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1. INTRODUCTION: INDUCTIVE INVARIANTS

The problem of guaranteeing program correctness remains one of the central challenges
of software engineering, of considerable importance to the Information Technology indus-
try and to society at large, which increasingly depends, for almost all of its processes, on
correctly functioning programs. As defined by Tony Hoare [2003], the “Grand Challenge
of Program Verification” mobilizes many researchers and practitioners using a variety of
techniques.

Some of these techniques, such as model checking [Clarke et al. 1999] and abstract in-
terpretation [Cousot and Cousot 1977], are directed at finding specific errors, such as the
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possible violation of a safety property. An advantage of these techniques is that they work
on programs as they are, without imposing a significant extra annotation effort on program-
mers. For full functional correctness – the task of proving that a program satisfies a complete
specification – the approach of choice remains, for imperative programs, the Floyd-Hoare-
Dijkstra style of axiomatic semantics. In this approach, programs must be equipped with
annotations in the form of assertions. Every loop, in particular, must have a loop invariant.
Finding suitable loop invariants is a crucial and delicate step to verification. Although

some programmers may see invariant elicitation as a chore needed only for formal verifica-
tion, the concept is in fact widely useful, including for informal development: the invariant
gives fundamental information about a loop, showing what it is trying to achieve and how it
achieves it, to the point that (in some people’s view at least) it is impossible to understand
a loop without knowing its invariant.

To explore and illustrate this view we have investigated a body of representative loop
algorithms in several areas of computer science, to identify the corresponding invariants,
and found that they follow a set of standard patterns. We set out to uncover, catalog,
classify, and verify these patterns, and report our findings in the present article.

Finding an invariant for a loop is traditionally the responsibility of a human: either the
person performing the verification, or the programmer writing the loop in the first place (a
better solution, when applicable, is the constructive approach to programming advocated
by Dijkstra and others [Dijkstra 1976; Gries 1981; Meyer 1980]). More recently, techniques
have been developed for inferring invariants automatically, or semi-automatically with some
human help (we review them in Section 5). We hope that the results reported here will be
useful in both cases: for humans, to help obtain the loop invariants of new or existing
programs, a task that many programmers still find challenging; and for invariant inference
tools.
For all algorithms presented in the paper1, we wrote fully annotated implementations

and processed the result with the Boogie program verifier [Leino 2008], providing proofs of
correctness. The Boogie implementations are available at:2

http://bitbucket.org/sechairethz/verified/

This verification result reinforces the confidence in the correctness of the algorithms pre-
sented in the paper and their practical applicability.
The rest of this introductory section recalls the basic properties of invariants. Section 2

introduces a style of expressing invariants based on “domain theory”, which can often be
useful for clarity and expressiveness. Section 3 presents two independent classifications of
loop invariant clauses, according to their role and syntactic similarity with respect to the
postcondition. Section 4 presents 21 algorithms from various domains; for each algorithm,
it presents an implementation in pseudo-code annotated with complete specification and
loop invariants. Section 5 discusses some related techniques to infer invariants or other
specification elements automatically. Section 6 draws lessons from the verification effort.
Section 7 concludes.

1.1. Loop invariants basics

The loop invariants of the axiomatic approach go back to Floyd [1967] and Hoare [1969]
(see Hatcliff et al. [2012] for a survey of notations for and variants of the fundamental idea).
For this approach and for the present article, a loop invariant is not just a quantity that

1With the exception of those in Sections 4.5 and 4.7, whose presentation is at a higher level of abstraction,
so that a complete formalization would have required complex axiomatization of geometric and numerical
properties beyond the focus of this paper.
2In the repository, the branch inv survey contains only the algorithms described in the paper; see http:
//goo.gl/DsdrV for instruction on how to access it.
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remains unchanged throughout executions of the loop body (a notion that has also been
studied in the literature), but more specifically an “inductive invariant”, of which the precise
definition appears next. Program verification also uses other kinds of invariant, notably class
invariants [Hoare 1972; Meyer 1997], which the present discussion surveys only briefly in
Section 1.4.
The notion of loop invariant is easy to express in the following loop syntax taken from

Eiffel:

1 from
2 Init
3 invariant
4 Inv
5 until
6 Exit
7 variant
8 Var
9 loop

10 Body
11 end

(the variant clause helps establish termination as discussed below). Init and Body are each
a compound (a list of instructions to be executed in sequence); either or both can be empty,
although Body normally will not. Exit and Inv (the inductive invariant) are both Boolean
expressions, that is to say, predicates on the program state. The semantics of the loop is:

(1) Execute Init .
(2) Then, if Exit has value True, do nothing; if it has value False, execute Body, and repeat

step 2.

Another way of stating this informal specification is that the execution of the loop body
consists of the execution of Init followed by zero or more executions of Body, stopping as
soon as Exit becomes True.
There are many variations of the loop construct in imperative programming languages:

“while” forms which use a continuation condition rather than the inverse exit condition;
“do-until” forms that always execute the loop body at least once, testing for the condition
at the end rather than on entry; “for” or “do” forms (“across” in Eiffel) which iterate over
an integer interval or a data structure. They can all be derived in a straightforward way
from the above basic form, on which we will rely throughout this article.
The invariant Inv plays no direct role in the informal semantics, but serves to reason

about the loop and its correctness. Inv is a correct invariant for the loop if it satisfies the
following conditions:

(1) Every execution of Init , started in the state preceding the loop execution, will yield a
state in which Inv holds.

(2) Every execution of Body, started in any state in which Inv holds and Exit does not hold,
will yield a state in which Inv holds again.

If these properties hold, then any terminating execution of the loop will yield a state in
which both Inv and Exit hold. This result is a consequence of the loop semantics, which
defines the loop execution as the execution of Init followed by zero or more executions of
Body, each performed in a state where Exit does not hold. If Init ensures satisfaction of the
invariant, and any one execution of Body preserves it (it is enough to obtain this property
for executions started in a state not satisfying Exit), then Init followed by any number of
executions of Body will.
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Formally, the following classic inference rule [Hoare 1972; Meyer 1997] uses the invariant
to express the correctness requirement on any loop:

{P} Init {Inv}, {Inv ∧ ¬ Exit} Body {Inv}

{P} from Init until Exit loop Body end {Inv ∧Exit}

This is a partial correctness rule, useful only for loops that terminate. Proofs of termination
are in general handled separately through the introduction of a loop variant: a value from a
well-founded set, usually taken to be the set of natural numbers, which decreases upon each
iteration (again, it is enough to show that it does so for initial states not satisfying Exit).
Since in a well-founded set all decreasing sequences are finite, the existence of a variant
expression implies termination. The rest of this discussion concentrates on the invariants;
it only considers terminating algorithms, of course, and includes the corresponding variant
clauses, but does not explain why the corresponding expression are indeed loop variants
(non-negative and decreasing). Invariants, however, also feature in termination proofs, where
they ensure that the variant ranges over a well-founded set (or, equivalently, the values it
takes are bounded from below).
If a loop is equipped with an invariant, proving its partial correctness means establishing

the two hypotheses in the above rules:

— {P} Init {Inv}, stating that the initialization ensures the invariant, is called the initiation
property.

— {Inv ∧ ¬ Exit} Body {Inv}, stating that the body preserves the invariant, is called the
consecution (or inductiveness) property.

1.2. A constructive view

We may look at the notion of loop invariant from the constructive perspective of a pro-
grammer directing his program to reach a state satisfying a certain desired property, the
postcondition. In this view, program construction is a form of problem-solving, and the
various control structures are problem-solving techniques [Dijkstra 1976; Meyer 1980; Gries
1981; Morgan 1994]; a loop solves a problem through successive approximation.

The idea of this solution, illustrated by Figure 1, is the following:

—Generalize the postcondition (the characterization of possible solutions) into a broader
condition: the invariant.

—As a result, the postcondition can be defined as the combination (“and” in logic, inter-
section in the figure) of the invariant and another condition: the exit condition.

—Find a way to reach the invariant from the previous state of the computation: the ini-
tialization.

—Find a way, given a state that satisfies the invariant, to get to another state, still satisfying
the invariant but closer, in some appropriate sense, to the exit condition: the body.

For the solution to reach its goal after a finite number of steps we need a notion of discrete
“distance” to the exit condition. This is the loop variant.

