enough? 

Potentially yes, but not in the way they were traditionally used. A typical post-
condition for a “push (x)” operation in a STACK class states 

top = x   -- The top element is now x 
-- (Last-In-First-Out properties of stacks) 

count = old count + 1  -- One more element than before 
which is sound but leaves out the requirement that the push operation should not 
mess up with any of the existing stack elements. A devious implementer working 
from this specification could change any of those elements. A “full specification” 
is one that, in such cases, expresses all relevant properties, not just the most inter-
esting ones. 

The solution we devised, first published in [49] and further developed in [132] 
and [193], uses “model queries”. Its idea is to associate with the abstraction defined 
by a class a mathematical interpretation, or “model”, and express specifications, 
when needed, in terms of that model. The model can be a set of features already 
present in the class; for example, we may select the attributes “owner” and “bal-
ance” (and possibly others) to form the model of a class BANK_ACCOUNT, stat-
ing that they capture the essential semantics of the concept. In other cases, the model 
queries have to be added to the class. For STACK we use as a model the sequence 
of values in the stack, from the top down; we introduce in the class a new attribute 

model: MML_SEQUENCE [T] 
where T is the type of the stack elements. Such model attributes or functions do not 
need to penalize the implementation in space or time: they can be declared as 
“ghost” features relevant only to the verification. (Model features are simply fea-
tures marked “model” in a “note” clause of the class.) The postcondition of push (x) 
becomes simply 

model = <x> + old model 
in other words, the new sequence after a push is the concatenation (“+”) of the sin-
gle-element sequence <x> and the previous sequence. The properties of the tradi-
tional specification, expressed in terms of “top” and “count”, become consequences 
of this more general one (theorems), deduced from the properties of sequences and 
the model-based specification of “top” as the first element of “model” and “count” 
as the size of “model”. 

Model queries solve the problem of full specification and enable AutoProof to 
fulfill its goal of full correctness proofs. They also had a substantial effect on the 
dynamic (AutoTest) side of our verification effort, enabling AutoTest, as reported 
in [193], to uncover significantly more bugs. 
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10.10 Automatic alias analysis 

Some of the practical difficulties of verification mentioned above arise from alias-
ing: the possibility for two reference variables (pointers in some languages) to be-
come attached to the same object at run time. The case other = Current in the `trans-
fer’ example was an example. In that case the problem has an easy solution: disallow 
aliasing through the precondition, or handle that special case in the implementation. 
But often, with complex data structures, aliasing is inevitable. For example in a 
circular linked list the first element is aliased by construction, pointed to both by 
the list header and by the last element. 

Semantic collaboration and ownership, used in AutoProof, address the prob-
lem, but at the price of added complexity. Another technique that has attracted at-
tention is separation logic, to which we were exposed in depth at the 2008 LASER 
summer school, catching Stephan van Staden’s attention. The resulting work  [126] 
[214] does an excellent job of applying separation logic to object-oriented program-
ming. It was important to perform that job, but my personal conclusion from it is 
that separation logic is not sustainable in a practical approach to verification, par-
ticularly in the VAMOC spirit of verification for the people. The extra annotation 
effort (specifying that certain parts of the object structure are disjoint from each 
other) is just too formidable. It is also, in my opinion, too low-level, forcing pro-
grammers to discover and express properties of the run-time structure (often called 
“the heap” in separation logic, as if to reinforce the implementation-oriented nature 
of the approach) from which object-oriented programming, in its effort at abstrac-
tion, normally shields them. 

Uncovering these properties should, in my view, be the business of the imple-
mentation rather than the programmer. Based on this idea, I devised an alias calcu-
lus [122] [147] [241] complemented by a change calculus (see the last of these ref-
erence). The alias calculus is a set of rules defining a transfer function on programs, 
though which it is possible to compute the “alias relation” at any program point. 
The alias relation is the set of pairs of expressions (of reference types) that could be 
aliased to each other (have values that point to the same object) when an execution 
of the program reaches that program point. For example, after the assignment 
ref1 := ref2, the pair [ref1, ref1] should be in the alias relation. The calculus should 
yield an alias relation that is: 
 Sound: if there is any execution for which e and f could be aliased at the given 

program point, the relation should include [e, f]. 
 Precise to the extent possible: avoid including in the relation any pair [e, f] 

which no execution can alias. Since it is impossible for a general-purpose pro-
gram analysis to satisfy both soundness and perfect precision (the problem is 
undecidable), precision is an optimization criterion: we try to get the best pre-
cision we can. In other words it is a criterion of realism: an analysis that puts 
all expression pairs in the alias relations is sound, but useless.  

The rules of the alias calculus yield, for every construct of the language, the induced 
transformation » of the alias relation. For example the rule for sequential composi-
tion, as expressed by the language operator “;”, is 

a » (p ; q) = (a » p) » q 
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where the right side expresses the alias relation that will hold if the program exe-
cutes `p ; q’, that is to say p then q, from a state in which the alias relation is `a’. 

The alias calculus complements standard Hoare-style reasoning with asser-
tions: it can inform it, by deducing properties of the form e /= f, and can be informed 
by it. Aliasing is at the center of many problems in verification, in particular: 
 Providing a simple verification technique for class invariants. 
 Deadlock analysis in concurrent programming, particularly in the SCOOP con-

text as described in [244]. 
 Frame analysis, as discussed below. 
I wrote a first implementation of the alias calculus to test the ideas. A more serious 
implementation in EVE was then produced by Alexander Kogtenkov. A conceptual 
problem delayed the progress of the implementation. My original papers  [122] 
[147]  described both alias relations and “alias diagrams”, intended as a graphical 
illustration. Sergey Velder from ITMO, who was collaborating on the topic (and 
Alexander Gerasimov also then from our ITMO lab) argued that it should be used 
as the mathematical model as well. I resisted the idea because of efficiency con-
cerns: with diagrams, a conditional instruction, and any loop iteration, seems to re-
quire duplicating the entre diagram. But the alias relation approach has problems 
too. In particular, the relation can be infinite: with a loop scheme such as 

from a := first loop … ; a := a.next end  
(common on linked lists), a can become aliased to first, first.next, first.next.next and 
so on. The papers handled this issue through the notion of “dot completeness”, but 
it complicates the scheme. 

I had to remove my mental block about the diagram approach. Once I started 
looking seriously at the approach, I realized that there was a way around the dupli-
cation issue, making alias diagrams superior to alias relations. These ideas have led 
both to new theoretical work, in progress, and to an implementation, developed by 
Victor Rivera at Innopolis (based on some initial work by Marco Trudel and with 
support from Kogtenkov). At the time of writing the results are not released yet in 
EVE but promising.  

10.11 Automatic change analysis 

One of the applications of alias analysis is to address the “frame problem”. This 
term denotes the issue of specifying and verifying what an operation does not 
change. When working on the `deposit (sum)’ routine of the bank account class, it 
is natural to specify that `balance = old balance + sum’ in the postcondition. But for 
verification we also need (as pointed out by McCarthy as early as 1969) to know 
that `deposit’ does not change the account number, the account owner and most 
other properties of the account. Writing all the corresponding `property = old prop-
erty’ postcondition clauses is not practical. We need a more implicit way. 

In current verification schemes including AutoProof, the programmer specifies 
a frame clause, also called a “modify” or “modifies” or “only” clause, which re-
stricts an operation’s modification rights to the properties listed. For example `de-
posit’ would specify `only balance’. Frame clauses can be tedious to write and (of-
ten the key argument for such cases) to adapt when the software evolves. The rest 
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of the AutoProof team did not consider that there was much of a problem there, but 
to me it is essential to address it for verification techniques to spread widely. Frame 
clauses, like separation properties for aliasing, should not be written by program-
mers but inferred by tools. 

The change calculus  [241] is a basis for inferring frame properties. It is based 
on the alias calculus and part of the same implementation in progress.  

The first implementation of the change calculus, written by Kogtenkov and de-
scribed in [241], provided strong arguments for the approach. He ran it on Eif-
felBase+, an intermediate effort towards EiffelBase 2, which included manually 
specified frame clauses. Although the results caused some controversy within the 
team and the final numbers are small, the change analysis clearly evidenced some 
errors: both false alarms (frame clauses listing properties that do not actually 
change) and actual unsoundness (a few missed changes). The tool was imperfect 
and the chain not complete, in the sense that some steps had to be performed man-
ually (see details in the paper), but these results are conclusive enough to call for 
full-fledged change analysis as a necessary part of verification. The aim of the cur-
rent effort by Rivera at Innopolis is to make it completely automatic, filling the gaps 
in the original process. 

10.12 Invariant inference 

The other principal remaining obstacle in the road to Verification As a Matter Of 
Course is the inference of loop invariants. As mentioned in 8.2, many programmers 
find loop invariants hard to discover. This is not my view as a programmer (if any-
thing, in the case of a non-trivial loop I tend to write the invariant first), but the tools 
should adapt to their audience.  

There is considerable work on loop invariant inference, but almost always de-
voted to deducing (or guessing) algebraic relationships from the code, or in the case 
of dynamic approaches such as DAIKON from executions of the code. Apart from 
the already noted risk of documenting the bugs instead of avoiding them, this ap-
proach does not go well with the Design by Contract idea that you should specify 
your code. My work with Carlo Furia [131] (also the survey paper with Furia and 
Velder [218]) starts instead from postconditions; the idea is that the programmers 
has to specify the postcondition, since it expresses the purpose of the code, and the 
tool should compute the invariant, since it governs the verification of the implemen-
tation. This work is still not ready for integration into AutoProof. Of course nothing 
prevents it from integrating in the future the techniques, static and dynamic, used in 
the rest of the literature and our own DAIKON-style work.  

11 Concurrent programming 

Just as obsessive for me as the goal of Verification As a Matter Of Course, and for 
a much longer time, is the goal of simple concurrency. Concurrent and parallel ar-
chitectures are ever more critical in today’s IT scene, where the end of Moore’s law 
as we knew it led to a dilemma that even made it to the front page of the New York 
Times: “Newer chips with multiple processors with dauntingly complex software 
that breaks up computing into [concurrently executed] chunks”. The author, John 
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Markoff, went on to cite computing luminaries, from David Patterson (Berkeley) to 
Bill Gates, to the effect that we have no clue on how to program these beasts. In the 
words of a 2011 report of the US National Academy of Science: 

Heroic programmers can exploit vast amounts of parallelism […] However, 
none of those developments comes close to the ubiquitous support for program-
ming parallel hardware that is required to ensure that IT’s effect on society 
over the next two decades will be as stunning as it has been over the last half-
century. 
Note the reference to heroes. As with verification, top programmers can some-

how get things right, at least on their top days. The issue is how to take care of all 
the remaining cases. 

Massively, concurrent programming relies today on threading libraries as avail-
able for all major programming languages. The level of abstraction is very low, 
similar to pre-structured-programming with gotos, except that the risk of error is 
much higher. To understand a program written with semaphores and such, and to 
get it right, you must turn yourself into a computer; worse, a parallel computer. You 
must somehow manage to predict the results of all possible interleavings of possibly 
computations proceeding all at once. No one can do this; sequential operational 
reasoning is already hard enough. As a result, concurrent programs are plagued by 
the traditional errors described in the textbooks: data races (two threads reading and 
writing the same data in the wrong order, as if two customers of expedia.com both 
found the same available flight seat and because of bad synchronization both re-
served it), deadlock (execution coming to a halt because two threads are each wait-
ing on the other to free a resource), priority inversion. 

11.1 Invariant inference 

My search for a concurrent programming model applying the Eiffel principles, sim-
plicity of programming and a promise of reliability, began early. I made a first pro-
posal, already using the name SCOOP, with the S standing for “Sequential and”, at 
TOOLS Europe in 1990 [294]. The root of the modern SCOOP, with S standing for 
Systematic, was a 1993 Communications of the ACM article [296]. The basis for 
today’s SCOOP, “Simple Concurrent Object-Oriented Programming”, is chapter 32 
of the second edition of the 1997 book “Object-Oriented Software Construction” 
[299], although Piotr Nienaltowski and his successors in the SCOOP projects at 
ETH corrected, refined, specified, extended the model considerably and built new 
implementations, which live on in EiffelStudio, since SCOOP is now a standard 
part of Eiffel, supported by the associated tools. 

11.2 SCOOP at ETH and the CME project 

The development of SCOOP at ETH had two generations. The first, with Nien-
altowski and Volkan Arslan as the prime movers, happened in the early days of the 
chair. The role of Nienaltowski’s type system in specifying the critical notion of 
“traitor” has already been mentioned. The second generation came with the award-
ing of the CME (Concurrency Made Easy) grant in 2011. 
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For readers not familiar with European Union funding mechanisms, an expla-
nation of ERC (European Research Council) grants. EU funding plays a fundamen-
tal role for researchers in many European institutions; in fact they, rather than paltry 
and restrictive national schemes, are often their main source of research funding. 
But they are very heavy, typically involving research consortia with up to ten or 
fifteen members representing different countries and different kinds of institutions 
(companies, universities, laboratories). The bureaucratic complication are easy to 
guess. Groups from Switzerland, which is not an EU member but has negotiated a 
status giving its institutions an equivalent status, can participate and often do. With 
the resources of ETH and other funding schemes available, such participation is not 
obligatory and some ETH teams prefer to avoid the hassle.  After an experience in 
the early nineties I had stayed away from EU funding. But ERC grants are another 
matter. Started in 2008 as an effort to reward excellence without the traditional bur-
dens, they are given to one person, not an institution, on the basis of a project de-
scription and the candidate’s background. They exist at different levels, “starting”, 
“consolidating” and, for senior researchers, “advanced”. Typically, a grant is 2.5 
million euros (a little more in dollars with the exchange rates of recent years50) over 
five years.  

It is not hard to guess that the competition for these grants is ferocious. The 
success rate for advanced grants is about 12%, from a pool of senior-level academic 
applications already selected by their institutions. (Roughly, the first selection, 
based on applicants’ background, eliminates about two-thirds, and the second step, 
based on the project, eliminates two thirds of those remaining.) In addition to the 
funding, the grants are often treated as awards. It is fair to say that ERC grants have 
had a major beneficial effect on the effectiveness of European research.  

 I applied to the first call in 2008 and was rejected. The regulations then in place 
prevented me from applying again the next year. I applied in 2010 and was rejected. 
In both cases I passed the “background” test but my project came just below the 
acceptance threshold. The third time, in 2001, made right. 

