
DISCIPLINED EXCEPTIONS

I

Bertrand Meyer

nteractive Software Engineeering



Report TR-EI-13/EX

1988, Interactive Software Engineering

A

http://www.eiffel.com

bout the context of this report see ‘‘A historical note about this paper’’ on the last page.



2 DISCIPLINED EXCEPTIONS



DISCIPLINED EXCEPTIONS 3

1 Introduction

One of the most delicate problems of software construction is the handling of abnormal

a
situations. How can a programmer write robust software components, which will take care of
ll possible cases, without impairing the elegance of the structure and the processing of normal

cases?

The question is particularly important in object-oriented programming, which heavily
e

c
relies on the notion of reusable software component. The quality requirements on reusabl
omponents are even higher than those on ‘‘regular’’ software; in particular, no imperfection

can be tolerated with respect to correctness and robustness.

This paper presents the solution recently introduced into the Eiffel object-oriented
l

e
language and environment for dealing with unexpected run-time situations. The Eiffe
xception mechanism differs from existing exception mechanisms, particularly those of Ada

f
D
and CLU in that it is based on a strong emphasis of program correctness, using the concept o

esign by Contract [6, 7]. Exceptions are defined with respect with assertions, and exception

2

handling is constrained to observe the semantics defined by the assertions.

Exceptions in existing languages

A number of languages have included exception handling facilities. The best known
n

m
mechanisms are probably those of Ada [1] and CLU [5]. In both cases the exceptio

echanism is really a control structure.

The recommended CLU programming style, for example, commonly uses exceptions to
]

i
deal with all results of an operation other than the most common one. A typical example [4
s a routine for determining the index of the first occurrence of a value in a list; an exception

is triggered if there is no such occurrence.

It is hard to find arguments for this approach over the standard technique of returning a

s
special value, say 0 if valid list indices lie between 1 and n , or other techniques that rely on
tandard control structures. In fact, the basic paper on CLU exceptions [5] states that although

-
e
the presence of an exception mechanism should not affect the efficiency of algorithms in non
xceptional cases, efficiency concerns are less important for the handling of exceptional cases.

,
b
This is justified if exceptions are confined to the handling of abnormal or erroneous situations
ut seems hardly compatible with an approach that triggers an exception to signal an

unsuccessful search – hardly an ‘‘exceptional’’ case.

In Ada, the reference manual uses the example of a stack module which raises an
n

n
exception if the pop operation is applied to an empty stack. Although this example appears i

umerous Ada textbooks, few give examples of how to handle such an exception. But this is

e
the really difficult part: since a stack module lacks the proper context to deal with the
xception, the calling modules (called clients in the sequel) must include a handler. But a

u
client including such a handler will be significantly more complicated than the obvious solution
sing classical control structures, namely



DISCIPLINED EXCEPTIONS4 §2

_______________________________________________________________________________

e
if empty (s) then pop (s)
lse ... ‘‘Deal with empty stack’’ ... end

_______________________________________________________________________________

_

With exceptions, a handler clause of the form

______________________________________________________________________________

exception
when Stack_underflow => ... deal with stack underflow ...

_
...

______________________________________________________________________________

a
must be included in any client module; it is awkward to write since it is disjoint from the
ctual call and hence does not have the proper context to deal with the abnormal situation.

e
n

The use of exceptions in such examples appears as a vain attempt to do away with th
ecessity to deal with abnormal cases. Of course it is unpleasant to include many if... then...

t
else... structures of the above form in a program; but this necessity is a fact of life. The need
o specify the treatment of abnormal cases does not magically vanish through the raise

incantation.

The only application for which exceptions may be justified in such cases is software fault

g
tolerance. Assume the programmer has made every effort to ensure that all calls to pop in a
iven system are properly protected, but still wants to take into account the possibility of an

r
w
error in the software by providing some response in the case of an erroneous call (one fo

hich the stack is empty). This response can only be what we shall call ‘‘organized panic’’: try
e

a
to bring the computation to a coherent state and report failure. We shall see below how to us

disciplined form of exceptions to describe such treatment.

n
e

The exception mechanism of Ada is particularly worrying because the handler of a
xception may do any processing before returning control to the caller. It is quite possible in

g
f
particular to catch an exception and return control to the calling routine without reportin
ailure. An extreme example, found in an Ada textbook [9], is a function for computing a real

i
square root; when presented with a negative argument, this function raises an exception, which
s immediately caught by a when clause that prints a message and then .. quietly returns to the

caller!