The importance of the above presentation of the loop process is that it highlights the
nature of the invariant: it is a generalized form of the desired postcondition, which in a
special case (represented by the exit condition) will give us that postcondition. This view of
the invariant, as a particular way of generalizing the desired goal of the loop computation,
explains why the loop invariant is such an important property of loops; one can argue that
understanding a loop means understanding its invariant (in spite of the obvious observation
that many programmers write loops without ever formally learning the notion of invariant,
although we may claim that if they understand what they are doing they are relying on
some intuitive understanding of the invariant anyway, like Molière’s Mr. Jourdain speaking
in prose without knowing it).
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1 from
2 Result := a ; x := b
3 invariant
4 Result >0
5 x >0
6 gcd (Result, x) = gcd (a, b)
7 until
8 Result = x
9 loop

10 if Result >x then
11 Result := Result − x
12 else −− Here x is strictly greater than Result
13 x := x − Result
14 end
15 variant
16 max (Result, x)
17 end

Fig. 2. Greatest common divisor with substraction.

—The essential invariant is a conservation invariant, indicating that a certain quantity
remains equal to its original value.

—The strategy that leads to this conservation invariant is uncoupling, which replaces a
property of one variable (Result), used in the postcondition, by a property of two vari-
ables (Result and x), used in the invariant.

The proof of correctness follows directly from the mathematical property stated: (2)
establishes initiation, and (3) establishes consecution.

Section 4.2.2 shows how the same technique is applicable backward, to guess likely loop
invariants given an algorithm annotated with pre- and postcondition: mutating the latter
yields a suitable loop invariant.

1.4. Other kinds of invariant

Loop invariants are the focus of this article, but before we return to them it is useful to list
some other kinds of invariant encountered in software. (Yet other invariants, which lie even
further beyond the scope of this discussion, play fundamental roles in fields such as physics;
consider for example the invariance of the speed of light under a Lorentz transformation,
and of time under a Galilean transformation.)
In object-oriented programming, a class invariant (also directly supported by the Eiffel

notation [Eiffel 2006]) expresses a property of a class that:

—Every instance of the class possesses immediately after creation, and
—Every exported feature (operation) of the class preserves,

with the consequence that whenever such an object is accessible to the rest of the software it
satisfies the invariant, since the life of an object consists of creation followed by any number
of “qualified” calls x. f to exported features f by clients of the class. The two properties listed
are strikingly similar to initiation and consecution for loop invariants, and the connection
appears clearly if we model the life of an object as a loop:

1 from
2 create x.make −− Written in some languages as x := new C()
3 invariant
4 CI −− The class invariant
5 until
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6 “x is no longer needed”
7 loop
8 x. some feature of the class
9 end

Also useful are Lamport-style invariants [Lamport 1977] used to reason about concurrent
programs, which obviate the need for the “ghost variables” of the Owicki-Gries method [Ow-
icki and Gries 1976]). Like other invariants, a Lamport invariant is a predicate on the pro-
gram state; the difference is that the definition of the states involves not only the values of
the program’s variables but also the current point of the execution of the program (“pro-
gram counter” or PC) and, in the case of a concurrent program, the collection of the PCs
of all its concurrent processes. An example of application is the answer to the following
problem posed by Lamport [2009].

Consider N processes numbered from 0 through N − 1 in which each process i
executes

ℓi0 : x[i] := 1

ℓi1 : y[i] := x[(i− 1) mod N ]

ℓi2 :

and stops, where each x[i] initially equals 0. (The reads and writes of each x[i]
are assumed to be atomic.) [. . . ] The algorithm [. . . ] maintains an inductive
invariant. Do you know what that invariant is?

If we associate a proposition @(m, i) for m = 1, 2, 3 that holds precisely when the execution
of process i reaches location ℓim, an invariant for the algorithm can be expressed as:

@(2, i)=⇒











@(0, (i− 1) mod N) ∧ y[i] = 0
∨

@(1, (i− 1) mod N) ∧ y[i] = 1
∨

@(2, (i− 1) mod N) ∧ y[i] = 1











Yet another kind of invariant occurs in the study of dynamical systems, where an invariant
is a region I ⊆ S of the state space S such that any trajectory starting in I or entering it
stays in I indefinitely in the future:

∀x ∈ I, ∀t ∈ T : Φ(t, x) ∈ I

where T is the time domain and Φ : T × S → S is the evolution function. The connection
between dynamical system invariants and loop invariants is clear in the constructive view
(Section 1.2), and can be formally derived by modeling programs as dynamical systems
or using some other operational formalism [Furia et al. 2012]. The differential invariants
introduced in the study of hybrid systems [Platzer 2010] are also variations of the invariants
defined by dynamical systems.

2. EXPRESSING INVARIANTS: DOMAIN THEORY

To discuss and compare invariants we need to settle on the expressiveness of the underlying
invariant language: what do we accept as a loop invariant?
The question involves general assertions, not just invariants; more generally, we must

make sure that any convention for invariants is compatible with the general scheme used
for pre/post specification, since an invariant is a mutation (possibly a weakening) of the
postcondition.
The mathematical answer to the basic question is simple: an assertion other than a

routine postcondition, in particular a loop invariant, is a predicate on the program state.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.



A:8

For example, the assertion x > 0, where x is a program variable, is the predicate that holds
of all computation states in which the value of that variable is positive. (Another view would
consider it as the subset of the state space containing all states that satisfy the condition;
the two views are equivalent since the predicate is the characteristic function of the subset,
and the subset is the inverse domain of “true” for the predicate.)
A routine postcondition is usually a predicate on two states, since the specification

of a routine generally relates new values to original ones. For example, an increment
routine yields a state in which the counter’s value is one more on exit than on entry.
The old notation, available for postconditions in Eiffel and other programming languages
supporting contracts, reflects this need; for example, a postcondition clause could read
counter = old counter + 1. Other notations, notably the Z specification language [Spivey
1992], have a notation for “new” rather than “old”, as in counter’ = counter + 1 where
the primed variable denotes the new value. Although invariants are directly related to post-
conditions, we will be able in this discussion to avoid such notations and treat invariants
as one-state functions. (Technically, this is always possible by recording the entry value as
part of the state.)
Programming languages offer a mechanism directly representing predicates on states:

Boolean expressions. This construct can therefore be used – as in the x > 0 example –
to represent assertions; this is what assertion-aware programming languages typically do,
often extending it with special notations such as old and support for quantifiers.
This basic language decision leaves open the question of the level of expressiveness of

assertions. There are two possibilities:

—Allow assertions, in particular postconditions and loop invariants, to use functions and
predicates defined using some appropriate mechanism (often, the programming language’s
function declaration construct) to express high-level properties based on a domain theory
covering specifics of the application area. We call this approach domain theory.3

—Disallow this possibility, requiring assertions always to be expressed in terms of the
constructs of the assertion language, without functions. We call this approach atomic
assertions.

The example of Euclid’s algorithm above, simple as it is, was already an example of the
domain-theory-based approach because of its use of a function gcd in the invariant clause

gcd(Result, x) = gcd(a, b) (4)

corresponding to a weakening of the routine postcondition

Result = gcd(a, b)

It is possible to do without such a function by going back to the basic definition of the
greatest common denominator. In such an atomic-assertion style, the postcondition would
read

Result >0 (Alternatively, Result ≥ 1)
a \\ Result = 0 (Result divides a)
b \\ Result = 0 (Result divides b)
∀i ∈ N: (a \\i = 0)∧ (b \\i = 0) implies i≤Result (Result is the greatest of all

the numbers that satisfy the
preceding properties)

Expressing the invariant in the same style requires several more lines since the definition of
the greatest common divisor must be expanded for both sides of (4).