It is interesting to reveal as an aside (please do not tell the ERC) that technically 
the project was on substance the same each time with different names51. But, in 
addition to the luck factor (when you are so close to the threshold, it really matters 
who else is applying that year), I learned how to present it properly. The second 
proposal was much better than the first, in particular regarding a review of the state 
of the art (I had somehow arrogantly assumed that my project was so good that it 
did not need any of that, and was deeply wrong); and the third one was again far 
better in many respects. For these redesigns of the proposal I am deeply indebted to 

                                                            
50 Over the course of the CME project, the Swiss franc appreciated considerably against the 
euro, first slowly then abruptly when the Swiss National Bank broke its long-standing policy 
of keeping the euro rate to 1.20, bringing it down overnight to around 1. Exacerbating the 
already important effect of high Swiss costs, this evolution complicated the finances of the 
project. 
51 I considered switching to VAMOC and am really grateful to Sebastian Nanz and Carlo 
Furia for convincing me to keep the existing topic and improve the proposal. It would have 
been a major mistake to restart in a completely different direction. 
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Sebastian Nanz, who with the help of Carlo Furia played a key role in bringing it to 
the level of professionalism required for success. What I had not sufficiently gauged 
was the intensity of the scrutiny to which, given the stakes of the competition, the 
proposals would be subjected. The right mindset was to think of what it takes to 
prepare an article for submission to one of the most selective conferences or journal 
in our field, such as ICSE, TSE or POPL, and scale it up by a factor of five. Every-
word mattered. 

CME funding enabled us to take SCOOP to its next level by hiring several 
excellent PhD students, new postdocs and a research engineer, who have contrib-
uted considerably to SCOOP.  

To provide an independent source of review, the CME had a Scientific Advi-
sory Board, with members whom we selected from the most prestigious researchers 
in concurrency, including the authors of the reference textbooks; the list appeared 
in section 2.4. The two meetings, in Zurich in 2014 and at LASER in 2015, provided 
the opportunity for spirited discussions and invaluable feedback. 

11.3 SCOOP essentials 

SCOOP is described extensively in various references, most of them accessible 
from the CME project’s page at cme.ethz.ch [184]; on that site you will also find 
the public elements of the CME project plan as accepted by the ERC. Practical usage 
information is on the eiffel.org site [280]. SCOOP references in this article include, 
in addition to the pre-ETH references cited above,  [21] [24] [25] [76] [111] [129] 
[134] [135] [146] [152] [165] [170] [174] [175] [192] [197] [199] [200] [205] [223] 
[232] [235] [240] [243] [251] [258] [260] [269] and [271], plus the robotics soft-
ware references of section 12 below. 

A SCOOP application differs from the execution of a sequential program by 
working over a set of “regions”. Each object belongs to a region. Operations on the 
objects of a region are the responsibility of the “processor” associated with the re-
gion. A processor is a thread of control; the concept of processor can have several 
implementations, typically by threads. A processor is sequential; concurrency 
comes from having several processors. Unlike in usual threading models, SCOOP 
associates the object structure, partitioned into regions, with the computational 
structure, based on processors. 
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When a field of an object, such as x in the figure for the object OA, may become 
attached to an object in a different region, called a “separate” object,  the semantics 
of calls x.r is different from the usual OO semantics of sequential calls, which would 
apply if x were sure to denote objects of the same region as OA: 
A. The call will be (for a command) asynchronous: the caller does not have to wait 

(otherwise there would be no benefit to concurrency). In terminology intro-
duced by Benjamin Morandi, there is now a difference between the call, which 
just logs the request and enables the caller to move on, and application of the 
call, the actual application of r, which will happen sometime later. 

B. As a consequence, the semantics of preconditions also changes. A precondition 
becomes a wait condition. 

C. If the call has separate arguments, the application will proceed only when all 
the corresponding processors are available. This powerful mechanism helps 
avoid deadlock and makes it possible to synchronize on any number of re-
sources at once. 

D. Since processors are sequential, no two calls can be in progress on the same 
object at any given time. As a consequence, data races cannot happen in 
SCOOP, by construction. 

E. If r is a query (an operation returning a result, rather than a command), the 
caller cannot proceed until the application is complete. In other words, where 
commands on separate targets are asynchronous, queries are synchronous. This 
idea, which comes from Denis Caromel’s “wait by necessity” 52, provides a 
simple communication and synchronization scheme: start any number of com-
mands on remote targets (for example, trades in the Paris, New York and Tokyo 
stock markets), not bothering to wait until you need to; when you do have to 
resynchronize, this will be because you need some information from one of 
those targets (for example the state of your portfolio), which you get from a 
query. 

F. Since the “separate” nature of a target object strongly affects the semantics as 
just explained, it is essential to ensure that the program text reflects the differ-
ence between separate variables, which may denote separate objects at run 
time, and non-separate ones, which may only denote objects in the same region. 
For a separate variable, the type must be declared not as just T (denoting some 
Eiffel type) but separate T. Nienaltowski’s type system ensures that at run time 
there will be no traitors, that is to say, a variable not declared separate will only 
become attached to objects in the same region.  
The many examples in the SCOOP documentation illustrate the programming 

style that results from this model. Two examples suffice here. (See also the hexapod 
code in section 12.) Dijkstra’s famous Dining Philosophers problem, illustrating 
resource contention, is programmed simply by having each philosopher execute 

eat (left, right) 

                                                            
52 Caromel conceived wait by necessity in the early nineties when working for his PhD at 
Eiffel Software in Santa Barbara, where he took part in some of the early research leading to 
SCOOP, although he went on to design his own concurrency model. 
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where `eat’ takes two separate arguments representing the left and right forks. The 
multiple simultaneous argument reservation mechanism (property C above) does 
the rest. The semantics guarantees fairness. That is all. It is worthwhile to compare 
this solution to the often elaborate Dining Philosophers programs, using various 
multi-step synchronization techniques (with semaphores etc.), in the literature. 

Note that the keyword separate is the only one added to Eiffel in SCOOP. 
A producer-consumer implementation will use a scheme such as, for an inser-

tion operation into a buffer b, the precondition 
require 
 not b.is_full 

and, for the removal operation, require not b.is_empty. Since b is separate, the 
preconditions are wait conditions (B above), yielding the desired semantics. 

11.4 CME developments 

A list of what we did for SCOOP in CME (so far — the project goes on in another 
setting, see section 13) would add another ten pages to this article. I will just men-
tion a few salient points. To the names of project members mentioned, one should 
systematically add Sebastian Nanz, since he co-managed the project and took part 
in all developments, as reflected by his co-authorship of most of the publications 
cited. 
 (Morandi) Adaptation of the SCOOP model to include “passive regions” [223], 

which do not need their own processors, with a considerable performance im-
provement as a result. 

 (Morandi) Systematic treatment of exceptions in a concurrent context. Asyn-
chronous calls (property A) raise a delicate problem in connection with excep-
tions: what happens if an exception arises when the original caller is already 
off, asynchronously, to new ventures? [170] provides a carefully reasoned an-
swer, which has been adopted in the implementation. Further developments are 
due to Kolesnichenko [199] 

 (Morandi) Detailed operational semantics of SCOOP using Maude [165], 
providing a framework for “testing” the model [197] and fine-tuning it. 

 (Morandi, West, Schmocker) Detailed performance analysis of original 
SCOOP implementations, leading to the discovery of many inefficiencies; see 
in particular [174].  

 (West) Complementing Morandi’s improvements, major redesign of the basic 
synchronization semantics and implementation, using the technique of “queues 
of queues” and to spectacular performance improvements putting the SCOOP 
implementation in the lead group of data-race-free concurrency solutions [251]. 

 (West) “Demonic testing” for SCOOP programs [175], which goes against the 
conventional wisdom that “you cannot test concurrent software” by extending 
AutoTest ideas to include generation of possible processor interleavings. 

 (Schmocker) Extensive reliability and performance improvements. 
 (Schmocker) Collection of concurrency patterns for SCOOP [232]. 
 (Schmocker) SCOOP example programs. 
 (Kolesnichenko) GPU programming in SCOOP [260] [269]. 
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 (Schill, Poskitt) Extensions of SCOOP towards distributed processing [261]. 
 (Schill) support for efficient matrix programming. 
 (Kogtenkov) Work on deadlock avoidance based on the alias calculus. 
 (Poskitt, Corrodi) Work on deadlock avoidance and other semantic properties 

using graph-based semantics and model checking [266]. 
 (Caltais, West) Deadlock work [135] [264]. 
Among the remaining SCOOP tasks are the writing of a book on the approach and 
the development of an axiomatic-style semantics ready for inclusion of SCOOP 
mechanisms into AutoProof, which does not support it so far, and AutoTest. 

12 Software for robotics 

An outgrowth of the work on concurrency, obvious in retrospect but not initially 
envisioned, was a foray into robotics, which became increasingly important.  

The connection between robotics and concurrency is paradoxical. Robotics is 
in principle an ideal application area for concurrent programming, since concur-
rency naturally exists in the application domain: robots can do many things in par-
allel. The first presentation of modern SCOOP in Object-Oriented Software Con-
struction (chapter 32 of [299]) used an elevator system as one of the most developed 
examples, particularly attractive because of its extreme use of both concurrency and 
object-oriented concepts: every elevator cabin, the attached motors, every button on 
every floor, and even every button in every cabin, was described by a separate object 
with its own thread of contral. But in practice, as confirmed by the user survey in 
Andrey Rusakov’s thesis [268], many people in the robotics field actually view con-
currency with suspicion, because by default concurrency means reliance on a mul-
tithreading framework with all its risks. No one can be happy at the prospect of a 
robot arm’s control running into a data race or a deadlock. As a result, authors of 
robotics applications tend to limit concurrency to the strict minimum. 

The idea of SCOOP is to provide a safe environment for concurrent program-
ming, in which these problems do not arise. Robotics is the perfect target domain. 

 
I was flabbergasted when Volkan Arslan and students including Matthias Hum-

bert implemented the exact program as written in the book, as an elevator simula-
tion, and it worked right off the box, giving users the ability to 
push buttons on floor buttons and in-cabin button to their 
hearts’ contents and see the results in real time53. (In fact there 
had been an earlier implementation, in a prototype of SCOOP 
written in 1998 at Eiffel Software and using processes instead 
of threads. It enabled me in a few conferences to give a demo 
together with an engineer back in the Santa Barbara office and 
one in yet another location, all of us competing to get the ele-
vator cabins. This early example of concurrent programming 

                                                            
53 It is a telling reaction, for someone who has a long experience of both the theory of prac-
tice of software engineering, and is not Dijkstra, to be incredulous at the news that a verba-
tim implementation of his paper design does immediately work. 
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over the Internet is in retrospect amazing. I have the impression that it was so futur-
istic that it must have flown over the heads of audiences, who had no idea of the 
power of the technology required to achieve it, and what it could do for them.) 

The next step was to implement the elevator in real hardware, using a Lego 
Mindstorm construction that for several years served as an excellent conversation 
starter for visitors to our offices. 

These experiments might have remained mere examples of illustrating the 
power of SCOOP had not Ganesh Ramanathan, a robotics engineer at Siemens, hap-
pened to take my concurrency course as part of the ETH extension program54 and 
become excited about the robotics potential of SCOOP. 

He came up with a remarkable project idea: a hexapod. He had found an article 
[278] in a journal that we would hardly, as computer scientists, ever have come 
across: Arthropod Structure and Development! For an arthropod with six legs, 
grouped in two “partner” pairs of three, the article had conditions such as those, 
“derived from observations on insects and scorpions and experimentally character-
ized on grasshoppers and stick insects”: 

 A protraction can start only if the partner group on ground, specifi-
cally: 

o Protraction starts on completion of retraction 
o Retraction starts on completion of protraction 

 A retraction can start only when the partner group raised 
 A protraction can end only when partner group retracted 

To the SCOOP-educated mind, such a description raises a bell: it is a SCOOP 
precondition on separate targets, a wait condition. The SCOOP code, exactly as 
programmed in the routine `begin_protraction’, is 

require 
  me.legs_retracted 
  partner.legs_down 
  not partner.protraction_pending 

The comparison with the complexity of any solution using traditional threading 
mechanisms is striking. 

Ramanathan built a hexapod robot and programmed it in SCOOP, through a 
simple scheme based on these ideas. A YouTube demo of him showing the mechan-
ical hexapod and driving it from a laptop keyboard through the SCOOP program is 
available on the Roboscoop site [185]. 

Our robotics software effort took a new dimension with the arrival of Jiwon 
Shin, a robotics expert coming over to us from down the street, the Autonomous 
Systems Lab, part of the Mechanical Engineering department, although she is a 
computer scientist by training. At about the same time, Andrey Rusakov started his 
thesis. That was also when the CME project was taking off, and we naturally fo-
cused on bringing concurrency to robotics software through the Roboscoop project 
[226]. David Itten and Iwo Steinmann, in their master’s projects, also made signif-
icant contributions. 

                                                            
54 He later completed a regular ETH master’s. 
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The Robotics Programming Laboratory course, presented in section 3.9, de-
manded considerable work from the robotics team, but provided a direct testbed for 
the development of Roboscoop. 

To showcase our work, we developed an application intended both to test the 
Roboscoop concepts and for its own sake. As my mother was getting frail, I was 
shocked to see the low technological level of the walker that she was using, like 
other people with limited mobility. Surely it must be possible to do better! Thus was 
born the SmartWalker idea [250] [262]. 

 
To obtain the hardware expertise that we lacked, we teamed up, in asking support 
from the Hasler Foundation, with the iHome lab at the University of Luzern. 

The design of the SmartWalker hit many challenges, from basic issues of bat-
tery weight and capacity to software and user interface matters. At an intermediate 
progress presentation in a workshop of Smart World, the Hasler project that funded 
us, some of the other teams criticized us55 for taking too much of a nerd’s approach 
and not paying enough attention to our end “customers”, elderly people and their 
helpers. We took the comment to heart, and in subsequent months Shin, Rusakov 
and other project members sometimes including me went around retirement homes 
in the Zurich area to show our toy and let them try it. 