In other examples, exceptions are used as a form of inter-procedural jump instructions.

f
In our view, such applications of exceptions are abusive. The goto instruction was not banned
rom programming methodology in the late 1960s to be reintroduced at the interprocedural

level into the languages of the 1980s.

Standard control structures may be used in most cases where CLU or Ada would use
e

a
exceptions, using either the ‘‘a priori scheme’’ (test the applicability of an operation befor
ttempting it) or the ‘‘a posteriori scheme’’ (attempt the operation, and then find out whether it

has succeeded). These techniques are discussed in detail elsewhere [6, 7].

There remains, however, three cases in which classical techniques are not sufficient and
exceptions may be needed. They are the following:

• The first case is one in which attempting the operation may cause a hardware or
toperating system signal if the operation was not applicable; the signal must be caugh



EXCEPTIONS IN EXISTING LANGUAGES 5§2

•
to avoid catastrophes.

In the second case, an abnormal situation must lead to immediate termination because

•
physical danger may otherwise result, as in a robot manipulation system.

The third case, mentioned above in the pop example, is software fault tolerance:

T

guarding against the possibility of a remaining error.

he Eiffel exception mechanism is meant to deal with these cases. It is based on the Eiffel

3

constructs for specifying and ensuring software correctness: assertions.

Assertions

To explain the Eiffel approach to exceptions, it is first necessary to recall the assertion
mechanism offered by this language [6].

Eiffel assertions are used to specify the semantics of software elements (classes and
n

m
routines). Syntactically, assertions are boolean expressions, plus a few extensions. An assertio

ay have several clauses separated by semicolons, which is semantically equivalent to an and

_
but allows individual identification of the clauses. An example of an assertion is
______________________________________________________________________________

i
index_large_enough: i >= 1;
ndex_small_enough: i <= nb_elements

_______________________________________________________________________________

d
As shown in this example, clauses may be labeled for individual identification (in particular for
ebugging purposes, when the optional monitoring mechanism, described below, is enabled).

Labels will be dropped in subsequent examples.

Assertions have numerous uses. One of the most important applications is to characterize
a

p
the semantics of routines through a precondition (introduced by the keyword require) and

ostcondition (introduced by ensure). The precondition describes the condition that must be
s

g
satisfied by the client for a call to be correct; the postcondition describes the condition that i
uaranteed in return by the routine on exit. For example the pop routine in the STACK classes

_
of the basic Eiffel library is written as
______________________________________________________________________________

pop is
-- Remove top element.

require
not empty

do
... ‘‘Implementation of the pop operation’’ ...

ensure
not full;
nb_elements = old nb_elements – 1

_
end -- pop

______________________________________________________________________________



6 DISCIPLINED EXCEPTIONS §3

The boolean functions empty and f ull express whether a stack is empty and full

(
(respectively). The old notation, used only in postconditions, refers to the value of an attribute
here nb_elements, giving the number of elements of a stack) upon routine entry.

e
s

A further use of assertions is the class invariant, which states the properties that must b
atisfied by all instances of a class in all ‘‘stable’’ states, that is to say after instance creation

e
e
(obtained in Eiffel by executing the Create procedure of the class) and before and after th
xecution of every exported routine. For example, the invariant of the ARRAY class includes

_______________________________________________________________________________

size = upper – lower + 1;
size >= 0

_______________________________________________________________________________

A class invariant expresses the integrity constraints that must be satisfied by all instances
.of a class

The invariant is implicitly added to both the precondition and the postcondition of every
s

i
routine in the class (postcondition only for Create ). However the invariant transcend
ndividual routines and applies to the class as a whole; in particular, it constrains not only the

e
a
routines that appear in the class at a given moment of its evolution, but any others that may b
dded later either through modification of the class or through inheritance. (Eiffel defines

r
precise rules as to how assertions control the inheritance mechanism and particularly routine
edefinition. This important topic falls beyond the scope of this discussion; see [6] and [7].)

s
p

Assertions in Eiffel have several roles. Two are conceptual in nature: assertions serve a
owerful guiding constructs for the production of correct and robust software, and as an

d
e
effective software documentation tool. The other two uses of assertions are debugging an
xception handling. Both assume that assertions are monitored at run-time, which is possible in

,
d
the Eiffel environment under the control of compilation options which, for each class
etermine whether to check the validity of assertions. Various levels of checking may be

enabled for each class: no checking at all, preconditions only, all assertions.