3No relation with the study of partially ordered sets, also called domain theory [Abramsky and Jung 1994].
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Even for such a simple example, the limitations of the atomic-assertion style are clear:
because it requires going back to basic logical constructs every time, it does not scale.
Another example where we can contrast the two styles is any program that computes the

maximum of an array. In the atomic-assertion style, the postcondition will be written

∀k ∈ Z: a.lower≤ k≤ a.upper implies a[k]≤Result (Every element between
bounds has a value smaller
than Result)

∃k ∈ Z: a.lower≤ k≤ a.upper ∧ a[k] = Result (Some element between
bounds has the value
Result)

This property is the definition of the maximum and hence needs to be written somewhere.
If we define a function “max” to capture this definition, the specification becomes simply

Result = max(a)

The difference between the two styles becomes critical when we come to the invariant of
programs computing an array’s maximum. Two different algorithms appear in Section 4.1.
The first (Section 4.1.1) is the most straightforward; it moves an index i from a.lower + 1
to a.upper, updating Result if the current value is higher than the current result (initialized
to the first element a [a.lower]). With a domain theory on arrays, the function max will
be available as well as a notion of slice, where the slice a [ i .. j ] for integers i and j is the
array consisting of elements of a in the range [i, j]. Then the invariant is simply

Result = max(a [a.lower .. i ])

which is ensured by initialization and, on exit when i = a.upper, yields the postcondition
Result = max(a) (based on the domain-theory property that a [a.lower ..a.upper] = a).
The atomic-assertion invariant would be a variation of the expanded postcondition:

∀k ∈ Z: a.lower≤ k≤ i implies a[k]≤Result
∃k ∈ Z: a.lower≤ k≤ i ∧ a[k] = Result

Consider now a different algorithm for the same problem (Section 4.1.2), which works by
exploring the array from both ends, moving the left cursor i up if the element at i is less
than the element at j and otherwise moving the right cursor j down. The atomic-assertion
invariant can be written with an additional level of quantification:

∃m :

(

∀k ∈ Z : a.lower ≤ k ≤ a.upper implies a[k] ≤ m
∃k ∈ Z : i ≤ k ≤ j and a[k] = m

)

(5)

Alternatively, we can avoid quantifier alternation using the characterization based on the
complement property that the maximal element is not outside the slice a[ i .. j ] :

∀k ∈ Z : a.lower ≤ k < i ∨ j < k ≤ a.upper =⇒ a[k] ≤ a[ i ] ∨ a[k] ≤ a[ j ] (6)

The form without quantifier alternation is more amenable to automated reasoning, but
it has the disadvantage that it requires additional ingenuity and is not a straightforward
modification of the invariant for the one-way version of the algorithm. More significantly
for this paper’s point of view, both formulations (5)–(6) give an appearance of complexity
even though the invariant is conceptually very simple, capturing in a nutshell the essence of
the algorithm (as noted earlier, one of the applications of a good invariant is that it enables
us to understand the core idea behind a loop):

max(a) = max(a[i..j]) (7)

In words: the maximum of the entire array is to be found in the slice that has not been
explored yet. On exit, where i = j, we are left with a one-element slice, whose value (this
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is a small theorem of the corresponding domain theory) is its maximum and hence the
maximum of the whole array. The domain-theory invariant makes the algorithm and its
correctness immediately clear. In contrast, the atomic-assertion invariant (5) simply the
idea of the algorithm.
The domain-theory approach means that, before any attempt to reason about an al-

gorithm, we should develop an appropriate model of the underlying domain, by defining
appropriate concepts such as greatest common divisor for algorithms on integers and slices
and maximum for algorithms on arrays, establishing the relevant theorems (for example
that x > y=⇒ gcd(x, y) = gcd(x − y, y) and that max(a[i..i]) = a[i]). These concepts and
theorems need only be developed once for every application domain of interest, not anew for
every program over that domain. The programs can then use the corresponding functions
in their assertions, in particular in the loop invariants.

The domain-theory approach takes advantage of standard abstraction mechanism of
mathematics. Its only practical disadvantage, for assertions embedded in a programming
language, is that the functions over a domain (such as gcd) must come from some library
and, if themselves written in the programming language, must satisfy strict limitations;
in particular they must be “pure” functions defined without any reference to imperative
constructs. This issue only matters, however, for the practical embedding of invariants in
programs; it is not relevant to the conceptual discussion of invariants, independent of any
implementation concerns, which is the focus of this paper.

For the same reason, this paper does not explore – except for Section 6 – the often delicate
trade-off between succinctness of expression and amenability to automated reasoning. For
example, the invariant (5) is concisely captured as (7) in domain-theory form even if it uses
quantifier alternation; the different formulation (6) is not readily expressible in terms of
slice and maximum functions, but it may be easier to handle by automatic theorem provers
since complexity grows with quantifier alternation [Papadimitriou 1993]. This paper’s focus
is on developing and understanding the essence of algorithms through loop invariants pre-
sented at the right level of abstraction, largely independent of the requirements posed by
automated reasoning. Section 6, however, demonstrates that the domain-theory approach
is still practically applicable.
The remainder of this article relies, for each class of algorithms, on the appropriate domain

theory, whose components (functions and theorems) are summarized at the beginning of
the corresponding section. We will make no further attempt at going back to the atomic-
assertion style; the examples above should suffice to show how much simplicity is gained
through this policy.

3. CLASSIFYING INVARIANTS

Loop invariants and their constituent clauses can be classified along two dimensions:

—By their role with respect to the postcondition (Section 3.1), leading us to distinguish
between “essential” and “bounding” invariant properties.

—By the transformation technique that yields the invariant from the postcondition (Sec-
tion 3.2). Here we have techniques such as uncoupling and constant relaxation.

3.1. Classification by role

In the typical loop strategy described in Section 1.2, it is essential that successive iterations
of the loop body remain in the convergence regions where the generalized form of the
postcondition is defined. The corresponding conditions make up the bounding invariant ;
the clauses describing the generalized postcondition is the essential invariant. The bounding

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: YYYY.



A:11

invariant for the greatest common divisor algorithm consists of the clauses

Result > 0

x > 0

The essential clause is

gcd(Result, x) = gcd(a, b)

yielding the postcondition if Result = x.
For the one-way maximum program, the bounding invariant is

a.lower ≤ i ≤ a.upper

and the essential invariant is

Result = max (a [a.lower .. i ])

yielding the postcondition when i = a.upper. Note that the essential invariant would not
be defined without the bounding invariant, since the slice a [1.. i ] would be undefined (if
i >a.upper) or would be empty and have no maximum (if i <a.lower).
For the two-way maximum program, the bounding invariant is

a.lower≤ i ≤ j ≤ a.upper

and the essential invariant is

max(a) = max(a[i..j])

yielding the postcondition when i = j. Again, the essential invariant would not be always
defined without the bounding invariant.
The separation between bounding and essential invariants is often straightforward as

in these examples. In case of doubt, the following observation will help distinguish. The
functions involved in the invariant (and often, those of the postcondition) are often partial;
for example:

— gcd(u, v) is only defined if u and v are both non-zero (and, since we consider natural
integers only in the example, positive).

— For an array a and an integer i, a[ i ] is only defined if i∈[a.lower ..a.upper], and the slice
a[ i .. j ] is non-empty only if [ i .. j ]⊆[a.lower ..a.upper].

—max(a) is only defined if the array a is not empty.

Since the essential clauses, obtained by postcondition generalization, use gcd(Result, x)
and (in the array algorithms) array elements and maxima, the invariants must include the
bounding clauses as well to ensure that these essential clauses are meaningful. A similar
pattern applies to most of the invariants studied below.

3.2. Classification by generalization technique

The essential invariant is a mutation (often, a weakening) of the loop’s postcondition. The
following mutation techniques are particularly common:

Constant relaxation: replace a constant n (more generally, an expression which does not
change during the execution of the algorithm) by a variable i, and use
i = n as part or all of the exit condition.

Constant relaxation is the technique used in the one-way array maximum computation,
where the constant is the upper bound of the array. The invariant generalizes the postcon-
dition “Result is the maximum of the array up to a.lower”, where a.lower is a constant,
with “Result is the maximum up to i”. This condition is trivial to establish initially for a
non-empty array (take i to be a.lower), easy to extend to an incremented i (take Result to
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be the greater of its previous value and a[ i ]), and yields the postcondition when i reaches
a.upper. As we will see in Section 4.1.4, binary search differs from sequential search by
applying double constant relaxation, to both the lower and upper bounds of the array.

Uncoupling: replace a variable v (often Result) by two (for example Result and
x), using their equality as part or all of the exit condition.

Uncoupling is used in the greatest common divisor algorithm.

Term dropping: remove a subformula (typically a conjunct), which gives a straightfor-
ward weakening.

Term dropping is used in the partitioning algorithm (Section 4.3.1).

Aging: replace a variable (more generally, an expression) by an expression
that represents the value the variable had at previous iterations of
the loop.

Aging typically accommodates “off-by-one” discrepancies between when a variable is eval-
uated in the invariant and when it is updated in the loop body.

Backward reasoning: compute the loop’s postcondition from another assertion by backward
substitution.

Backward reasoning can be useful for nested loops, where the inner loop’s postcondition
can be derived from the outer loop’s invariant.

4. THE INVARIANTS OF IMPORTANT ALGORITHMS

The following subsections include a presentation of several algorithms, their loop invariants,
and their connection with each algorithm’s postcondition. Table I lists the algorithms and
their category. For more details about variants of the algorithms and their implementation,
we refer to standard textbooks on algorithms [Mehlhorn and Sanders 2008; Cormen et al.
2009; Knuth 2011].