                                                            
55 Not in the question-and-answer time after my talk in the formal session, but during a lunch 
discussion. This kind of workshop, favoring researcher-to-researcher interaction, is so much 
more effective than the typical bureaucratic reporting process of almost all granting agencies, 
which require formal reports that are generally evaluated not for substance but on whether 
all the boxes have been checked. 
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We learned a lot in these encounters. Technology proved an obstacle for some 

of our audiences, although not all of them, and after all many elderly people use cell 
phones expertly. A favorite feature was the ability to clap your hands to get the 
walker to come to you by itself. The personnel in one retirement home explained to 
us that one of their daily challenges was to collect everyone’s (non-smart) walker 
after each meal, and that automation of that task would be a great relief.  

The underlying software, Roboscoop, built by Rusakov, is a complete frame-
work for robotics programming, relying on the ROS infrastructure (Robot Operat-
ing System) and on SCOOP for the concurrency part. 

Roboscoop is one of the Chair’s half-fulfilled promises, a tantalizing bit of a 
much larger potential contributions. Yes, we are now on to the assessment section. 

13 Assessment 

It is part of the definition of being a scientist that you do not lie: you do not lie to 
others, and you do not lie to yourself. A certain dose of bluster is acceptable and 
perhaps essential; given the day-to-day difficulty of research, unless you emphasize 
the bright side of things you will quickly give up in despair. But drawing attention 
on the positive does not mean lying. The rule also applies to assessing one’s own 
work. The preceding sections have presented successful results, sometimes boast-
ing; but the successes do not remove the need for a merciless overall assessment. 

Our work had an ambitious goal: achieving several breakthroughs in software 
engineering, including “Verification As a Matter Of Course” (allowing a software 
process of which formal verification is a routine part) and Concurrency Made Easy. 
We made strides towards this goal but remain in my estimate about three years away 
from turning them into results readily available to the developer community for the 
benefit of society. 
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Part of the charm of Europe is its insistence on a fixed retirement age for public 
servants, including academics. Americans have a different practice: age discrimina-
tion is illegal; you can encourage aging professors to retire, for example by reducing 
their resources if they are not performing well, but you cannot kick them out. This 
flexibility gives US universities an edge over the one-size-fits-all strictures of Eu-
rope. To take just one example from software verification, John Reynolds from Car-
negie-Mellon proposed the seminal idea of separation logic at the age of 67 and 
developed it in the next eleven years. A European university would have told him 
to go tend his garden. 

I was going to hit 65 by the end of 2015 but assumed the 5-year CME European 
Research Council project, due to end two years later, would provide a framework 
for continuation; it is so far the only Advanced ERC grant in computer science at 
ETH. Another source of my false sense of safety was the reassuring response re-
ceived verbally when I preemptively raised the issue in my entry interview 15 years 
earlier. The current management was, however, intent on applying the 65-year rule. 
Pointing out that it had its limits, since the preceding president of the university had 
just lifted it for himself56, made things worse. Attempts to reach a solution failed. 

ERC grants are “portable”: attached not to an institution but to an individual, 
who can take it to another place. The process is heavy: the formal transfer of the 
CME project to Politecnico di Milano has taken one year and a half; at the time of 
writing the administrative part has just been finalized and the search for actual pro-
ject members is starting. The environment in Milan, in the very department where 
Carlo Ghezzi and others patiently built over three decades one of the best software 
engineering groups in the world, is exceptionally conducive. I have also had, since 
late 2014, the privilege of building a Software Engineering Laboratory at Innopolis 
University in Kazan, with the help of my colleague Manuel Mazzara. The loss of 
the ETH group and environment is, however, a major blow. As noted in section 1, 
the group’s culture was built over many years with the participation of many tal-
ented people. It is not possible to recreate it quickly. 

I bear my share of responsibility. I should have obsessed more, right from the 
minute my flight landed at Zurich’s airport on 1 October 2001, about the final dead-
line, however distant it seemed to lie then. In the first few years I lost some time 
while learning on the spot the job of a professor. I made no effort to limit my teach-
ing load, which in fact was for many years, including when I was department head, 
the highest in the department; I love teaching, but perhaps I should have ruthlessly 
curtailed it. Perhaps I traveled too much and should have declined more keynote 
invitations (although experience shows that the most fruitful conferences and meet-
ings, those where you discover a fundamental new idea or tool, are not always the 
ones you thought would be worth the trip). I could have focused on just one or two 
research topics, instead of the wide spectrum described in previous sections (alt-
hough here too it is hard to predict which efforts will succeed, and in any case a 
common thread ran through all these projects). Early on, I did not pay enough at-
tention to a couple of postdoc candidates who went on to pursue successful careers 

                                                            
56

 
www.ethlife.ethz.ch/archive_articles/101222_Wiederwahl_Ralph_Eichler_mm/index_ 

EN.html  
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elsewhere and could have boosted our work. More generally, I cannot complain, 
like so many other academics, particularly in Europe, about insufficient resources 
or unbearable bureaucratic obstacles. ETH is as conducive an environment as exists 
for those who want to do good research and teaching. 

Still, one should not lie. The outcomes that matter in research are not numerous 
publications, best-paper awards, completed PhD theses, keynote invitations, soft-
ware tools, citations and other measurable signs of progress. I was after real success, 
in the sense of changing the way the IT industry develops software. That was the 
only justification for putting in parentheses my career as a technology entrepreneur. 
When you have an ambitious goal, you should be judged by that goal. Such absurd 
pieties as “it’s the journey that matters” or “what’s important is to participate” (by, 
of all people, Coubertin, founder of modern Olympics) are even more wrong in 
research than anywhere else. Only the result counts. By that standard, the story told 
in this article is one of glaring, unremitted and probably definitive failure.  
 

References 

The following list attempts to cover all publications by members of the Chair 
of Software Engineering during their time at the Chair, with the exception of PhD 
dissertations and of a few ETH technical reports.  The information comes from the 
chair’s collated list at se.ethz.ch/publications/ and from my personal publication list 
at se.ethz.ch/~meyer/publications57. The latter is an annotated list where you will 
find, for each publication, an overview of the content and a short assessment of its 
relevance. 

Almost all publications listed are available online. The lists at the two URLs 
above have the links. 

The most cited publications (at least 20 citations on Google Scholar, Jul 2017) 
appear with a title in bold italics. 

A second list, beginning with reference [285], includes publication cited in the 
text but not part of the Chair’s record. 

[1] Bertrand Meyer: Software Engineering in the Academy, in Computer (IEEE), 
vol. 34, no. 5, May 2001, pages 28-35. 

[2] Bertrand Meyer's .NET Training Course, video course, Prentice Hall, 2001. 
[3] Bertrand Meyer: Author interview for InformIT, November 30, 2001. 
[4] Bertrand Meyer: Trusted Components & Classes, tutorial notes, in TOOLS 

Pacific 2002.  
[5] Peter Monadjemi: Programmierer haben nicht aus Fehler gelernt, interview 

of Bertrand Meyer, in ComputerWoche, February 2002.  
[6] Bertrand Meyer: Assessing a C# Text, in Computer (IEEE), vol. 35, no. 4, 

April 2002, pages 86-88.  
[7] Bertrand Meyer: Multi-language programming: how .NET does it, 3-part ar-

ticle in Software Development, May, June and July 2002. Part 1: Polyglot 
                                                            
57 Although I checked as much as possible, some multi-author articles from that list may not 
list me in the correct author position. The published articles are the reference. 



96  

Programming; Part 2: Respecting other object models; Part 3: Interoperabil-
ity: at what cost, and with whom?  

[8] Raphael Simon, Emmanuel Stapf and Bertrand Meyer: Full Eiffel on .NET, 
MSDN (online article), July 2002.  

[9] Bertrand Meyer: The Start of an Eiffel Standard, in Journal of Object Tech-
nology (JOT), vol. 1, no. 2, July-August 2002, pp. 95-99  

[10] Bertrand Meyer: In memory of Kristen Nygaard and Ole-Johan Dahl, in Jour-
nal of Object Technology (JOT), vol. 1, no. 4, pages 7, 14-15, September 
2002, also with texts by Ole Lehrmann Madsen and Kristen Nygaard.  

[11] Bertrand Meyer: slides and video of inaugural lecture at ETH, 18 November 
2002, available at se.ethz.ch/~meyer/publications/events/inaugural.html.  

[12] Stefan Betschon: ETH-Professor Bertrand Meyer in Gespräch, interview of 
Bertrand Meyer, Neue Zürcher Zeitung, 3 January 2003.  

[13] Bertrand Meyer: Proving Pointer Program Properties, Part 1: Context and 
overview, in Journal of Object Technology (JOT), vol. 2, no. 2, March-April 
2003, pp. 87-108.  

[14] Bertrand Meyer: A Framework for Proving Contract-Equipped Classes, in 
Abstract State Machines 2003, Advances in Theory and Practice, 10th Inter-
national Workshop, Taormina (Italy), March 3-7, 2003, eds. Egon Börger, 
Angelo Gargantini, Elvinia Riccobene, Springer, 2003, pages 108-125.  

[15] Kathy Kowalenko: View of Software Engineering Challenged, interview of 
Bertrand Meyer and Eugene Spafford, in The Institute (bulletin of the IEEE), 
March 2003.  

[16] Bertrand Meyer: On an Open Issue of Programming Language Phonetics, in 
Journal of Object Technology (JOT), vol. 2, no. 2, March-April 2003, pp. 
109-110.  

[17] Bertrand Meyer: Proving Pointer Program Properties, Part 2: The Overall 
Object Structure, in Journal of Object Technology (JOT), vol. 2, no. 2, May-
June 2003, pp. 77-100.  

[18] Bertrand Meyer: The Grand Challenge of Trusted Components, in ICSE '03: 
Proceedings of 25th International Conference on Software Engineering, Port-
land, Oregon, May 2003, IEEE Computer Society Press, 2003, pages 660-
667. 

[19] Bertrand Meyer: Towards Practical Proofs of Class Correctness, in ZB 
2003: Formal Specification and Development in Z and B, Proceedings of 3rd 
International Conference, Turku, Finland, June 2003, eds. Didier Bert, Jona-
than P. Bowen, Steve King and Marina Waldén, Lecture Notes in Computer 
Science 2651, Springer, 2003, pages 359-387.  

[20] Bertrand Meyer: The Outside-In Method of Teaching Introductory Program-
ming, in OO 2003: 9th IPSJ-SIGSE Symposium on Object-Orientation, In-
formation Processing Society of Japan, ed. Mikio Aoyama, Tokyo, August 
2003. (Revised version: [23].)  

[21] Piotr Nienaltowski, Volkan Arslan and Bertrand Meyer: Concurrent Object-
Oriented Programming on .NET, in IEE Proceedings on Software, vol. 150, 
no. 5, October 2003, pages 308-314.  



97 

[22] Karine Arnout and Bertrand Meyer: Finding implicit contracts in .NET com-
ponents, in Formal Methods for Components and Objects, First International 
Symposium, FMCO 2002, Leiden, The Netherlands, November 2002, Re-
vised Lectures, eds. Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf 
and Willem-Paul de Roever, Lecture Notes in Computer Science 2852, 
Springer, 2003, pages 285-318. More complete version of [26].  

[23] Bertrand Meyer: The Outside-In Method of Teaching Introductory Program-
ming, in Perspective of System Informatics (PSI 5), Proceedings of fifth An-
drei Ershov Memorial Conference, Akademgorodok, Novosibirsk, 9-12 July 
2003, eds. Manfred Broy and Alexandr Zamulin, Lecture Notes in Computer 
Science 2890, Springer, 2003, pages 66-78.  

[24] Volkan Arslan, Piotr Nienaltowski and Karine Arnout: Event Library: An 
Object-Oriented Library for Event-Driven Design, In JMLC (Joint Modular 
Languages Conference), Lecture Notes in Computer Science, Springer, 2003. 

[25] Matthias Humbert: Programming in SCOOP, Diploma (master’s) thesis (su-
pervised by Volkan Arslan and Piotr Nienaltowski), September 2004. 

[26] Bertrand Meyer and Karine Arnout: Uncovering  Hidden Contracts: The 
.NET example, in Computer (IEEE), vol. 36, no. 11, November 2003, pages 
48-55. (Shorter) journal version of [22].  

[27] Bertrand Meyer: The Power of Abstraction, Reuse and Simplicity: An Ob-
ject-Oriented Library for Event-Driven Design, in From Object-Orientation 
to Formal Methods: Essays in Memory of Ole-Johan Dahl, eds. Olaf Owe, 
Stein Krogdahl, Tom Lyche, Lecture Notes in Computer Science 2635, 
Springer, 2004, pages 236-271.  

[28] P. Müller, A. Poetzsch-Heffter and G. T. Leavens: Modular Invariants for 
Layered Object Structures, in Technical report, Department of Computer Sci-
ence, ETH Zurich, 2004.  

[29] K. R. M. Leino and P. Müller: Modular verification of global module invar-
iants in object-oriented programs, Technical report, ETH Zurich, 2004.  

[30] S. Eisenbach, G. T. Leavens, P. Müller, A. Poetzsch-Heffter and E. Poll: For-
mal Techniques for Java-like Programs, in Object-Oriented Technology. 
ECOOP'03 Workshop Reader (F. Buschmann, A. P. Buchmann, M. Cilia, 
eds.), Springer-Verlag, volume 3013, 2004.  

[31] W. Dietl, P. Müller and A. Poetzsch-Heffter: A Type System for Checking 
Applet Isolation in Java Card, in Construction and Analysis of Safe, Secure 
and Interoperable Smart devices (CASSIS) (G. Barthe, L. Burdy, M. Huis-
man, J.-L. Lanet, T. Muntean, eds.), Springer-Verlag, volume 3362, 2004.  

[32] W. Dietl and P. Müller: Exceptions in Ownership Type Systems, in Formal 
Techniques for Java Programs (E. Poll, ed.), 2004. 

[33] Till G. Bay and Karl Pauls: Reuse Frequency as Metric for Component As-
sessment, Technical report, ETH Zürich, 2004. 

[34] Karine Arnout: From Patterns to Components, PhD thesis, ETH Zurich, 
2004. 

[35] Bertrand Meyer: В память Андрея Петровича Ершова (in memory of An-
drey Petrovich Ershov, in Russian), in Андрей Петрович Ершов –Ученый 



98  

и человек (A.P. Ershov, the Scientist and the Man), ed. A.G. Marchuk, No-
vosibirksk, Press of the Siberian Division of the Russian Academy of Sci-
ences, 2006, pages 316-317.  