The notion of assertion is fundamental for ensuring software reliability. Without a
r

i
technique for expressing the purpose of individual software elements independently of thei
mplementations, there is no way to guarantee that they will serve any useful purpose. The

a
s
underlying idea is ‘‘Design by Contract’’: every routine fulfils a precise job, defined by
pecification that states precisely the obligations on the client, limiting the routine’s

c
responsibility (the precondition), and the obligations on the routine, guaranteeing the client a
ertain result (the postcondition). The class invariant states general integrity constraints that

apply both to the client and the routine.

In this context, an exception is an abnormal event that prevents a routine from carrying
h

a
out its task as initially planned; exception handlers should describe how to recover from suc
n event.

The deficiencies of existing exception mechanisms may be traced to the absence of any
a

r
notion of contract. Without this notion and the associated assertion techniques, the intent of
outine is never stated precisely; then an exception handler may perform any action, including

e
s
one that has no connection whatsoever with the routine’s original purpose – or, as in th
quare root example cited above, one that defeats this very purpose.



SFAILURES AND EXCEPTION 7§4

T

4 Failures and exceptions

he following definitions will serve as the basis for the disciplined exception mechanism
introduced below.

A failure is the inability of a routine to fulfil its contract as specified by the
postcondition and the class invariant.

An exception is an abnormal event occurring at run-time during the execution of a
routine.

In theory, there is only one type of exception: violation of an assertion during the

r
execution of the routine (precondition or invariant violated on entry, postcondition of a called
outine violated on return from that routine, etc.). However in practice more cases must be

1

considered. A more complete list of possible exceptions in Eiffel is the following:

• Violation of an assertion, when monitored.

2 • Failure of a called routine.

3 • Access to a non-existent object, as in x. f where x is a void reference.

4 • Signal sent by the hardware or operating system, indicating some abnormal event

C

(numerical overflow, user interrupt, I/O error etc.) during the execution of the routine.

ases 2 to 4 may be viewed conceptually as variants of case 1, where the violated assertion is
l

s
implicit, for example the unstated assertion that, in the computation of a + b, the mathematica
um of a and b is small enough to be representable on the machine.

e
c

It is important to keep the notions of failure and exception distinct. Of course, they ar
onnected: as noted in case 2, failure of a routine raises an exception in its caller; and, as will

s
be seen below, occurrence of an exception in a routine leads to failure of the routine unless
ome special correcting action is taken.

g

E

5 Two principles of exception handlin

xception handling is controlled by the notion of contract. The following law expresses that

_

the occurrence of an exception is not an excuse to violate the routine’s contract:

______________________________________________________________________________

r
First Law of software contracting: There are only two ways a
outine call may terminate: either the routine fulfils its contract, or its

_
fails to fulfil it.

______________________________________________________________________________

m
Trivial as this law may seem, it is violated, for example, by the Ada exception

echanism, which makes it possible to write an exception handler that returns to the caller

c
without correcting the cause of the exception (and without re-raising the exception). In such a
ase the routine has failed (since an exception prevented it from executing to its normal end),

h
but returns control to its caller without signaling failure. It is like a ‘‘dishonest’’ contractor that
as not performed its task but pretends to its client that it has.



8 DISCIPLINED EXCEPTIONS §5

The square root function mentioned above shows that such dangerous uses of the Ada

t
exception mechanism not only are possible but have found their way into software engineering
extbooks.

A corollary of the first law, which makes it clear that the Ada policy is too general, is:

_______________________________________________________________________________

Second Law of software contracting: If a routine fails to fulfil its

c
contract, the current execution of its caller also fails to fulfil its own
ontract.

_______________________________________________________________________________

o
What then should be done when an exception occurs? In view of the above principles,

nly two responses are reasonable.

• One response, organized panic, consists of admitting that the contract cannot be
s

w
fulfilled: bring all affected objects to a coherent state, and report failure. Note that thi

ill trigger an exception in the caller, which will recursively have to decide what to do

•
in response to this exception, using the same two possible choices.

The other response, resumption, consists in attempting to fix the reasons for the

T

exception and trying the whole routine execution again.

hese two responses are the only ones permitted by the Eiffel mechanism.