Table I. The algorithms presented in Section 4.

Algorithm Type Section

Maximum search (one variable) searching § 4.1.1
Maximum search (two variable) searching § 4.1.2
Sequential search in unsorted array searching § 4.1.3
Binary search searching § 4.1.4
Integer division arithmetic § 4.2.1
Greatest common divisor (with division) arithmetic § 4.2.2
Exponentiation (by squaring) arithmetic § 4.2.3
Long integer addition arithmetic § 4.2.4
Quick sort’s partitioning sorting § 4.3.1
Selection sort sorting § 4.3.2
Insertion sort sorting § 4.3.3
Bubble sort (basic) sorting § 4.3.4
Bubble sort (improved) sorting § 4.3.5
Comb sort sorting § 4.3.6
Knapsack with integer weights dynamic programming § 4.4.1
Levenstein distance dynamic programming § 4.4.2
Rotating calipers algorithm computational geometry § 4.5
List reversal data structures § 4.6.1
Binary search trees data structures § 4.6.2
PageRank algorithm fixpoint § 4.7
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4.1. Array searching

Many algorithmic problems can be phrased as search over data structures – from the simple
arrays up to graphs and other sophisticated representations. This section illustrates some
of the basic algorithms operating on arrays.

4.1.1. Maximum: one-variable loop. The following routinemax one way returns the maximum
element of an unsorted array a of bounds a.lower and a.upper. The maximum is only defined
for a non-empty array, thus the precondition a.count ≥ 1. The postcondition can be written

Result = max(a)

Writing it in slice form, as Result =max(a [a.lower..a.upper]) yields the invariant by
constant relaxation of either of the bounds. We choose the second one, a.upper, yielding the
essential invariant clause

Result = max(a [a.lower .. i ])

Figure 3 shows the resulting implementation of the algorithm.

1 max one way (a: ARRAY [T ]): T
2 require
3 a.count ≥ 1 −− a.count is the number of elements of the array
4 local
5 i : INTEGER
6 do
7 from
8 i := a.lower ; Result := a [a.lower]
9 invariant

10 a.lower≤ i ≤ a.upper
11 Result = max (a [a.lower, i])
12 until
13 i = a.upper
14 loop
15 i := i + 1
16 if Result <a [i ] then Result := a [i] end
17 variant
18 a.upper − i + 1
19 end
20 ensure
21 Result = max (a)
22 end

Fig. 3. Maximum: one-variable loop.

Proving initiation is trivial. Consecution relies on the domain-theory property that

max(a [1.. i+1]) = max(max(a [1.. i ]), a [ i + 1])

4.1.2. Maximum: two-variable loop. The one-way maximum algorithm results from arbitrarily
choosing to apply constant relaxation to either a.lower or (as in the above version) a.upper.
Guided by a symmetry concern, we may choose double constant relaxation, yielding another
maximum algorithm max two way which traverses the array from both ends. If i and j are
the two relaxing variables, the loop body either increases i or decreases j. When i = j, the
loop has processed all of a, and hence i and j indicate the maximum element.
The specification (precondition and postcondition) is the same as for the previous algo-

rithm. Figure 4 shows an implementation.
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1 max two way (a: ARRAY [T ]): T
2 require
3 a.count ≥ 1
4 local
5 i , j : INTEGER
6 do
7 from
8 i := a.lower ; j := a.upper
9 invariant

10 a.lower≤ i ≤ j ≤ a.upper
11 max (a [i..j]) = max (a)
12 until
13 i = j
14 loop
15 if a [ i ] >a [ j ] then j := j − 1 else i := i + 1 end
16 variant
17 j − i
18 end
19 Result := a [i]
20 ensure
21 Result = max (a)
22 end

Fig. 4. Maximum: two-variable loop.

It is again trivial to prove initiation. Consecution relies on the following two domain-
theory properties:

j > i ∧ a [ i ] ≥ a [ j ] =⇒ max(a [ i .. j ]) = max(a [ i .. j − 1]) (8)

i < j ∧ a [ j ] ≥ a [ i ] =⇒ max(a [ i .. j ]) = max(a [ i + 1.. j ]) (9)

4.1.3. Search in an unsorted array. The following routine has sequential returns the position
of an occurrence of an element key in an array a or, if key does not appear, a special
value. The algorithm applies to any sequential structure but is shown here for arrays. For
simplicity, we assume that the lower bound a.lower of the array is 1, so that we can choose 0
as the special value. Obviously this assumption is easy to remove for generality: just replace
0, as a possible value for Result, by a.lower − 1.
The specification may use the domain-theory notation elements (a) to express the set of

elements of an array a. A simple form of the postcondition is

Result 6=0 ⇐⇒ key ∈ elements(a) (10)

which just records whether the key has been found. We will instead use a form that also
records where the element appears if present:

Result 6=0 =⇒ key = a [Result] (11)

Result = 0 =⇒ key 6∈ elements (a) (12)

to which we can for clarity prepend the bounding clause

Result ∈ [0.. a.upper]

to make it explicit that the array access in (11) is defined when needed.
If in (12) we replace a by a [1.. a.upper], we obtain the loop invariant of sequential

search by constant relaxation: introducing a variable i to replace either of the bounds 1 and
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a.upper. Choosing the latter yields the following essential invariant:

Result ∈ [0, i]
Result 6=0 =⇒ key = a [Result]
Result = 0 =⇒ key 6∈ elements (a [1.. i ])

leading to an algorithm that works on slices [1.. i ] for increasing i, starting at 0 and with
bounding invariant 0≤ i ≤ a.count, as shown in Figure 5.4

To avoid useless iterations the exit condition may be replaced by i = a.upper ∨
Result >0.
To prove initiation, we note that initially Result is 0 and the slice a [1.. i ] is empty.

Consecution follows from the domain-theory property that, for all 1≤ i <a.upper:

key ∈ elements(a [1.. i+1]) ⇐⇒ key ∈ elements(a [1.. i ]) ∨ key = a [ i+1]

4.1.4. Binary search. Binary search works on sorted arrays by iteratively halving a segment
of the array where the searched element may occur. The search terminates either when the
element is found or when the segment becomes empty, implying that the element appears
nowhere in the array.
As already remarked by Knuth many years ago [Knuth 2011, Vol. 3, Sec. 6.2.1]

Although the basic idea of binary search is comparatively straightforward, the
details can be surprisingly tricky, and many programmers have done it wrong
the first few times they tried.

4Note that in this example it is OK for the array to be empty, so there is no precondition on a.upper,
although general properties of arrays imply that a.upper ≥ 0; the value 0 corresponds to an empty array.

1 has sequential (a: ARRAY [T ]; key: T): INTEGER
2 require
3 a.lower = 1 −− For convenience only, may be removed (see text).
4 local
5 i : INTEGER
6 do
7 from
8 i := 0 ; Result := 0
9 invariant

10 0 ≤ i ≤ a.count
11 Result ∈ [0, i]
12 Result 6=0 =⇒ key = a [Result]
13 Result = 0 =⇒ key 6∈ elements (a [1..i])
14 until
15 i = a.upper
16 loop
17 i := i + 1
18 if a [ i ] = key then Result := i end
19 variant
20 a.upper − i + 1
21 end
22 ensure
23 Result ∈ [0, a.upper]
24 Result 6=0 =⇒ key = a [Result]
25 Result = 0 =⇒ key 6∈ elements (a)
26 end

Fig. 5. Search in an unsorted array.
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Reasoning carefully on the specification (at the domain-theory level) and the resulting
invariant helps avoid mistakes.
For the present discussion it is interesting that the postcondition is the same as for

sequential search (Section 4.1.3), so that we can see where the generalization strategy differs,
taking advantage of the extra property that the array is sorted.