[36] Bertrand Meyer (editor): ECMA standard: Eiffel Analysis, Design and Pro-
gramming Language, approved as International Standard 367 by ECMA In-
ternational, 21 June 2005. See [60] for the revision and the ISO version.  

[37] Bertrand Meyer: The Dependent Delegate Dilemma, in Engineering Theories 
of Software Intensive Systems, Proceedings of the NATO Advanced Study 
Institute on Engineering Theories of Software Intensive Systems, 
Marktoberdorf, Germany, 3 to 15 August 2004, eds. Manfred Broy, J Gruen-
bauer, David Harel and C.A.R. Hoare, NATO Science Series II: Mathemat-
ics, Physics and Chemistry, vol. 195, Springer, June 2005.  

[38] Vladimir Billig: Bertrand Meyer and his book (in Russian), in IT News, vol. 
36, no. 11, Moscow, 14 June 2005, page 24.  

[39] Bertrand Meyer: Attached Types and their Application to Three Open Prob-
lems of Object-Oriented Programming, in ECOOP 2005 (Proceedings of Eu-
ropean Conference on Object-Oriented Programming, Edinburgh, 25-29 July 
2005), ed. Andrew Black, Lecture Notes in Computer Science 3586, 
Springer, 2005, pages 1-32.  

[40] Michela Pedroni and Till G. Bay: Einführung in die Objekt-Orientierte Pro-
grammierung (Introduction to Object-Oriented Programming), Leitpro-
gramm (course design and discussion), 2005.  

[41] K. R. M. Leino and P. Müller: Modular verification of static class invariants, 
in Formal Methods (FM) (J. Fitzgerald, I. Hayes, A. Tarlecki, eds.), Springer-
Verlag, volume 3582, 2005. 

[42] Á. Darvas and P. Müller: Reasoning About Method Calls in JML Specifica-
tions, in Formal Techniques for Java-like Programs, 2005. 

[43] A. Coglio, M. Huisman, J. Kiniry, P. Müller and E. Poll: Formal Techniques 
for Java-Like Programs (FTfJP), in Object-Oriented Technology. ECOOP 
2004 Workshop Reader (J. Malenfant, B. M. Østvold, eds.), Springer-Verlag, 
volume 3344, 2005. 

[44] Karl Pauls and Till G. Bay: Reuse Frequency as Metric for Dependency Re-
solver Selection, in Component Deployment: Third International Working 
Conference, CD 2005 (A. Dearle, S. Eisenbach, eds.), Springer-Verlag, vol-
ume 3798, 2005. 

[45] F. Y. Bannwart and P. Müller: A Logic for Bytecode, in Bytecode Semantics, 
Verification, Analysis and Transformation (BYTECODE) (F. Spoto, ed.), 
Elsevier, volume 141, 2005. 

[46] Markus Brändle: Exploring the Limits of Complexity with Educational Soft-
ware, PhD thesis, ETH Zurich, 2005. 

[47] Marie-Hélène Ng Cheong Vee, Keith L. Mannock and Bertrand Meyer: Em-
pirical study of novice error paths, Proceedings of workshop on educational 
data mining at the 8th international conference on intelligent tutoring systems 
(ITS 2006), 2006, pages 13-20. 

[48] Bertrand Meyer: Offshore Development: The Unspoken Revolution in Soft-
ware Engineering, in Computer (IEEE), January 2006, pages 124, 122-123.  



99 

[49] Bernd Schoeller, Tobias Widmer and Bertrand Meyer: Making Specifica-
tions Complete Through Models, in Architecting Systems with Trustworthy 
Components, eds. Ralf Reussner, Judith Stafford and Clemens Szyperski, 
Lecture Notes in Computer Science, Springer, 2006.  

[50] Michela Pedroni and Bertrand Meyer: The Inverted Curriculum in Practice, 
in Proceedings of SIGCSE 2006, Houston (Texas), 1-5 March 2006, ACM 
Press, 2006, pages 481-485.  

[51] Willy Zwaenepoel and Bertrand Meyer: European Computer Science Takes 
Its Fate in Its Own Hands, in Communications of the ACM, March 2006.  

[52] Bertrand Meyer: Testable, Reusable Units of Cognition, in Computer 
(IEEE), vol. 39, no. 4, April 2006, pages 20-24.  

[53] Stephanie Balzer, Patrick Eugster and Bertrand Meyer: Can aspects imple-
ment contracts?, in RISE 2005 (Rapid Integration of Software Engineering 
techniques), Second International Workshop, Heraklion, Grece, September 
8-9 2005, eds. Nicolas Guelfi and Anthony Savidis, Lecture Notes in Com-
puter Science 3943, Springer, 2006, pages 145-157.  

[54] Karine Arnout and Bertrand Meyer: Pattern Componentization: the Factory 
Example, in Innovations in Systems and Software Technology (a NASA 
Journal) (Springer), 2006 (Online First version 6 May 2006).  

[55] Ilinca Ciupa, Andreas Leitner, Manuel Oriol and Bertrand Meyer: Object dis-
tance and its application to adaptive random testing of object-oriented pro-
grams, in Proceedings of the 1st international workshop on Random testing, 
ACM, July 2007, pages 55-63. 

[56] Bertrand Meyer and Karine Arnout: Componentization: the Visitor Exam-
ple, in Computer (IEEE), vol. 39, no. 7, July 2006, pages 23-30.  

[57] Jürg Kohlas and André Schiper and Bertrand Meyer (editors): Dependable 
Systems: Software, Computing, Networks, Lecture Notes in Computer Sci-
ence 4028, Springer, September 2006.  

[58] Bertrand Meyer: Dependable Software, in Dependable Systems: Software, 
Computing, Networks [57], eds. J Kohlas, B. Meyer, A. Schiper, Lecture 
Notes in Computer Science, Springer, September 2006.  

[59] Bertrand Meyer: Defense and Illustration of Wikipedia, unpublished, 2006.  
[60] Bertrand Meyer (editor): ECMA standard: Eiffel Analysis, Design and Pro-

gramming Language; revised edition of [36], December 2006, approved by 
the International Standards Organization as the ISO standard ISO/IEC 
25436:2006.  

[61] Till G. Bay, Patrick Eugster and Manuel Oriol: Generic Component Lookup, 
in CBSE (Component-Based Software Engineering), Springer LNCS, 2006. 

[62] Bertrand Meyer: Jean Ichbiah and his Contributions, in ACM SIGSOFT 
Software Engineering Notes vol. 32, no. 2, page 4. French translation (by 
Jean-Claude Rault) in Génie Logiciel, 2007.  

[63] Ilinca Ciupa, Andreas Leitner, Lisa (Ling) Liu and Bertrand Meyer: Auto-
matic testing of object-oriented software, in SOFSEM 2007 (Current Trends 
in Theory and Practice of Computer Science), January 20-26, 2007, ed. Jan 
van Leeuwen, Lecture Notes in Computer Science, Springer, 2007.  



100  

[64] Andreas Leitner, Ilinca Ciupa, Mark Howard and Bertrand Meyer: Reconcil-
ing Manual and Automated Testing: the AutoTest Experience, in 40th Ha-
waii International Conference on System Sciences, Hawaii, January 2007.  

[65] Ilinca Ciupa, Lisa (Ling) Liu, Manuel Oriol, Andreas Leitner, Raluca Borca-
Muresan and Bertrand Meyer: Systematic evaluation of test failure results, in 
Workshop on Reliability Analysis of System Failure Data (RAF 2007), Cam-
bridge (UK), 1-2 March 2007.  

[66] Michela Pedroni, Till Bay, Manuel Oriol and Andreas Pedroni: Open source 
projects in programming courses, ACM SIGCSE Bulletin, vol. 39 no. 1, 
ACM Press, March 2007.  

[67] Ilinca Ciupa, Andreas Leitner, Manuel Oriol and Bertrand Meyer: Experi-
mental Assessment of Random Testing for Object-Oriented Software, in 
ISSTA'07: International Symposium on Software Testing and Analysis, Lon-
don, July 2007.  

[68] Bertrand Meyer and Yuri Gurevich (editors) TAP: Tests And Proofs, First 
International Conference, ETH Zurich, February 12-13, 2007, revised papers, 
Lecture Notes in Computer Science 4454, Springer, August 2007.  

[69] Lisa (Ling) Liu, Bernd Schoeller and Bertrand Meyer: Using Contracts and 
Boolean Queries to Improve the Quality of Automated Test Generation, in 
TAP: Tests And Proofs [68], ETH Zurich, February 12-13, 2007, eds. B. 
Meyer and Y. Gurevich, Lecture Notes in Computer Science 4454, Springer, 
August 2007, pages 114-130.  

[70] Jean Bézivin and Bertrand Meyer (editors): Objects, Components, Models 
and Patterns: 45th international TOOLS conference, Zurich, Switzerland, 
24-28 June 2007, Special issue of theJournal of Object Technology, Vol. 6, 
no. 9, October 2007.  

[71] Andreas Leitner, Ilinca Ciupa, Manuel Oriol, Arno Fiva and Bertrand Meyer: 
Contract-Driven Development = Test Driven Development - Writing Test 
Cases, in ESEC/FSE'07: European Software Engineering Conference and 
ACM SIGSOFT Symposium on Foundations of Software Engineering, Du-
brovnik (Croatia), September 2007.  

[72] Mathai Joseph and Bertrand Meyer (editors): Software Engineering Ap-
proaches For Outsourced and Offshore Development (SEAFOOD), ETH 
Zurich, February 5-6, 2007, revised papers, Lecture Notes in Computer Sci-
ence 4716, Springer, October 2007.  

[73] Marco Piccioni, Manuel Oriol and Bertrand Meyer: IDE-integrated Support 
for Schema Evolution in Object-Oriented Applications, in Workshop on Re-
flection, AOP and Meta-Data for SOftware Evolution (RAM-SE 07), 2007.  

[74] Andreas Leitner, Manuel Oriol, Ilinca Ciupa, Andreas Zeller and Bertrand 
Meyer: Efficient Unit Test Case Minimization, in ASE'07: 22nd IEEE/ACM 
International Conference on Automated Software Engineering, Atlanta 
(Georgia), November 2007.  

[75] Bertrand Meyer: Recherche Scientifique et Exception Française (scientific 
research: the French exception), in Bulletin SPECIF (newsletter of the asso-
ciation of French computer science researchers and educators), 2007.  



101 

[76] Piotr Nienaltowski: Practical Framework for Contract-Based Concurrent 
Object-Oriented Programming, PhD thesis, ETH Zurich, 2007. 

[77] Steven Fraser, James Gosling, Anders Hejlsberg, Ole Lehrmann Madsen, 
Bertrand Meyer and Guy L. Steele Jr.: Celebrating 40 years of language evo-
lution: Simula 67 to the present and beyond, in OOPSLA Companion, 2007. 

[78] Marco Piccioni and Bertrand Meyer: The Allure and Risks of a Deployable 
Software Engineering Project: Experiences with Both Local and Distributed 
Development, in Proceedings of IEEE Conference on Software Engineering 
& Training (CSEE&T), Charleston (South Carolina), 14-17 April 2008, ed. 
H. Saiedian, pages 3-16.  

[79] Marie-Hélène Nienaltowski, Michela Pedroni and Bertrand Meyer: Compiler 
Error Messages: What Can Help Novices?, in Proceedings of SIGCSE 2008 
(39th Technical Symposium on Computer Science Education), Portland (Or-
egon), Texas, 12-15 March 2008, ACM SIGCSE Bulletin, vol. 40, no. 1, 
ACM Press, 2008, pages 168-172.  

[80] Michela Pedroni, Manuel Oriol, Lukas Angerer and Bertrand Meyer: Auto-
matic Extraction of Notions from Course Material, in Proceedings of 
SIGCSE 2008 (39th Technical Symposium on Computer Science Education), 
Portland (Oregon), 12-15 March 2008, ACM SIGCSE Bulletin, vol. 40, no. 
1, ACM Press, 2008, pages 251-255.  

[81] Ilinca Ciupa, Alexander Pretschner, Manuel Oriol, Andreas Leitner and Ber-
trand Meyer: On the number and nature of faults found by random testing, in 
Software Testing, Verification and Reliability (Wiley), vol. 21, no. 1, March 
2011, pages 3-28. 

[82] Ilinca Ciupa, Alexander Pretschner, Andreas Leitner, Manuel Oriol and Ber-
trand Meyer: On the Predictability of Random Tests for Object-Oriented 
Software, in ICST'08: Proceedings of IEEE International Conference on Soft-
ware Testing, Verification and Validation 2008, Lillehammer (Norway), 
April 2008, IEEE Computer Society Press, 2008 (best paper award).  

[83] Ilinca Ciupa, Andreas Leitner, Manuel Oriol and Bertrand Meyer: ARTOO: 
Adaptive Random Testing for Object-Oriented Software, in ICSE 2008: Pro-
ceedings of 30th International Conference on Software Engineering, Leipzig, 
10-18 May 2008, IEEE Computer Society Press, 2008.  

[84] Richard Paige and Bertrand Meyer (editors): Objects, Components, Models 
and Patterns: 46th international TOOLS conference, Zurich, Switzerland, 
June/July 2008, Lecture Notes in Business Information Processing 11, 
Springer, June 2008.  

[85] Martin Nordio, Peter Müller and Bertrand Meyer: Proof-Transforming Com-
pilation of Eiffel Programs, in Proceedings of TOOLS EUROPE 2008, Zur-
ich, 30-June-4 July 2008, eds. R. Paige and B. Meyer, Lecture Notes in Busi-
ness Information Processing 11, Springer, 2008 [84], pages 316-335.  

[86] Bertrand Meyer and Jim Woodcock (editors): VSTTE: Verified Software: 
Theories, Tools, Experiments, ETH Zurich, 10-13 October 2005, revised pa-
pers and transcripts, Lecture Notes in Computer Science 4171, Springer, 
2008.  



102  

[87] Bertrand Meyer: Design and Code Reviews in the Age of the Internet, in 
Proceedings of SEAFOOD 2008 (Software Engineering Advances For Off-
shore and Outsourced Development, eds. K. Berkling, M. Joseph, M. Nordio 
and B. Meyer, Springer LNBIP 16, 2009 [103]. ([91] is the journal version.)   