T

6 The rescue clause

he extension of Eiffel for exception handling is concise: two keywords and a library class.

o
d

First, a new clause, introduced by the keyword rescue, may be added to a routine t
escribe the treatment of exceptions. The general format of a routine becomes:

_______________________________________________________________________________

routine_name (optional_arguments): type is

r
-- Header comment

equire
precondition

local
local_variable_declarations

do
body

ensure
postcondition

rescue
rescue_clause

end -- routine_name
_______________________________________________________________________________



THE RESCUE CLAUSE 9§6

d
(All clauses are optional, except for do body which may be replaced by deferred for a

eferred routine. The : type part is only present for functions.)

n
o

The rescue clause is a sequence of instructions to be executed whenever an exceptio
ccurs during the execution of the routine.

A key property of the approach is that the rescue clause, if executed until the end, will

s
cause failure of the routine, and thus an exception in the caller. (If there is no caller, that is to
ay at the root level, a message is printed and execution halts.) This is the organized panic

s
i
mode: the rescue clause puts objects back into a stable state and signals failure. This policy i
n accordance with the above laws: in contrast with the above square root function, an Eiffel

o
routine should not ‘‘pretend’’ that it succeeded when it has not been able to correct the cause
f an exception.

A routine which has no rescue clause is considered to have an empty one; this means

c
that any exception will lead to failure of the routine. Also, a rescue clause may be given at the
lass level, and will then apply to any routine of the class which does not have its own explicit

7

clause. This makes it possible to have a common treatment of exceptions in several routines.

Retrying

Organized panic, however, is only one possible response; the other is resumption. A rescue

_

clause may terminate by executing the instruction

______________________________________________________________________________

_
retry

______________________________________________________________________________

r
which, as its name indicates, restarts the routine from the beginning. Clearly, the part of the
escue clause executed before the retry must have changed some of the context to ensure that

r
the new execution of the routine tries some other road towards fulfilling the contract than the
oad initially followed. Examples will illustrate this.

l
t

It is important to note that, retry or not retry, the rescue clause never attempts to fulfi
he routine’s contract. This is solely the province of the body (do...). The aim of the rescue

e
f
clause is to ‘‘patch things up’’ and either concede failure or retry. This will be expressed mor
ormally below.



DISCIPLINED EXCEPTIONS10 §8

8 The EXCEPTIONS class

Sometimes it is useful to treat various types of exceptions differently. For this purpose, a
;

r
library class EXCEPTIONS is provided. Any class needing its facilities can inherit from it
ecall that Eiffel efficiently supports multiple inheritance, so that it is a standard technique in

g
t
this language to package a number of constants or operations in a class; then any class needin
hese facilities can access them by inheriting from that class (on top of its ‘‘normal’’ parents).

_

Class EXCEPTION includes a number of features, including an attribute

______________________________________________________________________________

_
exception

______________________________________________________________________________

h
which is set by the run-time system to the code of the last triggered exception. Exceptions
ave integer codes; codes for the most common exceptions are defined in the class as symbolic

a
c
constants (constant attributes in Eiffel), such as Overf low , No_more_memory etc. So
ommon structure for a rescue clause is

_______________________________________________________________________________

e
if exception = Overflow then ...
lsif exception = No_more_memory then ...

_
elsif etc.

______________________________________________________________________________

w
If there is an else clause, it should not end with a retry: this way, an unforeseen exception

ill result in failure, which is the appropriate effect.

n
n

Among other features of class EXCEPTIONS is a function that yields a new exceptio
ame. The equivalent of an explicit ‘‘raise’’ instruction is given by the following routine of this

_

class:

______________________________________________________________________________

raise (exception_code: INTEGER) is
-- Raise an exception with the given code

require
false

do
end -- raise

_______________________________________________________________________________

r
Class EXCEPTIONS being compiled in such a mode as to monitor preconditions, any call to
aise will indeed trigger the appropriate exception.



SFORMAL REQUIREMENT 1§9 1

T

9 Formal requirements

he following methodological requirements apply to any rescue clause.

y
o

The rescue clause must admit true as precondition. This is because an exception ma
ccur at any time, and the rescue clause should always be applicable.

,
b

Now consider a branch of the rescue clause not ending with retry. It will lead to failure
ut must leave the object in a stable state, as noted above. This means that such a branch must

e
admit the class invariant as postcondition. Note again that the branch is not constrained to
nsure the routine’s postcondition: this is the task of the body.

l
b

Finally any branch ending with retry must ensure the invariant and, since the routine wil
e restarted, the precondition. (If the precondition is not satisfied, of course, an exception will

1

be triggered again immediately if precondition monitoring is on).