The algorithm and implementation now have the precondition

sorted (a)

where the domain-theory predicate sorted (a), defined as

∀j ∈ [a.lower ..a.upper − 1] : a [ j ] ≤ a [ j+1]

expresses that an array is sorted upwards. The domain theorem on which binary search
rests is that, for any value mid in [ i .. j ] (where i and j are valid indexes of the array), and
any value key of type T (the type of the array elements):

key ∈ elements(a[ i .. j ])⇐⇒

(

key ≤ a[mid] ∧ key ∈ elements(a[ i ..mid])
∨

key > a[mid] ∧ key ∈ elements(a[mid+1..j])

)

(13)

This property leads to the key insight behind binary search, whose invariant follows from
the postcondition by variable introduction, mid serving as that variable.
Formula (13) is not symmetric with respect to i and j ; a symmetric version is possible,

using in the second disjunct, “≥” rather than “>” and mid rather than mid + 1. The
form given in (13) has the advantage of using two mutually exclusive conditions in the
comparison of key to a [mid]. As a consequence, we can limit ourselves to a value mid
chosen in [ i .. j − 1] (rather than [ i .. j ]) since the first disjunct does not involve j and the
second disjunct cannot hold for mid = j (the slice a [mid + 1..j ] being then empty). All
these observations and choices have direct consequences on the program text, but are better
handled at the specification (theory) level.

We will start for simplicity with the version (10) of the postcondition that only records
presence or absence, repeated here for ease of reference:

Result 6=0 ⇐⇒ key ∈ elements(a) (14)

Duplicating the right-hand side of (14), writing a in slice form a [1.. a.upper ], and applying
constant relaxation twice, to the lower bound 1 and the upper bound a.upper, yields the
essential invariant:

key ∈ elements(a[i .. j ]) ⇐⇒ key ∈ elements(a) (15)

with the bounding invariant

1 ≤ i ≤ mid≤ j ≤ a.upper

which combines the assumptions on mid necessary to apply (13) – also assumed in (15) –
and the additional knowledge that 1≤ i and j ≤ a.upper.
The attraction of this presentation is that:

—The two clauses key≤ a[mid] and key >a[mid] of (13) are easy-to-test complementary
conditions, suggesting a loop body that preserves the invariant by testing key against
a [mid] and going left or right as a result of the test.

—When i = j – the case that serves as exit condition – the left side of the equivalence
(15) reduces to key = a [mid]; evaluating this expression tells us whether key appeared
at all in the entire array, the information we seek. In addition, we can obtain the stronger
postcondition, (11)–(12), which gives Result its precise value, by simply assigning mid
to Result.
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1 has binary (a: ARRAY [T ]; key: T): INTEGER
2 require
3 a.lower = 1 −− For convenience, see comment about has sequential .
4 a.count >0
5 sorted (a)
6 local
7 i , j , mid: INTEGER
8 do
9 from

10 i:= 1; j := a.upper; mid :=0; Result := 0
11 invariant
12 1 ≤ i ≤ mid≤ j ≤ a.upper
13 key ∈ elements (a[i.. j ]) ⇐⇒ key ∈ elements (a)
14 until
15 i = j
16 loop
17 mid := ”A value in [i..j − 1]” −− In practice chosen as i+ (j − i)//2
18 if a [mid] <key then i := mid +1 else j := mid end
19 variant
20 j − i
21 end
22 if a [mid] = key then Result := mid end
23 ensure
24 0 ≤ Result≤n
25 Result 6=0 =⇒ key = a [Result]
26 Result = 0 =⇒ key 6∈ elements (a)
27 end

Fig. 6. Binary search.

This leads to the implementation in Figure 6.
To prove initiation, we note that initially Result is 0; so is mid, so that mid ∈ [i..j] is

false. Consecution follows directly from (13).
For the expression assigned to mid in the loop, given in pseudocode as “A value in

[ i .. j − 1]”, the implementation indeed chooses, for efficiency, the midpoint of the interval
[ i .. j ] , which may be written i + (j − i) // 2 where “//” denotes integer division. In an
implementation, this form is to be preferred to the simpler ( i + j) // 2, whose evaluation
on a computer may produce an integer overflow even when i, j, and their midpoint are all
correctly representable on the computer’s number system, but (because they are large) the
sum i+ j is not [Bloch 2006]. In such a case the evaluation of j − i is instead safe.

4.2. Arithmetic algorithms

Efficient implementations of the elementary arithmetic operations known since grade school
require non-trivial algorithmic skills and feature interesting invariants, as the examples in
this section demonstrate.

4.2.1. Integer division. The algorithm for integer division by successive differences computes
the integer quotient q and the remainder r of two integers m and n. The postcondition reads

0 ≤ r < m

n = m · q + r

The loop invariant consists of a bounding clause and an essential clause. The latter is
simply an element of the postcondition:

n = m · q + r
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The bounding clause weakens the other postcondition clause by keeping only its first part:

0 ≤ r

so that the dropped condition r < m becomes the exit condition. As a consequence, r ≥ m
holds in the loop body, and the assignment r := r − m maintains the invariant property
0 ≤ r. It is straightforward to prove the implementation in Figure 7 correct with respect to
this specification.

1 divided diff (n, m: INTEGER): (q, r: INTEGER)
2 require
3 n ≥ 0
4 m >0
5 do
6 from
7 r := n; q := 0
8 invariant
9 0 ≤ r

10 n = m · q + r
11 until
12 r <m
13 loop
14 r := r − m
15 q := q + 1
16 variant r
17 end
18 ensure
19 0 ≤ r <m
20 n = m · q + r
21 end

Fig. 7. Integer division.

4.2.2. Greatest common divisor (with division). Euclid’s algorithm for the greatest common
divisor offers another example where clearly separating between the underlying mathemat-
ical theory and the implementation yields a concise and convincing correctness argument.
Sections 1.3 and 2 previewed this example by using the form that repeatedly subtracts one
of the values from the other; here we will use the version that uses division.

The greatest common divisor gcd(a, b) is the greatest integer that divides both a and b,
defined by the following axioms, where a and b are nonnegative integers such that at least
one of them is positive (“\\” denotes integer remainder):

a\\ gcd(a, b) = 0

b\\ gcd(a, b) = 0

∀d ∈ N : (a\\d = 0) ∧ (b\\d = 0) =⇒ d ≤ gcd(a, b)

From this definition follow several properties of the gcd function:

Commutativity: gcd(a, b) = gcd(b, a)
Zero divisor: gcd(a, 0) = a
Reduction: for b > 0, gcd(a, b) = gcd(a\\b, a)

The following property of the remainder operation is also useful:

Nonnegativity: for integers a ≥ and b > 0: a\\b ≥ 0
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1 gcd Euclid division (a, b: INTEGER): INTEGER
2 require
3 a >0
4 b ≥ 0
5 local
6 t , x, y: INTEGER
7 do
8 from
9 x := a

10 y := b
11 invariant
12 x >0
13 y ≥ 0
14 gcd (x, y) = gcd (a, b)
15 until
16 y = 0
17 loop
18 t := y
19 y := x \\ y
20 x := t
21 variant y end
22 Result := x
23 ensure
24 Result = gcd (a, b)
25 end

Fig. 8. Greatest common divisor with division.

From the obvious postcondition Result = gcd(a, b), we obtain the essential invariant in
three steps:

(1) By backward reasoning, derive the loop’s postcondition x = gcd(a, b) from the routine’s
postcondition Result = gcd(a,b).

(2) Using the zero divisor property, rewrite it as gcd(x, 0) = gcd(a, b).
(3) Apply constant relaxation, introducing variable y to replace 0.

This gives the essential invariant gcd(x, y) = gcd(a, b) together with the bounding invariants
x ≥ 0 and y ≥ 0. The corresponding implementation is shown in Figure 8.5

Initiation is established trivially. Consecution follows from the reduction property. Note
that, unlike in the difference version (Section 1.3), we can arbitrarily decide always to
divide x by y, rather than having to find out which of the two numbers is greater; hence
the commutativity of gcd is not used in this proof.

4.2.3. Exponentiation by successive squaring. Suppose we do not have a built-in power operator
and wish to compute mn. We may of course multiply m by itself n − 1 times, but a more
efficient algorithm squares m for all 1s values in the binary representation of n. In practice,
there is no need to compute this binary representation.

Given the postcondition

Result = mn

5The variant is simply y, which is guaranteed to decrease at every iteration and can be bounded from below

by the property 0 ≤ x\\y < y.
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1 power binary (m, n: INTEGER): INTEGER
2 require
3 n ≥ 0
4 local
5 x, y: INTEGER
6 do
7 from
8 Result := 1
9 x := m

10 y := n
11 invariant
12 y ≥ 0
13 Result · xy = mn

14 until y = 0
15 loop
16 if y. is even then
17 x := x ∗ x
18 y := y // 2
19 else
20 Result := Result ∗ x
21 y := y − 1
22 end
23 variant y
24 end
25 ensure
26 Result = mn

27 end

Fig. 9. Exponentiation by successive squaring.

we first rewrite it into the obviously equivalent form Result · 11 = mn. Then, the invariant
is obtained by double constant relaxation: the essential property

Result · xy = mn

is easy to obtain initially (by setting Result, x, and y to 1, m, and n), yields the postcon-
dition when y = 0, and can be maintained while progressing towards this situation thanks
to the domain-theory properties

x2z = (x2)2z/2 (16)

xz = x · xz−1 (17)

Using only (17) would lead to the inefficient (n− 1)-multiplication algorithm, but we may
use (16) for even values of y = 2z. This leads to the algorithm in Figure 9.