[88] Bertrand Meyer: Eiffel as a Framework for Verification, in VSTTE 2005 
(Verified Software: Tools, Theories, Experiments), eds. B. Meyer and J. 
Woodcock, Lecture Notes in Computer Science 4171, Springer, 2008 [86].   

[89] Bertrand Meyer: Seven Principles of Software testing, in IEEE Computer, 
vol. 41, no. 10, pages 99-101, August 2008.  

[90] Jerzy R. Nawrocki, Bartosz Walter and Bertrand Meyer (editors): Balancing 
Agility and Formalism in Software Engineering, CEE-SET 2007, Second 
IFIP TC2 Central and East European Conference on Software Engineering 
Techniques, October 10-12, 2007, Poznán, Poland, revised selected papers, 
Lecture Notes in Computer Science 5082, Springer, 2008.  

[91] Bertrand Meyer: Design and Code Reviews in the Age of the Internet, in Com-
munications of the ACM, vol. 51, no. 9, September 2008, pages 66-71. (Jour-
nal version of SEAFOOD 2008 paper [87].)  

[92] Ilinca Ciupa, Manuel Oriol, Alexander Pretschner and Bertrand Meyer: Find-
ing Faults: Manual Testing vs. Random+ Testing vs. User Reports, in 
ISSRE '08, Proceedings of the 19th IEEE International Symposium on Soft-
ware Reliability Engineering, Redmond, November 2008.  

[93] Ruihua Jin and Marco Piccioni: Eiffel for .NET Binding for db4o, in ICOODB 
(eds. J. Paterson and S. Edlich), 2008. 

[94] Michela Pedroni, Manuel Oriol, Bertrand Meyer, Enrico Albonico and Lukas 
Angerer: Course management with TrucStudio, in ACM ITiCSE (ACM 
Press), 2008. 

[95] Till G. Bay: Hosting distributed software projects: concepts, framework, and 
the Origo experience, PhDThesis, ETH Zürich, 2008, http://se.ethz.ch/peo-
ple/bay/publications/2008/bay-diss.pdf.  

[96] Bernd Schoeller: Making Classes Provable through Contracts, Models and 
Frames, PhD thesis, ETH Zurich, 2008. 

[97] Ilinca Ciupa: Strategies for Random Contract-based Testing, PhD thesis, ETH 
Zurich, 2008. 

[98] Andreas Leitner: Contract-Based Tests in the Software Process and Environ-
ment, PhD thesis, ETH Zurich, 2008. 

[99] Bertrand Meyer: Software Architecture: Functional vs. Object-Oriented De-
sign, in Beautiful Architecture, eds. Diomidis Spinellis and Georgios Gou-
sios, O'Reilly, 2009, pages 315-348.  

[100] Federico Biancuzzi and Shane Warden, based on interview of Bertrand 
Meyer: Eiffel chapter, in Masterminds of Programming (Conversations with 
the Creators of Major Programming Languages), O' Reilly, 2009.  

[101] Bertrand Meyer, Christine Choppy, Jørgen Staunstrup and Jan van Leeuwen: 
Research Evaluation for Computer Science, Informatics Europe report, April 
2009. (See [102] for journal version.) 

[102] Bertrand Meyer, Christine Choppy, Jørgen Staunstrup and Jan van Leeuwen: 
Research Evaluation for Computer Science, in Communications of the 



103 

ACM, vol. 52, no. 4, April 2009, pages 31-34. (Short journal version of the 
full Informatics Europe report [101].) 

[103] Kay Berkling, Mathai Joseph, Martin Nordio and Bertrand Meyer (editors): 
Software Engineering Approaches For Outsourced and Offshore Develop-
ment (SEAFOOD), ETH Zurich, July 2-3, 2008, revised papers, Lecture 
Notes in Business Information Processing 16, Springer, May 2009.  

[104] Manuel Oriol and Bertrand Meyer (editors): Objects, Components, Models 
and Patterns: 47th international TOOLS conference, Zurich, Switzerland, 
June/July 2009, Lecture Notes in Business Information Processing 33, 
Springer, June 2008.  

[105] Martin Nordio, Roman Mitin, Carlo Ghezzi, Elisabetta Di Nitto, Giordano 
Tamburelli and Bertrand Meyer: The Role of Contracts in Distributed De-
velopment, in Proceedings of SEAFOOD 2009 (Software Engineering Ad-
vances For Offshore and Outsourced Development) [107], Zurich, June-July 
2009, LNBIP 35, Springer Verlag, 2009. 

[106] Martin Nordio, Cristiano Calcagno, Peter Müller and Bertrand Meyer: A 
Sound and Complete Program Logic for Eiffel, in Proceedings of TOOLS 
2009 (Technology of Object-Oriented Languages and Systems), Zurich, 
June-July 2009, eds. M. Oriol and B. Meyer, Springer LNBIP 33 [104], June 
2009. 

[107]  Olly Gotel, Mathai Joseph and Bertrand Meyer (editors): Software Engineer-
ing Approaches For Outsourced and Offshore Development (SEAFOOD 
2009), 3rd International Conference, ETH Zurich, July 2-3, 2009, Lecture 
Notes in Business Information Processing 35, Springer, July 2009  

[108] Nadia Polikarpova, Ilinca Ciupa and Bertrand Meyer: A Comparative Study 
of Programmer-Written and Automatically Inferred Contracts, in ISSTA 
2009: International Symposium on Software Testing and Analysis, Chicago, 
July 2009.  

[109] Gerald D. Everett and Bertrand Meyer: Point/CounterPoint: Test Principles, 
discussion about the article "Seven Principles of Software Testing" [89], in 
IEEE Software, vol. 26, no. 4, July-August 2009, pages 62-66.  

[110] Bertrand Meyer: Touch of Class: Learning to Program Well Using Object 
Technology and Design by Contract, 876 + lxiv pages, Springer, August 
2009. Translations: Russian.  

[111] Piotr Nienaltowski, Jonathan Ostroff and Bertrand Meyer: Contracts for 
Concurrency, in Formal Aspects of Computing Journal, vol. 21, no. 4, pages 
305-318, August 2009.  

[112] Ivar Jacobson and Bertrand Meyer: Methods Need Theory, Dr. Dobb's Jour-
nal, August 6, 2009.  

[113] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, Arno Fiva, Yi Wei and Em-
manuel Stapf: Programs that Test Themselves, IEEE Computer, vol. 42, no. 
9, pages 46-55, September 2009 (cover feature).  

[114] Marco Piccioni, Manuel Oriol, Teseo Schneider and Bertrand Meyer: An 
IDE-based, Integrated Solution to Schema Evolution of Object-Oriented Sys-



104  

tems, in ASE 2009: Proceedings of 24th IEEE/ACM International Confer-
ence in Automated Software Engineering, Auckland, New Zealand, 16-20 
November 2009, IEEE Computer Society Press, 2009, pages 650-654.  

[115] Valentin Dallmeier, Andreas Zeller and Bertrand Meyer: Generating Fixes 
from Object Behavior Anomalies, in ASE 2009: Proceedings of 24th 
IEEE/ACM International Conference in Automated Software Engineering, 
Auckland, New Zealand, 16-20 November 2009, IEEE Computer Society 
Press, 2009, pages 550-554.  

[116] Michela Pedroni, Manuel Oriol and Bertrand Meyer: What Do Beginning CS 
Majors Know?, ETH Technical Report, 2009. 

[117] Jens Chr. Godskesen and Sebastian Nanz: Mobility Models and Behavioural 
Equivalence for Wireless Networks, in Proceedings of the 11th International 
Conference on Coordination Models and Languages (COORDINATION'09), 
Springer, volume 5521, 2009. 

[118] Marcello M. Bersani, Carlo A. Furia, Matteo Pradella and Matteo Rossi: In-
tegrated Modeling and Verification of Real-Time Systems through Multiple 
Paradigms, in Proceedings of the 7th IEEE International Conference on Soft-
ware Engineering and Formal Methods (SEFM'09), IEEE Computer Society 
Press, 2009. 

[119] Martin Nordio: Proofs and Proof Transformations for Object-Oriented Pro-
grams, PhD thesis, ETH Zurich, 2009. 

[120] Michela Pedroni: Concepts and Tools for Teaching Programming, PhD the-
sis, ETH Zurich, 2009. 

[121] Michela Pedroni and Bertrand Meyer: Object-Oriented Modeling of Object-
Oriented Concepts, in ISSEP 2010, Fourth International Conference on In-
formatics in Secondary Schools, Zurich, January 2010, eds. J. Hromkovic, R. 
Královic, J. Vahrenhold, Lecture Notes in Computer Science 5941, Springer, 
2010.  

[122] Bertrand Meyer: Towards a Theory and Calculus of Aliasing, in Journal of 
Object Technology, vol. 9, no. 2, March-April 2010, pages 37-74.  

[123] Yi Wei, Serge Gebhardt, Manuel Oriol and Bertrand Meyer: Satisfying Test 
Preconditions through Guided Object Selection, in ICST ' 10: Proceedings 
of the Third International Conference on Software Testing, Verification and 
Validation, Paris, April 2010, IEEE Computer Society Press, 2008.  

[124] Martin Nordio, Roman Mitin and Bertrand Meyer: Advanced Hands-on 
Training for Distributed and Outsourced Software Engineering, in ICSE 
2010: Proceedings of 32th International Conference on Software Engineer-
ing, Cape Town, May 2010, IEEE Computer Society Press, 2010.  

[125] Bertrand Meyer: From Programming to Software Engineering (slides only), 
material for education keynote at International Conference on Software En-
gineering (ICSE 2010), Cape Town, South Africa, May 2010.  

[126] Stephan van Staden, Cristiano Calcagno and Bertrand Meyer: Verifying Exe-
cutable Object-Oriented Specifications with Separation Logic, in ECOOP 
2010: 24th European Conference on Object-Oriented Programming, Maribor 
(Slovenia), 21-25 June 2010, Lecture Notes in Computer Science, Springer, 
2010.  



105 

[127] Martin Nordio, Cristiano Calcagno, Peter Müller, Julian Tschannen and Ber-
trand Meyer: Reasoning about Function Objects, in TOOLS EUROPE 
2010, Málaga (Spain), 28 June - 2 July 2010, ed. J. Vitek, Lecture Notes in 
Computer Science, Springer, 2010.  

[128] Yi Wei, Yu Pei, Carlo Furia, Lucas Silva, Stefan Buchholz, Andreas Zeller 
and Bertrand Meyer: Automated Fixing of Programs with Contracts, in 
ISSTA '10: Proceedings of the International Symposium on Software Testing 
and Analysis, Trento (Italy), 12-16 July 2010, ACM Press, 2010.  

[129] Benjamin Morandi, Sebastian S. Bauer and Bertrand Meyer: SCOOP - A con-
tract-based concurrent object-oriented programming model, in Proceedings 
of LASER summer school on Software Engineering 2007/2008, ed. Peter 
Müller, Advanced Lectures on Software Engineering, Lecture Notes in Com-
puter Science 6029, Springer, July 2010, pages 41-90.  

[130] Martin Nordio, Mathai Joseph, Andrey Terekhov and Bertrand Meyer (edi-
tors): Software Engineering Approaches For Outsourced and Offshore De-
velopment (SEAFOOD 2010), 4th International Conference, Saint Peters-
burg, Russia, Lecture Notes in Business Information Processing 54, Springer, 
July 2010.  

[131] Carlo Furia and Bertrand Meyer: Inferring Loop Invariants using Postcon-
ditions, in Fields of Logic and Computation: Essays Dedicated to Yuri 
Gurevich on the Occasion of His 70th Birthday, eds. Andreas Blass, Nachum 
Dershowitz and Wolfgang Reisig, Lecture Notes in Computer Science 6300, 
Springer, August 2010, pages 277-300.  

[132] Nadia Polikarpova, Carlo Furia and Bertrand Meyer: Specifying Reusable 
Components, in Verified Software: Theories, Tools, Experiments (VSTTE ' 
10), Edinburgh, UK, 16-19 August 2010, Lecture Notes in Computer Sci-
ence, Springer Verlag, 2010.  

[133] Bertrand Meyer, Alexander Kogtenkov, Emmanuel Stapf: Avoid a Void: The 
Eradication of Null Dereferencing, in Reflections on the Work of C.A.R. 
Hoare, eds. C. B. Jones, A.W. Roscoe and K.R. Wood, Springer, 2010, pages 
189-211.  

[134] Ganesh Ramanathan, Benjamin Morandi, Scott West, Sebastian Nanz and 
Bertrand Meyer: Deriving Concurrent Control Software from Behavioral 
Specifications, in Proceedings of IROS 2010 (IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, Taipei, Taiwan, 18-22 October 
2010), IEEE, 2010.  

[135] Scott West, Sebastian Nanz and Bertrand Meyer: A Modular Scheme for 
Deadlock Prevention in an Object-Oriented Programming Model, in Pro-
ceedings of ICFEM 2010, 12th International Conference on Formal Engi-
neering Methods, Shanghai, 17-19 November 2010, Lecture Notes in Com-
puter Science 6447, Springer, 2010.  

[136] Sebastian Nanz, Flemming Nielson and Hanne Riis Nielson: Static analysis 
of topology-dependent broadcast networks, in Information and Computation, 
volume 208, 2010. 

[137] Stephan van Staden and Cristiano Calcagno: Reasoning about multiple re-
lated abstractions with MultiStar, in Proceedings of the ACM international 



106  

conference on Object oriented programming systems languages and applica-
tions (OOPSLA 2010), ACM, 2010. 

[138] Moritz Y. Becker and Sebastian Nanz: A Logic for State-Modifying Authori-
zation Policies, in ACM Transactions on Information and System Security, 
ACM, volume 13, 2010.  

[139] Dino Mandrioli, Stephen Fickas, Carlo A. Furia, Mehdi Jazayeri, Matteo 
Rossi and Michal Young : SCORE: the first student contest on software en-
gineering, in SIGSOFT Software Engineering Notes, volume 35, 2010.  

[140] Carlo A. Furia: What's Decidable About Sequences?, in Proceedings of the 
8th International Symposium on Automated Technology for Verification and 
Analysis (ATVA'10) (Ahmed Bouajjani, Wei-Ngan Chin, eds.), Springer, 
volume 6252, 2010.] 

[141] Carlo A. Furia and Matteo Rossi: A Theory of Sampling for Continuous-
Time Metric Temporal Logic, in ACM Transactions on Computational 
Logic, ACM, volume 12, 2010. 