0 Examples

The mechanism turns out to yield a remarkably simple way of writing software to deal with
exceptional conditions.

Consider for example a problem which is found under small variants in many Ada
e

g
textbooks: get an integer from an interactive user; if the input is incorrect, the reading routin
etint raises an exception; when this happens, ask the user again, but no more than 5 times.

t
Note that a function such as getint producing side-effects and raising exceptions is anathema
o the recommended Eiffel style, but we assume (for compatibility with the Ada examples) that

_

such a low-level function is the only one available to read integers.

______________________________________________________________________________

get_integer_from_user: INTEGER is
-- Read an integer (allow user up to five attempts)

local
failed: INTEGER

do
Result := getint

rescue
failed := failed+1;
if failed <= 5 then

message ("Input must be an integer. Please enter again:");

e
retry

nd;
end -- get_integer_from_user

_______________________________________________________________________________

e
Like all integer entities, the local variable failed is initialized to zero on entry. The predefined
ntity Result denotes the result to be returned by the function.

;
t

Note how the task of carrying out the routine’s contract is concentrated in the do clause
he rescue only patches things up when something is amiss.



1 DISCIPLINED EXCEPTIONS2 §10

Another example, adapted from [3], is that of a routine that returns 1/x , or 0 if the
t

a
division is impossible. This is typical of problems that are almost impossible to solve withou
n exception facility, because the only way to find out whether the operation is possible is to

e
w
attempt it, but if it fails a hardware signal will be generated. (We assume this is the cas

henever x is too small.) This may be written as:

_______________________________________________________________________________

quasi_inverse (x: REAL): REAL is
-- 1/x if representable, 0 otherwise

local
division_attempted: BOOLEAN

do
if not division_attempted then

Result := 1/x
else

Result := 0
end

rescue
division_attempted := true;
retry

end
_______________________________________________________________________________

w
The local variable division_attempted will be initialized to false upon routine execution, as

ould any boolean.

Note that a more robust version of the rescue clause should discriminate between
e

a
exceptions by using the facilities of class EXCEPTIONS ; only overflow should give rise to th
bove treatment (but not, for example, the user hitting the BREAK key during execution of the

routine). Other cases should lead to failure.

The last example is taken from Saib [8]. It is an elementary case of ‘‘n-version
n

h
programming’’ [2] – a method whereby better software reliability is sought, as is often done i
ardware engineering, through fault-tolerance and redundancy; two or more teams are asked to

e
o
implement an identically specified module, and both are used, each serving as standby if th
ther fails.

Although one may entertain reservations about this approach to software reliability, it is

t
interesting to see how it may be programmed. Saib’s version keeps alternating between the
wo versions as long as one fails; this is hardly realistic (one would normally stop after both

.
T
attempts have failed), but we shall keep this hypothesis for the purpose of the comparison

he Ada version is the following:



EXAMPLES 3§10 1

_______________________________________________________________________________

procedure attempt is begin
<<Start>> -- Start is a label
loop

begin
algorithm_1;
exit; -- Algorithm 1 was successful

exception
when others =>

begin
algorithm_2;
exit; -- Algorithm 2 was successful

exception
when others =>

goto Start;
end

end
end

end main;
_______________________________________________________________________________

t
The control structure necessary to achieve the result looks rather contorted: two blocks,

wo exception handlers, two exits from within a loop, and one goto that jumps out of two
d

p
exception handlers, two blocks and a loop! This would be enough to bring ‘‘structure
rogramming’’ back into fashion. A much simpler structure does not appear possible with the

_

Ada exception mechanism. Compare with the Eiffel version:

______________________________________________________________________________

attempt is
local

even: BOOLEAN
do

if even then algorithm_2 else algorithm_1 end
rescue

even := not even; retry
end

_______________________________________________________________________________

The choice between these two versions is left to the reader’s taste.



DISCIPLINED EXCEPTIONS14 §11

11 Conclusion

It is remarkable to note that the mechanism described here could have been designed into Ada,
.

(
although it fits particularly well within the object-oriented approach as promoted by Eiffel
See in particular [6] for an explanation of inheritance and dynamic binding from the

a
‘‘programming as contracting’’ viewpoint.) What seems to have prevented the inclusion of such

mechanism in Ada is the lack of a notion of contract.

l
n

The emphasis on software reliability which was paramount in the design of Eiffe
aturally led to the above facilities which, we believe, are at least at least as powerful for

s
practical applications as the exception facilities built into previous languages, while being
impler to use and much safer.