Proving initiation is trivial. Consecution is a direct application of the (16) and (17)
properties.

4.2.4. Long integer addition. The algorithm for long integer addition computes the sum of
two integers a and b given in any base as arrays of positional digits starting from the least
significant position. For example, the array sequence 〈3, 2, 0, 1〉 represents the number 138
in base 5 as 3 · 50 + 2 · 51 + 0 · 52 + 1 · 53 = 138. For simplicity of representation, in this
algorithm we use arrays indexed by 0, so that we can readily express the value encoded in
base b by an array a as the sum:

a.count
∑

k=0

a[k] · bk
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The postcondition of the long integer addition algorithm has two clauses. One specifies
that the pairwise sum of elements in a and b encodes the same number as Result:

n−1
∑

k=0

(a[k] + b[k]) · basek =

n
∑

k=0

Result[k] · basek (18)

Result may have one more digit than a or b; hence the different bound in the two sums,
where n denotes a’s and b’s length (normally written a.count and b.count). The second
postcondition clause is the consistency constraint that Result is indeed a representation in
base base:

has base (Result, base) (19)

where the predicate has base is defined by a quantification over the array’s length:

has base (v, b) ⇐⇒ ∀k ∈ N : 0 ≤ k < v.count =⇒ 0 ≤ v[k] < b

Both postcondition clauses appear mutated in the loop invariant. First, we rewriteResult
in slice form Result [0..n] in (18) and (19). The first essential invariant clause follows by
applying constant relaxation to (19), with the variable expression i − 1 replacing constant
n:

has base (Result [0..i − 1], base)

The decrement is required because the loop updates i at the end of each iteration; it is a
form of aging (see Section 3.2).
To get the other part of the essential invariant, we first highlight the last term in the

summation on the right-hand side of (18):

n−1
∑

k=0

(a[k] + b[k]) · basek = Result[n] · basen +

n−1
∑

k=0

Result[k] · basek

We then introduce variables i and carry, replacing constants n and Result[n]. Variable i is
the loop counter, also mentioned in the other invariant clause; carry, as the name indicates,
stores the remainder of each pairwise addition, which will be carried over to the next digit.

The domain property that the integer division by b of the sum of two b-base digits v1, v2
is less than b (all variables are integer):

b > 0 ∧ v1, v2 ∈ [0..b− 1] =⇒ (v1 + v2)//b ∈ [0..b− 1]

suggests the bounding invariant clause 0≤ carry <base . Figure 10 shows the resulting
implementation, where the most significant digit is set after the loop before terminating.

Initiation is trivial under the convention that an empty sum evaluates to zero. Consecution
easily follows from the domain-theoretic properties of the operations in the loop body, and
in particular from how the carry and the current digit d are set in each iteration.

4.3. Sorting

A number of important algorithms sort an array based on pairwise comparisons and swaps
of elements.The following domain-theory notations will be useful for arrays a and b:

— perm (a,b) expresses that the arrays are permutations of each other (their elements are
the same, each occurring the same number of times as in the other array).

— sorted (a) expresses that the array elements appear in increasing order:
∀i ∈[a.lower..a.upper − 1]: a [i] ≤ a [ i + 1].

The sorting algorithms considered sort an array in place, with the specification:
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1 addition (a, b: ARRAY [INTEGER];
2 base : INTEGER): ARRAY [INTEGER]
3 require
4 base >0
5 a.count = b.count = n ≥ 1
6 has base (a, base) −− a is a valid encoding in base base
7 has base (b, base) −− b is a valid encoding in base base
8 a.lower = b.lower = 0 −− For simplicity of representation
9 local

10 i , d, carry : INTEGER
11 do

12 Result := {0}n+1 −− Initialize Result to an array of size n+ 1 with all 0s
13 carry := 0
14 from
15 i := 0
16 invariant

17
∑i−1

k=0
(a[k] + b[k])·basek = carry·basei +

∑i−1

k=0
Result[k]·basek

18 has base (Result [0..i−1], base)
19 0 ≤ carry <base
20 until
21 i = n
22 loop
23 d := a [ i ] + b [ i ] + carry
24 Result [i] := d \\ base
25 carry := d // base
26 i := i + 1
27 variant n − i end
28 Result [n] := carry
29 ensure

30
∑n−1

k=0
(a[k] + b[k])·basek =

∑n

k=0
Result[k]·basek

31 has base (Result, base)
32 end

Fig. 10. Long integer addition.

sort (a: ARRAY [T ])
require
a.lower = 1
a.count = n ≥ 1

ensure
perm (a, old a)
sorted (a)

The type T indicates a generic type that is totally ordered and provides the comparison
operators <, ≤, ≥, and >. The precondition that the array be indexed from 1 and non-
empty is a simplification that can be easily dropped; we adopt it in this section as it focuses
the presentation of the algorithms on the interesting cases. For brevity, we also use n as an
alias of a’s length a.count.
The notation a[ i .. j ]∼x, for an array slice a [ i .. j ] , a scalar value x, and a comparison

operator ∼ among <, ≤, ≥, and >, denotes that all elements in the slice satisfy ∼ with
respect to x: it is a shorthand for ∀k ∈ [i..j]: a[k] ∼ x.

4.3.1. Quick sort: partitioning. At the core of the well-known Quick sort algorithm lies the
partitioning procedure, which includes loops with an interesting invariant; we analyze it in
this section.
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The procedure rearranges the elements in an array a according to an arbitrary value pivot
given as input: all elements in positions up to Result included are no larger than pivot,
and all elements in the other “high” portion (after position Result) of the array are no
smaller than pivot . Formally, the postcondition is:

0 ≤ Result≤n

perm (a, old a)

a [1..Result]≤ pivot

a [Result + 1..n] ≥ pivot

In the special case where all elements in a are greater than or equal to pivot, Result will
be zero, corresponding to the “low” portion of the array being empty.

Quick sort works by partitioning an array, and then recursively partitioning each of
the two portions of the partition. The choice of pivot at every recursive call is crucial
to guarantee a good performance of Quick sort. Its correctness, however, relies solely on the
correctness of partition , not on the choice of pivot. Hence the focus of this section is on
partition alone.
The bulk of the loop invariant follows from the last three clauses of the postcondition.

perm (a, old a) appears unchanged in the essential invariant, denoting the fact that the
whole algorithm does not change a’s elements but only rearranges them. The clauses com-
paring a’s slices to pivot determine the rest of the essential invariant, once we modify them
by introducing loop variables low and high decoupling and relaxing “constant” Result:

perm (a, old a)

a [1.. low − 1]≤ pivot

a [high + 1..n] ≥ pivot

The formula low = high – removed when decoupling – becomes the main loop’s exit
condition. Finally, a similar variable introduction applied twice to the postcondition
0 ≤ Result≤n suggests the bounding invariant clauses

1 ≤ low≤ n

1 ≤ high ≤ n

The slice comparison a [1.. low − 1]≤ pivot also includes aging of variable low. This
makes the invariant clauses fully symmetric, and suggests a matching implementation with
two inner loops nested inside an overall outer loop. The outer loop starts with low = 1 and
high = n and terminates, with low = high, when the whole array has been processed. The
first inner loop increments low until it points to an element that is larger than pivot, and
hence is in the wrong portion of the array. Symmetrically, the outer loop decrements high
until it points to an element smaller than pivot. After low and high are set by the inner loops,
the outer loop swaps the corresponding elements, thus making progress towards partitioning
the array. Figure 11 shows the resulting implementation. The closing conditional in the
main routine’s body ensures that Result points to an element no greater than pivot; this
is not enforced by the loop, whose invariant leaves the value of a [ low] unconstrained. In
particular, in the special case of all elements being no less than pivot, low and Result are
set to zero after the loop.