[142] Carlo A. Furia, Dino Mandrioli, Angelo Morzenti and Matteo Rossi: Model-
ing Time in Computing: a taxonomy and a comparative survey, in ACM 
Computing Surveys, ACM, volume 42, 2010. 

[143] Luca Cavallaro, Elisabetta Di Nitto, Carlo A. Furia and Matteo Pradella: A 
Tile-based Approach for Self-assembling Service Compositions, in Pro-
ceedings of the 15th IEEE International Conference on Engineering of Com-
plex Computer Systems (ICECCS'10), IEEE, 2010. 

[144] Silvia Bindelli, Elisabetta Di Nitto, Carlo A. Furia and Matteo Rossi: Using 
Compositionality to Formally Model and Analyze Systems Built of a High 
Number of Components, in Proceedings of the 15th IEEE International Con-
ference on Engineering of Complex Computer Systems (ICECCS'10), IEEE, 
2010. 

[145] Ganesh Ramanathan: SCOOP for Robotics — Implementing bio-inspired hex-
apod locomotion, ETH project report, 2010, available at se.ethz.ch/old/pro-
jects/ganesh_ramanathan/report.pdf. 

[146] Benjamin Morandi, Sebastian Nanz and Bertrand Meyer: A comprehensive 
operational semantics of the SCOOP programming model, ETH technical re-
port, January 2011.  

[147] Bertrand Meyer: Steps Towards a Theory and Calculus of Aliasing, in In-
ternational Journal of Software and Informatics, special issue (Festschrift in 
honor of Manfred Broy), Chinese Academy of Sciences, 2011, pages 77-116.  

[148] Martin Nordio, Carlo Ghezzi, Elisabetta Di Nitto, Giordano Tamburrelli, Jul-
ian Tschannen, Nazareno Aguirre, Vidya Kulkarni and Bertrand Meyer: 
Teaching Software Engineering using Globally Distributed Projects: the 
DOSE course, in Collaborative Teaching of Globally Distributed Software 
Development - Community Building Workshop (CTGDSD), Hawaii (at 
ICSE), May 2011.  

[149] Yi Wei, Carlo Furia, Nikolay Kazmin and Bertrand Meyer: Inferring better 
contracts, in ICSE 2011, International Conference on Software Engineering, 
Hawaii, May 2011, published by IEEE Computer Press.  



107 

[150] Marco Trudel, Manuel Oriol, Carlo Furia and Bertrand Meyer: Automated 
Translation of Java Source Code to Eiffel, in TOOLS Europe 2011 (Objects, 
Components, Models, Patterns), 49th International Conference, eds. Judith 
Bishop and Antonio Vallecillo, Lecture Notes in Computer Science 6705, 
Springer, June 2011, pages 20-35.  

[151] Julian Tschannen, Carlo A. Furia, Martin Nordio and Bertrand Meyer: Veri-
fying Eiffel Programs with Boogie, in Boogie 2011, First International 
Workshop on Intermediate Verification Languages, Wroclaw, August 2011, 
Lecture Notes in Computer Science, Springer Verlag, 2011.  

[152] Sebastian Nanz, Faraz Torshizi, Michela Pedroni and Bertrand Meyer: De-
sign of an Empirical Study for Comparing the Usability of Concurrent Pro-
gramming Languages, in ESEM 2011 (ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement), 22-23 
September 2011 (best paper award).  

[153] Julian Tschannen, Carlo A. Furia, Martin Nordio and Bertrand Meyer: Usa-
ble Verification of Object-Oriented Programs by Combining Static and Dy-
namic Techniques, in SEFM 2011, Software Engineering and Formal Meth-
ods, Montevideo, 14-18 November 2011, Lecture Notes in Computer 
Science, Springer Verlag, 2011.  

[154] Yi Wei, Hannes Roth, Carlo Furia, Yu Pei, Alexander Horton, Michael Stein-
dorfer, Martin Nordio and Bertrand Meyer: Stateful Testing: Finding More 
Errors in Code and Contracts, in ASE '11: 26-th IEEE/ACM International 
Conference on Automated Software Engineering, Lawrence (Kansas), 6-10 
November 2011.  

[155] Yu Pei, Yi Wei, Carlo Furia, Martin Nordio and Bertrand Meyer: Code-
Based Automatic Program Fixing, in ASE '11: 26th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, Lawrence (Kansas), 
6-10 November 2011.  

[156] Lucas Serpa Silva, Yi Wei, Manuel Oriol and Bertrand Meyer: Evolving the 
Best Testing Strategies for Contract-Equipped Programs, in APSEC 2011, 
18th Asia Pacific Software Engineering Conference, Hanoi, 5-8 December 
2011.  

[157] Martin Nordio, H.-Christian Estler, Julian Tschannen, Carlo Ghezzi, Elis-
abetta Di Nitto and Bertrand Meyer: How do Distribution and Time Zones 
affect Software Development? A Case Study on Communication, in Pro-
ceedings of the 6th International Conference on Global Software Engineering 
(ICGSE), IEEE Computer Press, 2011, pages 176-184.  

[158] Carlo A. Furia and Paola Spoletini: On Relaxing Metric Information in Linear 
Temporal Logic, in Proceedings of the 18th International Symposium on 
Temporal Representation and Reasoning (TIME'11) (Carlo Combi, Martin 
Leucker, Frank Wolter, eds.), IEEE Computer Society, 2011 

[159] Vladimir Klebanov, Peter Müller, Natarajan Shankar, Gary T. Leavens, Val-
entin Wüstholz, Eyad Alkassar, Rob Arthan, Derek Bronish, Rod Chapman, 
Ernie Cohen, Mark Hillebrand, Bart Jacobs, K. Rustan M. Leino, Rosemary 
Monahan, Frank Piessens, Nadia Polikarpova, Tom Ridge, Jan Smans, 
Stephan Tobies, Thomas Tuerk, Mattias Ulbrich and Benjamin Weiss: The 



108  

1st Verified Software Competition: Experience Report, in Proceedings, 17th 
International Symposium on Formal Methods (FM 2011) (Michael Butler, 
Wolfram Schulte, eds.), Springer, 2011.  

[160] Sebastian Nanz (editor): The Future of Software Engineering, Springer, 2011 
[161] Edgar G. Daylight, Sebastian Nanz (editors): The Future of Software Engi-

neering: Panel Discussions, Lonely Scholar, 2011. 
[162] Stephan van Staden, Cristiano Calgagno and Bertrand Meyer: Freefinement, 

in Proceedings of the 39th Symposium on Principles of Programming Lan-
guages (POPL 2012), Philadelphia, 25-27 January 2012, ACM Press, 2012.  

[163] Bertrand Meyer and Martin Nordio (editors): Empirical Software Engineer-
ing and Verification; International Summer School, LASER 2008-2010, Elba 
Island, Italy, Revised Tutorial Lectures; Lecture Notes in Computer Science 
7007, Springer, February 2012.  

[164] Yi Wei, Manuel Oriol and Bertrand Meyer: Is Coverage a Good Measure of 
Testing Effectiveness?, in Empirical Software Engineering and Verification 
(LASER 2008-2010) [163], eds. Bertrand Meyer and Martin Nordio, Lecture 
Notes in Computer Science 7007, Springer, February 2012.  

[165] Benjamin Morandi, Sebastian Nanz and Bertrand Meyer: A formal Reference 
for SCOOP, in Empirical Software Engineering and Verification (LASER 
2008-2010) [163], eds. Bertrand Meyer and Martin Nordio, Lecture Notes in 
Computer Science 7007, Springer, February 2012.  

[166] Bertrand Meyer: Knowledgeable beginners, in Communications of the ACM, 
vol. 55, no. 3, March 2012, pages 10-11.  

[167] Bertrand Meyer: Towards a Calculus of Object Programs, in Patterns, Pro-
gramming and Everything, Judith Bishop Festschrift, eds. Karin Breitman 
and Nigel Horspool, Springer, 2012, pages 91-128.  

[168] Alexander Kogtenkov, Anton Akhi and Bertrand Meyer: Processors and 
their collection, in Proceedings of MSEPT 2012 (International COnference 
on Multicore Software Engineering, Performance and Tools), Prague, May 
2012, eds. V. Pankratius and M. Philippsen, Lecture Notes in Computer Sci-
ence, Springer, 2012.  

[169] Marco Trudel, Carlo A. Furia, Martin Nordio, Manuel Oriol and Bertrand 
Meyer: C to O-O Translation: Beyond the Easy Stuff, in Proc. of 19th Work-
ing Conference on Reverse Engineering (WCRE'12), eds. Rocco Oliveto and 
Denys Poshyvanyk, IEEE Computer Society, 2012.  

[170] Benjamin Morandi, Sebastian Nanz and Bertrand Meyer: Can Asynchronous 
Exceptions Expire?, in Proc. of 5th International Workshop on Exception 
Handling (WEH 2012), ICSE, Zurich, June 2012, IEEE Computer Press, 
2012.  

[171] Christian Estler, Martin Nordio, Carlo A. Furia, Johannes Schneider and Ber-
trand Meyer: Agile vs. Structured Distributed Software Development: A 
Case Study, in 7th International Conference on Global Software Engineering 
(ICGSE), IEEE Computer Press, 2012 (best paper award).  

[172] Bertrand Meyer: Incremental Research vs Paradigm-Shift Mania, in Com-
munications of the ACM, vol. 55, no. 9, March 2012, pages 8-9.  



109 

[173] Charles Severance: Bertrand Meyer: Software Engineering and the Eiffel 
Programming Language, interview of Bertrand and Annie Meyer, in Com-
puter (IEEE), vol. 45, no. 9, pages 6-8, September 2012, video available on 
YouTube. 

[174] Benjamin Morandi, Sebastian Nanz and Bertrand Meyer: Performance Anal-
ysis of SCOOP Programs, in Journal of Systems and Software, vol. 85, no. 
11, November 2012, pages 2519-2530.  

[175] Scott West, Sebastian Nanz and Bertrand Meyer: Demonic Testing of Con-
current Programs, in Proc. of 14th International Conference on Formal En-
gineering Methods (ICFEM 2012), Kyoto, 12-16 November 2012, Lecture 
Notes in Computer Science, Springer, 2012.  

[176] Bertrand Meyer and Martin Nordio (editors): Tools for Practical Software 
Verification; International Summer School, LASER 2011, Elba Island, Italy, 
Revised Tutorial Lectures; Lecture Notes in Computer Science 7682, 
Springer, December 2012.  

[177] Julian Tschannen, Carlo A. Furia, Martin Nordio and Bertrand Meyer: Auto-
matic Verification of Advanced Object-Oriented Features: The AutoProof 
Approach, in Tools for Practical Software Verification; International Sum-
mer School, LASER 2011, eds. Bertrand Meyer and Martin Nordio [176], 
Lecture Notes in Computer Science 7682, Springer, December 2012.  

[178] Marco Trudel, Carlo A. Furia and Martin Nordio: Automatic C to O-O Trans-
lation with C2Eiffel (Tool demonstration paper), in Proceedings of the 19th 
Working Conference on Reverse Engineering (WCRE'12) (Rocco Oliveto, 
Denys Poshyvanyk, eds.), IEEE Computer Society, 2012.  

[179] Nadia Polikarpova and Michał Moskal: Verifying Implementations of Secu-
rity Protocols by Refinement, in VSTTE, 2012. 

[180] Carlo A. Furia: A Verifier for Functional Properties of Sequence-Manipulat-
ing Programs, in Proceedings of the 10th International Symposium on Auto-
mated Technology for Verification and Analysis (ATVA'12) (Supratik 
Chakraborty, Madhavan Mukund, eds.), Springer, volume 7561, 2012.  

[181] Carlo A. Furia and Paola Spoletini: Automata-based Verification of Linear 
Temporal Logic Models with Bounded Variability, in Proceedings of the 19th 
International Symposium on Temporal Representation and Reasoning 
(TIME'12) (eds. Ben Moszkowski, Mark Reynolds, Paolo Terenziani), IEEE 
Computer Society, 2012. 

[182] Thorsten Bormer, Marc Brockschmidt, Dino Distefano, Gidon Ernst, Jean-
Christophe Filliâtre, Radu Grigore, Marieke Huisman, Vladimir Klebanov, 
Claude Marché, Rosemary Monahan, Wojciech Mostowski, Nadia Polikar-
pova, Christoph Scheben, Gerhard Schellhorn, Bogdan Tofan, Julian Tschan-
nen and Mattias Ulbrich: The COST IC0701 Verification Competition 2011, 
in Proceedings of the 2nd International Conference on Formal Verification of 
Object-Oriented Software, Springer, 2012. 

[183] Carlo A. Furia, Dino Mandrioli, Angelo Morzenti and Matteo Rossi: Mode-
ling Time in Computing, Springer, 2012. 

[184] CME project (Concurrency Made Easy), site at cme.ethz.ch, 2012-present. 
[185] Roboscoop project, site at se.ethz.ch/research/roboscoop/, 2012-present. 



110  

[186] Yi Wei: Putting Contracts to Work for Better Automated Testing and Fixing, 
PhD thesis, ETH Zurich, 2012. 

[187] Marco Piccioni: A Seamless Framework for Object-Oriented Persistence in 
Presence of Class Schema Evolution, PhD thesis, ETH Zurich, 2012. 

[188] Marco Piccioni, Manuel Oriol and Bertrand Meyer: Class Schema Evolution 
for Persistent Object-Oriented Software: Model, Empirical Study, and Auto-
mated Support, in IEEE Transactions in Software Engineering, vol. 39, no. 2, 
February 2013.  

[189] Carlo A. Furia, Manuel Oriol, Andrey Tikhomirov, Yi Wei and Bertrand 
Meyer: The Search for the Laws of Automatic Random Testing, in Proceed-
ings of the 28th ACM Symposium on Applied Computing (SAC 2013), 
Coimbra (Portugal), ACM Press, 2013.  

[190] Walter Gander (chair) and others including Bertrand Meyer, editors: Infor-
matics education: Europe cannot afford to miss the boat, joint Informatics 
Europe and ACM Europe report, April 2013.  

[191] Bertrand Meyer: Достижения в области параллельного программирова-
ния (achievements in parallel programming), video of 2013 lecture, in Rus-
sian, with slides, available at www.iis.nsk.su/ershov_lectures/2013.  