[

References

1] ANSI and AJPO, ‘‘Military Standard: Ada Programming Language (American National

O
Standards Institute and US Government Department of Defense, Ada Joint Program

ffice)’’, ANSI/MIL-STD-1815A- 1983, February 17, 1983.

E[2] Algirdas Aviz’ienis, ‘‘The N-version aproach to Fault-Tolerant Software’’, IEEv

Transactions on Software Engineering, vol. SE-11, no. 12, pp. 1491-1501, December

[

1985.

3] Grady Booch, Software Engineering with Ada, Benjamin/Cummings Publishing Co.,

[

Menlo Park (Calif.), 1983.

4] Barbara Liskov and John Guttag, Abstraction and Specification in Program Development,

[

MIT Press, Cambridge (Mass.), 1986.

5] Barbara A. Liskov and Alan Snyder, ‘‘Exception Handling in CLU’’, IEEE Transactions

[

on Software Engineering, vol. SE-5, no. 6, pp. 546-558, November 1979.

6] Bertrand Meyer, ‘‘Programming as Contracting’’, Submitted for publication, 1988.

[

[7] Bertrand Meyer, Object-Oriented Software Construction, Prentice-Hall, 1988.

8] Sabina Saib, Ada: An Introduction, Holt, Rinehart and Winston, New York, 1985.

,[9] Ian Sommerville and Ron Morrison, Software Development with Ada, Addison-Wesley
Wokingham (England), 1987.



HISTORICAL NOTE 5§11 1

T

A HISTORICAL NOTE ABOUT THIS PAPER

he present paper was the first description of exception handling in the Design by Contract

p
framework, as applied to Eiffel. Submitted to the ECOOP 1988 conference and rejected, it was never
ublished (except as an ISE report). At ECOOP, copies were handed out to visitors of the ISE booth

d
r
in the commercial exhibition, accompanied by the note excerpted below, which provides a vivi
eminiscence of the early days when all attempts at publishing Eiffel-related ideas systematically

L

failed, thwarted by competing interests.

ater on, partly thanks to the incontrovertible success of the book Object-Oriented Software

P
Construction, the creation of independent publications like JOOP (SIGS’s Journal of Object-Oriented

rogramming) with no allegiance to a particular school or group, and the emergence of new, fair-

I

minded conferences, the lock was broken and it became possible to publish papers mentioning Eiffel.

f the note sounds bitter when read today, it’s because at the time Eiffel very nearly got censored out

i
of existence. Let’s hope that by reminding us of a dark episode it will help protect future software
nnovations from having to face such systematic and ill-founded hostility.

W

A NOTE TO ECOOP ATTENDEES

e hope you have enjoyed reading this article about exception handling for object-oriented
programming, describing the mechanism available in Eiffel.

Eiffel is an object-oriented language which you will not hear about in the program of
ECOOP conferences.

The present article was rejected without any single technical comment by the ECOOP
n

l
program committee. As if someone was trying to fend off suspicions of foul play, the rejectio
etter explained in long and contorted terms how fair the selection process had been; the letter

[
stated both that papers were reviewed anonymously and that ‘‘committee members left the
selection] meeting when papers related to them were discussed’’. Asking the author to leave

and then discussing his paper anonymously must have been an interesting exercise indeed.

The author’s letter complaining about the unfairness of the review process did not elicit
so much as a response from the program committee chairman.

Another major Eiffel contribution is its approach to multiple inheritance. We think the
r

t
Eiffel solution is the cleanest available. At ECOOP 88, however, you will not be able to hea
he arguments for it – nor, for that matter, any arguments against it. Requests to participate in

d
m
the multiple inheritance panel remained unanswered. We don’t think the conference gaine

uch.

The ECOOP policy of excluding any mention of Eiffel is not new. In the 1987
,

t
conference, a general presentation of the language was also summarily rejected. In this case
here was one technical comment: ‘‘Eiffel has already been published.’’ At that time, not a

e
m
single general presentation of Eiffel was available in the open literature, precisely because th

ajor article had been kept aside for submission at ECOOP.

o
E

Clearly, the systematic rejection of Eiffel by ECOOP will turn out to be a greater blow t
COOP than to Eiffel. In the meantime, we thank ECOOP attendees for encouraging the

i
conference to apply the standards of fairness, honesty and integrity that are normally accepted
n the scientific community.