In the correctness proof, it is useful to discuss the cases a [ low] < pivot and
a [ low] ≥ pivot separately when proving consecution. In the former case, we com-
bine a [1.. low − 1]≤ pivot and a [ low] < pivot to establish the backward substitution
a [1.. low] ≤ pivot. In the latter case, we combine low = high, a [high + 1..n] ≥ pivot and
a [ low] ≥ pivot to establish the backward substitution a [ low ..n] ≥ pivot. The other details
of the proof are straightforward.
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4.3.2. Selection sort. Selection sort is a straightforward sorting algorithm based on a simple
idea: to sort an array, find the smallest element, put it in the first position, and repeat
recursively from the second position on. Pre- and postcondition are the usual ones for
sorting (see Section 4.3), and hence require no further comment.
The first postcondition clause perm (a, old a) is also an essential loop invariant:

perm (a, old a) (20)

If we introduce a variable i to iterate over the array, another essential invariant clause is
derived by writing a in slice form a [1.. n] and then by relaxing n into i:

sorted (a [1.. i ]) (21)

with the bounding clause:

1 ≤ i ≤ n (22)

1 partition (a: ARRAY [T ]; pivot: T): INTEGER
2 require
3 a.lower = 1
4 a.count = n ≥ 1
5 local
6 low, high : INTEGER
7 do
8 from low := 1 ; high := n
9 invariant

10 1 ≤ low≤ n
11 1 ≤ high ≤ n
12 perm (a, old a)
13 a [1.. low − 1]≤ pivot
14 a [high + 1..n] ≥ pivot
15 until low = high
16 loop
17 from −− This loop increases low
18 invariant −− Same as outer loop
19 until low = high ∨ a[low] > pivot
20 loop low := low + 1 end
21 from −− This loop decreases high
22 invariant −− Same as outer loop
23 until low = high ∨ a[high ] < pivot
24 loop high := high − 1 end
25 a.swap (low, high) −− Swap the elements in positions low and high
26 variant high − low end
27 if a [ low] ≥ pivot then
28 low := low − 1
29 high := low
30 end
31 Result := low
32 ensure
33 0 ≤ Result≤n
34 perm (a, old a)
35 a [1..Result]≤ pivot
36 a [Result + 1..n] ≥ pivot
37 end

Fig. 11. Quick sort: partitioning.
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which ensures that the sorted slice a [1.. i ] is always non-empty. The final component
of the invariant is also an essential weakening of the postcondition, but is less straight-
forward to derive by syntactic mutation. If we split a [1.. n] into the concatenation
a [1.. i − 1] ◦ a [ i .. n ], we notice that sorted (a [1.. i − 1] ◦ a [ i .. n]) implies

∀k ∈ [i..n] : a [1.. i − 1]≤ a[k] (23)

as a special case. (23) guarantees that the slice a[ i .. n], which has not been sorted yet,
contains elements that are no smaller than any of those in the sorted slice a [1.. i − 1].
The loop invariants (20)–(22) apply – possibly with minimal changes due to inessential

details in the implementation – for any sorting algorithm that sorts an array sequentially,
working its way from lower to upper indices. To implement the behavior specific to Selection
sort, we introduce an inner loop that finds the minimum element in the slice a [ i .. n], which
is not yet sorted. To this end, it uses variables j and m: j scans the slice sequentially starting
from position i + 1; m points to the minimum element found so far. Correspondingly, the
inner loop’s postcondition is a[m]≤ a[ i .. n], which induces the essential invariant clause

a [m] ≤ a [ i .. j − 1] (24)

specific to the inner loop, by constant relaxation and aging. The outer loop’s invariant (23)
clearly also applies to the inner loop – which does not change i or n – where it implies that
the element in position m is an upper bound on all elements already sorted:

a [1.. i − 1] ≤ a [m] (25)

Also specific to the inner loop are more complex bounding invariants relating the values of
i, j, and m to the array bounds:

1 ≤ i < j ≤ n+ 1

i ≤ m < j

The implementation in Figure 12 follows these invariants. The outer loop’s only task is then
to swap the “minimum” element pointed to by m with the lowest available position pointed
to by i.

The most interesting aspect of the correctness proof is proving consecution of the outer
loop’s invariant clause (21), and in particular that a[ i ] ≤ a[ i + 1]. To this end, notice that
(24) guarantees that a [m] is the minimum of all elements in positions from i to n; and (25)
that it is an upper bound on the other elements in positions from 1 to i− 1. In particular,
a[m]≤ a[ i+1] and a[ i − 1]≤ a[m] hold before the swap on line 30. After the swap, a[ i ]
equals the previous value of a[m], thus a[ i − 1]≤ a[ i ] ≤ a[ i + 1] holds as required. A
similar reasoning proves the inductiveness of the main loop’s other invariant clause (23).

4.3.3. Insertion sort. Insertion sort is another sub-optimal sorting algorithm that is, how-
ever, simple to present and implement, and reasonably efficient on arrays of small size. As
the name suggests, insertion sort hinges on the idea of re-arranging elements in an array by
inserting them in their correct positions with respect to the sorting order; insertion is done
by shifting the elements to make room for insertion. Pre- and postcondition are the usual
ones for sorting (see Section 4.3 and the comments in the previous subsections).
The main loop’s essential invariant is as in Selection sort (Section 4.3.2) and other similar

algorithms, as it merely expresses the property that the sorting has progressed up to position
i and has not changed the array content:

sorted (a [1.. i ]) (26)

perm (a, old a) (27)

This essential invariant goes together with the bounding clause 1 ≤ i ≤ n.
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1 selection sort (a: ARRAY [T ])
2 require
3 a.lower = 1
4 a.count = n ≥ 1
5 local
6 i , j , m: INTEGER
7 do
8 from i := 1
9 invariant

10 1 ≤ i ≤ n
11 perm (a, old a)
12 sorted (a [1.. i ])
13 ∀k ∈ [i..n]: a [1..i − 1]≤ a [k]
14 until
15 i = n
16 loop
17 from j := i + 1 ; m := i
18 invariant
19 1 ≤ i < j ≤ n + 1
20 i ≤ m <j
21 perm (a, old a)
22 sorted (a [1.. i ])
23 a [1.. i − 1]≤ a [m]≤ a [ i .. j − 1]
24 until
25 j = n + 1
26 loop
27 if a [ j ] <a [m] then m := j end
28 j := j + 1
29 variant n − i − j end
30 a.swap (i , m) −− Swap the elements in positions i and m
31 i := i + 1
32 variant n − i end
33 ensure
34 perm (a, old a)
35 sorted (a)
36 end

Fig. 12. Selection sort.

The main loop includes an inner loop, whose invariant captures the specific strategy of
Insertion sort. The outer loop’s invariant (27) must be weakened, because the inner loop
overwrites a [ i ] while progressively shifting to the right elements in the slice a [1.. j ]. If a
local variable v stores the value of a [ i ] before entering the inner loop, we can weaken (27)
as:

perm (a [1.. j ] ◦ v ◦ a[ j + 2..n ], old a) (28)

where “◦” is the concatenation operator; that is, a’s element at position j+1 is the current
candidate for inserting v – the value temporarily removed. After the inner loop terminates,
the outer loop will put v back into the array at position j + 1 (line 28 in Figure 13), thus
restoring the stronger invariant (27) (and establishing inductiveness for it).

The clause (26), crucial for the correctness argument, is also weakened in the inner loop.
First, we “age” i by replacing it with i − 1; this corresponds to the fact that the outer
loop increments i at the beginning, and will then re-establish (26) only at the end of each
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iteration. Therefore, the inner loop can only assume the weaker invariant:

sorted (a [1.. i − 1]) (29)

that is not invalidated by shifting (which only temporarily duplicates elements). Shifting
has, however, another effect: since the slice a[ j + 1.. i ] contains elements shifted up from
the sorted portion, the slice a[ j + 1.. i ] is itself sorted, thus the essential invariant:

sorted (a [ j + 1.. i ]) (30)

We can derive the pair of invariants (29)–(30) from the inner loop’s postcondition (26): write
a [1.. i ] as a [1.. i − 1] ◦ a[ i .. i ] ; weaken the formula sorted (a [1.. i − 1] ◦ a[ i .. i ])
into the conjunction of sorted( a [1.. i − 1]) and sorted (a[ i .. i ]) ; replace one occur-
rence of constant i in the second conjunct by a fresh variable j and age to derive
sorted (a [ j + 1.. i ]) .
Finally, there is another essential invariant, specific to the inner loop. Since the loop’s goal

is to find a position, pointed to by j+1, before i where v can be inserted, its postcondition
is:

v ≤ a [ j + 1.. i ] (31)

which is also a suitable loop invariant, combined with a bounding clause that constrains j
and i:

0 ≤ j < i ≤ n (32)

Overall, clauses (28)–(32) are the inner loop invariant; and Figure 13 shows the matching
implementation.