[192] Sebastian Nanz, Faraz Torshizi, Michela Pedroni and Bertrand Meyer: De-
sign of an Empirical Study for Comparing the Usability of Concurrent Pro-
gramming Languages, in Information and Software Technology Journal 
Elsevier, volume 55, 2013.  

[193] Nadia Polikarpova, Carlo A. Furia, Yu Pei, Yi Wei and Bertrand Meyer: 
What Good are Strong Specifications?, in proceedings of ICSE 2013 (35th 
International Conference on Software Engineering), San Francisco, May 
2013.  

[194] Julian Tschannen, Carlo A. Furia, Martin Nordio and Bertrand Meyer: Pro-
gram Checking With Less Hassle, in proceedings of VSTTE 2013 (Verified 
Software: Theories, Tools and Experiments), Atherton (California), May 
2013, Lecture Notes in Computer Science 8164, eds. E. Cohen and A. Rybal-
chenko, Springer, 2013, pages 149-169.  

[195] H-Christian Estler, Martin Nordio, Carlo A. Furia and Bertrand Meyer: Uni-
fying Configuration Management with Awareness Systems and Merge Con-
flict Detection, in 22nd Australasian Software Engineering Conference, Mel-
bourne (Australia), 4-7 June 2013.  

[196] Bertrand Meyer: Multirequirements, in Modelling and Quality in Require-
ments Engineering (Martin Glinz Festschrift), eds. Norbert Seyff and Anne 
Koziolek, MV Wissenschaft, 2013.  

[197] Benjamin Morandi, Sebastian Nanz and Bertrand Meyer: Testing a Concur-
rency Model, in ACSD 2013 (13th IEEE International Conference on Appli-
cation of Concurrency to System Design, Barcelona, 8-10 July 2013, IEEE 
Computer Press, 2013, pages 170-179.  

[198] H-Christian Estler, Martin Nordio, Carlo A. Furia and Bertrand Meyer: Dis-
tributed Collaborative Debugging, in ICGSE 2013 (8th IEEE International 
Conference on Global Software Engineering, Bari, 26-29 August 2013 (best 
paper award).  



111 

[199] Alexey Kolesnichenko, Sebastian Nanz and Bertrand Meyer: How to Cancel 
a Task, in Multicore Software Engineering, Performance and Tools 
(MUSEPAT 2013), Saint Petersburg, 19-20 August 2013, Lecture Notes in 
Computer Science 8063, eds. J.M. Lourenço and E.Farchi, Springer, 2013, 
pages 61-72.  

[200] Mischael Schill, Sebastian Nanz and Bertrand Meyer: Handling Parallelism 
in a Concurrency Model, in Multicore Software Engineering, Performance 
and Tools (MUSEPAT 2013), Saint Petersburg, 19-20 August 2013, Lecture 
Notes in Computer Science 8063, eds. J.M. Lourenço and E.Farchi, Springer, 
2013, pages 37-48.  

[201] Alexey Kolesnichenko, Christopher M. Poskitt and Bertrand Meyer: Apply-
ing Search in an Automatic Contract-Based Searching Tool, in SSBSE 2013 
(5th Symposium on Search-Based Software Engineering), Saint Petersburg, 
24-26 August 2013, Lecture Notes in Computer Science 8084, eds G. Ruhe 
and Y. Zhang, 2013, pages 318-323.  

[202] Bertrand Meyer, Marco Piccioni, Nadia Polikarpova, Julian Tschannen, Scott 
West, Christian Estler and Mischael Schill: Introduction to Programming: The 
ETH Cloud Course, online course (MOOC), first released September 2013, 
available at webcourses.inf.ethz.ch/se_courses/introduction_to_program-
ming/main_page/.  

[203] Cristina Pereira and Bertrand Meyer: Informatics Education in Europe: In-
stitutions, Degrees, Students, Positions, Salaries — Key Data 2008-2012, In-
formatics Europe report, October 2013.  

[204] Marco Piccioni, Carlo A. Furia and Bertrand Meyer: An Empirical Study of 
API Usability, in ESEM 2013 (ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement), Baltimore, 10-11 October 
2013, IEEE Computer Press, 2013, pages 5-14.  

[205] Sebastian Nanz, Scott West, Kaue Soares Da Silveira and Bertrand Meyer: 
Benchmarking Usability and Performance of Multicore Languages, in 
ESEM 2013 (ACM/IEEE International Symposium on Empirical Software 
Engineering and Measurement), Baltimore, 10-11 October 2013, IEEE Com-
puter Press, 2013, pages 183-192.  

[206] Sebastian Nanz, Scott West, Kaue Soares da Silveira: Examining the Expert 
Gap in Parallel Programming, in Proceedings of the 19th European Confer-
ence on Parallel Processing (Euro-Par'13), Springer, 2013. 

[207]  Christopher M. Poskitt and Simon Poulding: Using Contracts to Guide the 
Search-Based Verification of Concurrent Programs, in Proc. International 
Symposium on Search-Based Software Engineering (SSBSE 2013), 
Springer, volume 8084, 2013.  

[208] Christopher M. Poskitt and Detlef Plump: Verifying Total Correctness of 
Graph Programs, in Selected Revised Papers, Graph Computation Models 
(GCM 2012), Electronic Communications of the EASST, volume 61, 2013.  

[209]  Nadia Polikarpova, Carlo A. Furia and Scott West: To Run What No One 
Has Run Before: Executing an Intermediate Verification Language, in Fourth 
International Conference on Runtime Verification (RV'13), Springer, volume 
8174, 2013. 



112  

[210] Martin Nordio, Cristiano Calcagno and Bertrand Meyer: Certificates and 
Separation Logic, in proceedings of the 8th International Symposium on 
Trustworthy Global Computing (TGC), Springer, 2013.  

[211]  Martin Nordio, Cristiano Calcagno and Carlo Alberto Furia: Javanni: A Ver-
ifier for JavaScript, in Proceedings of Fundamental Approaches to Software 
Engineering (FASE), Springer, volume 7793, 2013. 

[212]  K. Rustan M. Leino and Nadia Polikarpova: Verified Calculations in Veri-
fied Software: Theories, Tools and Experiments (VSTTE), Springer LNCS 
volume 8164, 2013. 

[213] Marco Trudel: Automatic Translation and Object-Oriented Reengineering of 
Legacy Code, PhD thesis, ETH Zurich, 2013. 

[214] Stephan van Staden: Enhancing Separation Logic for Object-Orientation, 
PhD thesis, ETH Zurich, 2013. 

[215] Yu Pei, Carlo A. Furia, Martin Nordio: Automatic Program Repair by Fixing 
Contracts, in 17th International Conference on Fundamental Approaches to 
Software Engineering (FASE), 2014.  

[216] Juan P. Galeotti, Carlo A. Furia, Eva May, Gordon Fraser and Andreas Zeller: 
DynaMate: Dynamically Inferring Loop Invariants for Automatic Full Func-
tional Verification, in Proceedings of the 10th Haifa Verification Conference 
(HVC) (Eran Yahav, ed.), Springer, volume 8855, 2014. 

[217] Carlo A. Furia and Paola Spoletini: Bounded Variability of Metric Temporal 
Logic, in Proceedings of the 21st International Symposium on Temporal Rep-
resentation and Reasoning (TIME'14) (Amedeo Cesta, Carlo Combi, Fran-
cois Laroussinie, eds.), IEEE Computer Society, 2014.  

[218] Carlo Furia, Sergey Velder and Bertrand Meyer: Loop invariants: Analysis, 
Classification and Examples, in ACM Computing Surveys, vol. 46, no. 3, 
February 2014.  

[219] Bertrand Meyer, Marco Piccioni and Nadia Polikarpova: Computing: Art, 
Magic, Science, part 1, known as CAMS 1, edX MOOC (online course), re-
leased September 2014, available at www.edx.org/course/computing-art-
magic-science-ethx-cams-2x#.U_MtFmPQqDs.  

[220] Bertrand Meyer and Alexander Kogtenkov: Negative Variables and the Es-
sence of Object-Oriented Programming, in Specification, Algebra, and Soft-
ware, Kanazawa (Japan), 14-16 April 2014, eds. Shusaku Iida, Jose Meseguer 
and Kazuhiro Ogata, Lecture Notes in Computer Science 8373, eds. S. IIda, 
J. Meseguer and K. Ogata, Springer, 2014, pages 171-187.  

[221] Nadia Polikarpova, Julian Tschannen, Carlo A. Furia and Bertrand Meyer: 
Flexible Invariants Through Semantic Collaboration, in FM 2014 (pro-
ceedings of 19th International Symposium on Formal Methods), Singapore, 
May 2014, Lecture Notes in Computer Science 8442, eds. C. Jones, P. Pihla-
jasaari and J. Sun, Springer, 2014, pages 514-530.  

[222] H.-Christian Estler, Carlo A. Furia, Martin Nordio, Marco Piccioni and Ber-
trand Meyer: Contracts in Practice, in FM 2014 (proceedings of 19th Inter-
national Symposium on Formal Methods), Singapore, May 2014, Lecture 
Notes in Computer Science 8442, eds. C. Jones, P. Pihlajasaari and J. Sun, 
Springer, 2014, pages 230-246.  



113 

[223] Benjamin Morandi, Sebastian Nanz and Bertrand Meyer: Safe and Efficient 
Data Sharing for Message-Passing Concurrency, in proceedings of 
COORDINATION 2014, 16th International Conference on Coordination 
Models and Languages, Berlin, 3-6 June 2014, Lecture Notes in Computer 
Science 8459, eds. E. Kühn ad R. Pugliese, 2014, pages 99-114.  

[224] Marco Piccioni, H-Christian Estler and Bertrand Meyer: SPOC-supported in-
troduction to Programming, in Proceedings of ITiCSE 2014, 9th Annual 
Conference on Innovation and Technology in Computer Science Education, 
June 23-25, 2014, Uppsala, Sweden.  

[225] H-Christian Estler, Martin Nordio, Carlo A. Furia and Bertrand Meyer: 
Awareness and Merge Conflicts in Distributed Software Development, in pro-
ceedings of ICGSE 2014, 9th International Conference on Global Software 
Engineering, Shanghai, 18-21 August 2014, IEEE Computer Society Press 
(best paper award).  

[226] Andrey Rusakov, Jiwon Shin and Bertrand Meyer: Simple Concurrency for 
Robotics with the Roboscoop Framework, in IROS 2014 (IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Chicago, 14-18 Sep-
tember 2014, IEEE Computer Press.  

[227] Cristina Pereira, Hannes Werthner, Enrico Nardelli and Bertrand Meyer: In-
formatics Education in Europe: Institutions, Degrees, Students, Positions, 
Salaries — Key Data 2008-2013, Informatics Europe report, October 2014.  

[228] Bertrand Meyer: Agile! The Good, the Hype and the Ugly, Springer, 2014. 
Translations: Russian, Japanese.  

[229] Jiwon Shin, Roland Siegwart and Stéphane Magnenat: Visual Programming 
Language for Thymio II Robot, in Interaction Design & Children (IDC 2014), 
ACM, 2014. 

[230] Julian Tschannen, Carlo A. Furia and Martin Nordio: AutoProof Meets Some 
Verification Challenges, in International Journal on Software Tools for Tech-
nology Transfer, Springer, 2014. 

[231] Stéphane Magnenat, Jiwon Shin, Fanny Riedo, Roland Siegwart and Morder-
chai Ben-Ari: Teaching a Core CS Concept through Robotics, in 19th Annual 
Conference on Innovation and Technology in Computer Science Education 
(ITiCSE 2014), ACM, 2014. 

[232] Roman Schmocker: Concurrency Patterns in SCOOP, Master’s thesis report, 
ETH, 2014, available at e-collection.library.ethz.ch/eserv/eth:46802/eth-
46802-01.pdf.  

[233] Christopher M. Poskitt, Mike Dodds, Richard F. Paige and Arend Rensink: 
Towards Rigorously Faking Bidirectional Model Transformations, in Proc. 
Workshop on the Analysis of Model Transformations (AMT 2014), CEUR-
WS.org, volume 1277, 2014. 

[234] Christopher M. Poskitt and Detlef Plump: Verifying Monadic Second-Order 
Properties of Graph Programs, in Proc. International Conference on Graph 
Transformation (ICGT 2014), Springer, volume 8571, 2014. 

[235] Benjamin Morandi: Prototyping a concurrency model, PhD Thesis, ETH 
Zurich, 2014. 



114  

[236] Nadia Polikarpova: Specified and Verified Reusable Components, PhD the-
sis, ETH Zurich, 2014, http://se.ethz.ch/people/polikarpova/thesis.pdf.  

[237] Yu Pei: Automatic Fixing of Programs with Contracts, PhD thesis, ETH Zur-
ich, 2014. 

[238] Hans-Christian Estler: Understanding and Improving Collaboration in Dis-
tributed Software Development, PhD thesis, ETH Zurich, 2014.  

[239] Julian Tschannen: Automated Usable Functional Verification of Object-Ori-
ented Programs, PhD thesis, ETH Zurich, 2014.  

[240] Scott West: Correctness and Execution of Concurrent Object-Oriented Pro-
grams, PhD thesis, ETH Zurich, 2014.  

[241] Alexander Kogtenkov, Sergey Velder and Bertrand Meyer: Alias Calculus, 
Change Calculus and Frame Inference, in Science of Computer Program-
ming, 2015, pages 163-172, DOI 10.1016/j.scico.2013.11.006 (first pub-
lished online 26 November 2013).  

[242] Bertrand Meyer: Framing the Frame Problem, in Dependable Software Sys-
tems, Proceedings of August 2014 Marktoberdorf summer school, eds. Alex-
ander Pretschner, Manfred Broy and Maximilian Irlbeck, NATO Science for 
Peace and Security, Series D: Information and Communication Security, 
Springer, 2015, pages 174-185.  

[243] Scott West, Sebastian Nanz and Bertrand Meyer: Efficient and Reasonable 
Object-oriented Concurrency, in PPoPP 2015, Proceedings of the 20th ACM 
SIGPLAN Symposium on Principles and Practice of Parallel Programming, 
San Francisco, 7-11 February 2015, ACM SIGPLAN Notices, vol. 50, no. 8, 
August 2015, pages 273-274. (Shorter initial version of [251].) 

[244] Bertrand Meyer: An automatic technique for static deadlock prevention, in 
PSI 2014 (Ershov Informatics Conference), eds. Irina Virbitskaite and Andrei 
Voronkov, Lecture Notes in Computer Science 8974, Springer, 2015, pages 
45-58.  

[245] Bertrand Meyer, Marco Piccioni and Nadia Polikarpova: Computing: Art, 
Magic, Science, part II, known as CAMS 1, edX MOOC (online course), re-
leased in 2015, available at www.edx.org/course/computing-art-magic-sci-
ence-part-ii-ethx-cams-ii-x.   

[246] Yu Pei, Carlo A. Furia, Martin Nordio and Bertrand Meyer: Automated Pro-
gram Repair in an Integrated Development Environment, in 37th Interna-
tional Conference on Software Engineering (ICSE 2015), Florence, May 
2015, IEEE Press, pages 681-684.  

[247] Jiwon Shin, Andrey Rusakov and Bertrand Meyer: Concurrent Software En-
gineering and Robotics Education, in 37th International Conference on Soft-
ware Engineering (ICSE 2015), Florence, May 2015, IEEE Press, pages 370-
379.  

[248] Jiwon Shin, Ivo Steinmann and Bertrand Meyer: Automatic Speed Control 
for SmartWalker, in PETRA 2015, Proceedings of 8th ACM International 
Conference on PErvasive Technologies Related to Assistive Environments, 
21-23 June 2015, Rhodes, Greece, ACM Press, 2015.  



115 

[249] Paolo Antonucci, Christian Estler, Durica Nikolic, Marco Piccioni and Ber-
trand Meyer: An Incremental Hint System For Automated Programming As-
signments, in ITiCSE '15, Proceedings of 2015 ACM Conference on Innova-
tion and Technology in Computer Science Education, 6-8 July 2015, Vilnius, 
ACM Press, pages 320-325.  

[250] Jiwon Shin, David Itten, Andrey Rusakov and Bertrand Meyer: Towards an 
Intelligent Robotic Walker for the Elderly, in 11th International Conference 
on Intelligent Environments (IE 11), Prague,17-19 July 2015, IEEE, August 
2015 (best paper award).  

[251] Scott West, Sebastian Nanz and Bertrand Meyer: Efficient and Reasonable 
Object-oriented Concurrency, in ESEC/FSE 2015, Proceedings of 2015 Eu-
ropean Software Engineering Conference and Foundations of Software En-
gineering Symposium, ACM Press, 2015, pages 734-744.  

[252] Bertrand Meyer and Martin Nordio (editors): Software Engineering; Interna-
tional Summer Schools, LASER 2013-2014, Elba Island, Italy, Revised Tu-
torial Lectures; Lecture Notes in Computer Science 8987, Springer, 2015.  

[253] Bertrand Meyer: Theory of Programs, in Proceedings of LASER summer 
school on Software 2013-2014 2007/2008, eds. Bertrand Meyer and Martin 
Nordio, Advanced Lectures on Software Engineering, Lecture Notes in Com-
puter Science 8987, Springer, 2015 [252].  

[254] Sebastian Nanz and Carlo A. Furia: A Comparative Study of Programming 
Languages in Rosetta Code, in Proceedings of the 37th International Con-
ference on Software Engineering (ICSE 2015), IEEE, 2015.  

[255] Chandrakana Nandi, Aurelien Monot and Manuel Oriol: Stochastic Contracts 
for Runtime Checking of Component-based Real-time Systems, in Proceed-
ings of the 18th International ACM SIGSOFT Symposium on Component-
Based Software Engineering (CBSE 2015). 

[256] Julian Tschannen, Carlo A. Furia, Martin Nordio and Nadia Polikarpova:  
AutoProof: Auto-active Functional Verification of Object-oriented Pro-
grams, in 21st International Conference on Tools and Algorithms for the 
Construction and Analysis of Systems, Springer, 2015.  

[257] Nadia Polikarpova, Julian Tschannen and Carlo A. Furia: A Fully Verified 
Container Library, in FM 2015: Formal Methods, Springer LNCS, 2015.  

[258] Alexander Heussner, Christopher M. Poskitt, Claudio Corrodi and Benjamin 
Morandi: Towards Practical Graph-Based Verification for an Object-Ori-
ented Concurrency Model, in Proc. Graphs as Models (GaM 2015), Elec-
tronic Proceedings in Theoretical Computer Science (EPTCS), volume 181, 
2015.  

[259] Carlo A. Furia, Christopher M. Poskitt and Julian Tschannen: The AutoProof 
Verifier: Usability by Non-Experts and on Standard Code, in Proc. Formal 
Integrated Development Environment (F-IDE 2015), Electronic Proceedings 
in Theoretical Computer Science (EPTCS), volume 187, 2015.  

[260] Alexey Kolesnichenko, Christopher M. Poskitt, Sebastian Nanz and Bertrand 
Meyer: Contract-based general-purpose GPU programming, in GPSE 2015, 



116  

Proceedings of 2015 ACM SIGPLAN International Conference on Genera-
tive Programming: Concepts and Experiences, ACM SIGPLAN Notices, vol. 
51, Issue 3, March 2016, pages 75-84.  

[261] Mischael Schill, Christopher M. Poskitt and Bertrand Meyer: An Interfer-
ence-Free Programming Model for Network Objects, in COORDINATION 
2016, Proc. 18th IFIP International Conference on Coordination Models and 
Languages, Heraklion, Greece, Lecture Notes in Computer Science 9686, 
Springer, pages 227-244.  

[262] Jiwon Shin, Andrey Rusakov and Bertrand Meyer: SmartWalker: An Intelli-
gent Robotic Walker, in Journal of Ambient Intelligence and Smart Environ-
ments, vol.8, no.14, July 2016.  

[263] Alexander Naumchev and Bertrand Meyer: Complete Contracts Through 
Specification Drivers, in TASE 2016, 10th International Symposium on The-
oretical Aspects of Software Engineering, Shanghai, 17-19 July 2016, IEEE 
Computer Society, 2016, pages 160-167,  

[264] Georgiana Caltais and Bertrand Meyer: On the Verification of SCOOP Pro-
grams, in Science of Computer Programming, 2016 (available online 22 Au-
gust 2016).  

[265] Bertrand Meyer: Class Invariants: Concepts, Problems, Solutions, so far un-
published, October 2016.  

[266] Claudio Corrodi, Alexander Heußner, Christopher M. Poskitt : A Graph-
Based Semantics Workbench for Concurrent Asynchronous Programs, in 
Proc. International Conference on Fundamental Approaches to Software En-
gineering (FASE 2016), Springer, volume 9633, 2016. 

[267] Mischael Schill: Unified interference-free parallel, concurrent and distrib-
uted programming, PhD thesis, ETH Zurich, 2016. 

[268] Andrey Rusakov: Simple concurrency for robotics, PhD thesis, ETH Zurich, 
2016. 

[269] Alexey Kolesnichenko: Seamless Heterogeneous Computing: Combining 
GPGPU and Task Parallelism, PhD thesis, ETH Zurich, 2016. 

[270] Bertrand Meyer: Agile Software Development, MOOC (online course), edX, 
2016, available at www.edx.org/course/agile-software-development-ethx-
asd-1x.  

[271] Alexey Kolesnichenko, Christopher M. Poskitt and Sebastian Nanz: 
SafeGPU: Contract- and Library-Based GPGPU for Object-Oriented Lan-
guages, in Computer Languages, Systems & Structures, volume 48, 2017. 

[272] Alexander Kogtenkov: Void Safety, PhD Thesis, ETH Zürich, 2017, 
se.ethz.ch/kogtenkov/thesis.pdf.  

[273] Carlo Furia, Bertrand Meyer, Martin Nordio, Nadia Polikarpova, Julian 
Tschannen et al.: AutoProof site at autoproof.org (formerly at se.ethz.ch/re-
search/autoproof/), 2014-present. 



117 

Other publications cited in this article 

[274] Annenberg Foundation: A Private Universe, 1987; see the supporting site at 
www.learner.org/resources/series28.html and part of the original Private Uni-
verse film at www.youtube.com/watch?v=TrXaQu_qGeo. 

[275] Denis Caromel and Ludovic Henrio: A Theory of Distributed Objects, 
Springer, 2005. 

[276] Patrice Chalin: Are Practitioners Writing Contracts? In Rigorous Develop-
ment of Complex Fault-Tolerant Systems, eds. Michael J. Butler, Cliff B. 
Jones, Alexander Romanovsky and Elena Troubitsyna, Lecture Notes in Com-
puter Science 4157, Springer, 2006, pages 100-113. 

[277] T. Y. Chen, H. Leung and I. K. Mak: Adaptive Random Testing, in ASIAN 
2004: Advances in Computer Science, Annual Asian Computing Conference, 
Springer Lecture Notes in Computer Science 3321, 2004, pages 320-329. 

[278] Volker Dürr, Josef Schmitz and Holk Cruse: Behavior-based modeling of 
hexapod locomotion: linking biology & technical application, in Arthropod 
Structure & Development, vol. 33, 2004, pages 237-250. 

[279] Michael D Ernst, Jake Cockrell, William G Griswold and David Notkin: Dy-
namically discovering likely program invariants to support program evolu-
tion, in IEEE Transactions on Software Engineering, vol. 27, no. 2, February 
2001, pages 99-123. 

[280] Eiffel documentation at eiffel.org.  
[281] Michael Furger: ETH-Präsident Guzzella: Lernen ist Magie (Learning is Ma-

gic), interview of new ETH president, in German, in Neue Zürcher Zeitung, 
28 December 2014, available at www.nzz.ch/nzzas/nzz-am-sonntag/lernen-
ist-magie-1.18451751. 

[282] Erich Gamma, John Vlissides, Ralph Johnson, and Richard Helm: Design 
Patterns, Addison-Wesley, 1995. 

[283] C.A.R. Hoare: The Verifying Compiler: A Grand Challenge for Computing 
Research, in JMLC 2003, Proc. of Joint Modular Languages Conference, 
Springer Lecture Notes in Computer Science 2789, pages 25-35. (Also in the 
proceedings of ECOOP 2003, LNCS 2743). 

[284] Michael Jackson and Pamela Zave: Deriving Specifications from Require-
ments: an Example, Proceedings of 17th International Conference on Soft-
ware Engineering, ACM and IEEE, pages 15-24, 1995. 

[285] Claude Kaiser, Bertrand Meyer and Étienne Pichat L'Enseignement de la Pro-
grammation à l'IIE (Teaching Programming at the IIE engineering school), 
in Zéro-Un Informatique, 1977, se..ethz.ch/~meyer/publications/teaching/en-
seignement_iie.pdf. 

[286] Donald E. Knuth: Literate Programming, CSLI lecture notes no. 27, Stan-
ford, 1992. 

[287] John Markoff: Faster Chips Are Leaving Programmers in their Dust, in New 
York Times, 17 December 2007. 

[288] Manuel Mazzara and Bertrand Meyer (eds.): PAUSE: Present And Ulterior 
Software Engineering, proceedings of a symposium held on the occasion of 



118  

the closing of the ETH Chair of Software Engineering, Villebrumier, France, 
December 2015, Springer, 2017. 

[289] José Meseguer et al.: Maude papers at maude.cs.uiuc.edu/papers/.  
[290] Bertrand Meyer: A Basis for the Constructive Approach to Programming, in 

Information Processing 80 (Proceedings of the IFIP World Computer Con-
gress), Tokyo, October 6-9, 1980), ed. S. H. Lavington, North-Holland Pub-
lishing Company, Amsterdam, pages 293-298, 1980. 

[291] Bertrand Meyer: Reusability: the Case for Object-Oriented Design, in IEEE 
Software, vol. 4, no. 2, March 1987, pages 50-62. Republished in the follow-
ing volumes: Selected Reprints in Software, ed. M. Zelkowitz, IEEE Press, 
1987; Software Reusability, ed. T. Biggerstaff, Addison-Wesley, 1988; Ob-
ject-Oriented Computing, IEEE Press, 1988. 

[292] Bertrand Meyer: Object-Oriented Software Construction (1st edition), Pren-
tice Hall, 1st edition, 1988. 

[293] Bertrand Meyer: Eiffel: The Language, Prentice Hall, 1990. 
[294] Bertrand Meyer: Sequential and Concurrent Object-Oriented Programming, 

in TOOLS 2, (Technology of Object-Oriented Languages and Systems, Paris, 
23-26 June 1990), Angkor/SOL, Paris, pages 17-28, June 1990. 

[295] Bertrand Meyer: Towards an Object-Oriented Curriculum, in Journal of Ob-
ject-Oriented Programming, Volume 6, Number 2, May 1993, pages 76-81, 
and proceedings of TOOLS 11, Technology of Object-Oriented Languages 
and Systems, Santa Barbara, August 1993, eds. R. Ege, M. Singh and B. 
Meyer, Prentice Hall 1993, pages 585-594, see a version at 
se.ethz.ch/~meyer/publications/joop/curriculum.pdf. 

[296] Bertrand Meyer: Systematic Concurrent Object-Oriented Programming, in 
Communications of the ACM, 36, 9, September 1993, pp. 56-80. 

[297] Bertrand Meyer: Reusable Software: The Base Object-Oriented Component 
Libraries, Prentice Hall, 1994. 

[298] Bertrand Meyer: Object Success: A Manager's Guide to Object-Orientation, 
its Impact on the Corporation, and its Use for Reengineering the Software 
Process, Prentice Hall, 1995. 

[299] Bertrand Meyer: Object-Oriented Software Construction, 2nd edition, Pren-
tice Hall, 1997. 

[300] Bertrand Meyer: Prelude to a Theory of Void, in JOOP (Journal of Object-
Oriented Programming), vol. 11, no. 7, November 1998, pages 36-48. 

[301] Bertrand Meyer: .NET is coming, in IEEE Computer, vol. 34, no. 8, August 
2001, pages 92-97. 

[302] Microsoft Research: Boogie page at www.microsoft.com/en-us/research/pro-
ject/boogie-an-intermediate-verification-language/#.  

[303] Robert F. Stärk, Joachim Schmid, Egon Börger: Java and the Java Virtual 
Machine: Definition, Verification, Validation, Springer, 2001. 

[304]  Wikipedia: Levenshtein distance algorithm entry, at en.wikipe-
dia.org/wiki/Levenshtein_distance, 