As usual for this kind of algorithms, the crux of the correctness argument is proving that
the outer loop’s essential invariant is inductive, based on the inner loop’s. The formal proof
uses the following informal argument. (29) and (31) imply that inserting v at j + 1 does
not break the sortedness of the slice a [1.. j + 1]. Furthermore, (30) guarantees that the
elements in the “upper” slice a [ j + 1.. i ] are also sorted with a [ j ] ≤ a[ j + 1]≤ a[ j + 2].
(The detailed argument would discuss the cases j = 0, 0 < j < i− 1, and j = i− 1.) In all,
the whole slice a [1.. i ] is sorted, as required by (26).

4.3.4. Bubble sort (basic). As a sorting method, Bubble sort is known not for its performance
but for its simplicity [Knuth 2011, Vol. 3, Sec. 5.2.2]. It relies on the notion of inversion: a
pair of elements that are not ordered, that is such that the first is greater than the second.
The straightforward observation that an array is sorted if and only if it has no inversions
suggests to sort an array by iteratively removing all inversions. Let us present invariants
that match such a high-level strategy, deriving them from the postcondition (which is the
same as the other sorting algorithms of this section).

The postcondition perm (a, old a) that a’s elements be not changed is also an invariant
of the two nested loops used in Bubble sort. The other postcondition sorted (a) is instead
weakened, but in a way different than in other sorting algorithms seen before. We introduce
a Boolean flag swapped, which records if there is some inversion that has been removed by
swapping a pair of elements. When swapped is false after a complete scan of the array a,
no inversions have been found, and hence a is sorted. Therefore, we use ¬ swapped as exit
condition of the main loop, and the weakened postcondition

¬ swapped =⇒sorted (a) (33)

as its essential loop invariant.
The inner loop performs a scan of the input array that compares all pairs of adjacent

elements and swaps them when they are inverted. Since the scan proceeds linearly from the
first element to the last one, we get an essential invariant for the inner loop by replacing n
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1 insertion sort (A: ARRAY [T ])
2 require
3 a.lower = 1 ; a.count = n ≥ 1
4 local
5 i , j : INTEGER ; v : T
6 do
7 from i := 1
8 invariant
9 1 ≤ i ≤ n

10 perm (a, old a)
11 sorted (a [1.. i ])
12 until i = n
13 loop
14 i := i + 1
15 v := a [ i ]
16 from j := i − 1
17 invariant
18 0 ≤ j < i ≤ n
19 perm (a [1.. j ] ◦ v ◦ a[ j + 2..n ], old a)
20 sorted (a [1.. i − 1])
21 sorted (a [ j + 1.. i ])
22 v ≤ a [j + 1..i ]
23 until j = 0 or a [ j ] ≤ v
24 loop
25 a [ j + 1] := a [ j ]
26 j := j − 1
27 variant j − i end
28 a [ j + 1] := v
29 variant n − i end
30 ensure
31 perm (a, old a)
32 sorted (a)
33 end

Fig. 13. Insertion sort.

by i in (33) written in slice form:

¬ swapped =⇒sorted (a [1.. i ]) (34)

The usual bounding invariant 1≤ i ≤ n and the outer loop’s invariant clause
perm (a, old a) complete the inner loop invariant.

The implementation is now straightforward to write as in Figure 14. The inner loop,
in particular, sets swapped to True whenever it finds some inversion while scanning. This
signals that more scans are needed before the array is certainly sorted.

Verifying the correctness of the annotated program in Figure 14 is easy, because the
essential loop invariants (33) and (34) are trivially true in all iterations where swapped is
set to True. On the other hand, this style of specification makes the termination argument
more involved: the outer loop’s variant (line 28 in Figure 14) must explicitly refer to the
number of inversions left in a, which are decreased by complete executions of the inner loop.

4.3.5. Bubble sort (improved). The inner loop in the basic version of Bubble sort – presented
in Section 4.3.4 – always performs a complete scan of the n-element array a. This is of-
ten redundant, because swapping adjacent inverted elements guarantees that the largest
misplaced element is sorted after each iteration. Namely, the largest element reaches the
rightmost position after the first iteration, the second-largest one reaches the penultimate
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1 bubble sort basic (a: ARRAY [T ])
2 require
3 a.lower = 1 ; a.count = n ≥ 1
4 local
5 swapped: BOOLEAN
6 i : INTEGER
7 do
8 from swapped := True
9 invariant

10 perm (a, old a)
11 ¬ swapped =⇒sorted (a)
12 until ¬ swapped
13 loop
14 swapped := False
15 from i := 1
16 invariant
17 1 ≤ i ≤ n
18 perm (a, old a)
19 ¬ swapped =⇒sorted (a [1.. i ])
20 until i = n
21 loop
22 if a [ i ] >a [ i + 1] then
23 a.swap (i , i + 1)−− Swap the elements in positions i and i+ 1
24 swapped := True
25 end
26 i := i + 1
27 variant n − i end
28 variant |inversions (a) |
29 end
30 ensure
31 perm (a, old a)
32 sorted (a)
33 end

Fig. 14. Bubble sort (basic version).

position after the second iteration, and so on. This section describes an implementation of
Bubble sort that takes advantage of this observation to improve the running time.
The improved version still uses two nested loops. The outer loop’s essential invariant has

two clauses:

sorted (a [ i .. n]) (35)

is a weakening of the postcondition that encodes the knowledge that the “upper” part of
array a is sorted; and

i <n =⇒ a [1.. i ] ≤ a[ i + 1] (36)

specifies that the elements in the unsorted slice a [1.. i ] are no larger than the first “sorted”
element a[ i + 1]. The expression a [1.. i ] ≤ a[ i + 1] is a mutation (constant relaxation and
aging) of a [1.. n] ≤ a[n], which is, in turn, a domain property following from the postcon-
dition. Variable i is now used in the outer loop to mark the portion still to be sorted;
correspondingly, (36) is well-defined only when i <n, and the bounding invariant clause
1 ≤ i ≤ n is also part of the outer loop’s specification.

Continuing with the same logic, the inner loop’s postcondition:

a [1.. i ] ≤ a[ i ] (37)
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states that the largest element in the slice a [1.. i ] has been moved to the highest position.
Constant relaxation, replacing i (not changed by the inner loop) with a fresh variable j,
yields a new essential component of the inner loop’s invariant:

a [1.. j ] ≤ a[ j ] (38)

The outer loop’s invariant and the bounding clause 1≤ j ≤ i complete the specification of
the inner loop. Figure 15 displays the corresponding implementation.
The correctness proof follows standard strategies. In particular, the inner loop’s post-

condition (37) – i.e., the inner loop’s invariant when j = i – implies a[ i − 1]≤ a[ i ] as a
special case. This fact combines with the other clause (36) to establish the inductiveness of
the main loop’s essential clause:

sorted (a[ i .. n])

Finally, proving termination is trivial for this program because each loop has an associated
iteration variable that is unconditionally incremented or decremented.

1 bubble sort improved (a: ARRAY [T ])
2 require
3 a.lower = 1 ; a.count = n ≥ 1
4 local
5 i , j : INTEGER
6 do
7 from i := n
8 invariant
9 1 ≤ i ≤ n

10 perm (a, old a)
11 sorted (a [ i .. n])
12 i <n =⇒ a[1..i]≤ a[i + 1]
13 until i = 1
14 loop
15 from j := 1
16 invariant
17 1 ≤ i ≤ n
18 1 ≤ j ≤ i
19 perm (a, old a)
20 sorted (a [ i .. n])
21 i <n =⇒ a[1..i]≤ a[i + 1]
22 a [1.. j ] ≤ a[ j ]
23 until j = i
24 loop
25 if a [ j ] >a [ j + 1] then a.swap (j, j + 1) end
26 j := j + 1
27 variant i − j
28 end
29 i := i − 1
30 variant i
31 end
32 ensure
33 perm (a, old a)
34 sorted (a)
35 end

Fig. 15. Bubble sort (improved version).
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4.3.6. Comb sort. In an attempt to improve performance in critical cases, Comb sort gen-
eralizes Bubble sort based on the observation that small elements initially stored in the
right-most portion of an array require a large number of iterations to be sorted. This hap-
pens because Bubble sort swaps adjacent elements; hence it takes n scans of an array of size
n just to bring the smallest element from the right-most nth position to the first one, where
it belongs. Comb sort adds the flexibility of swapping non-adjacent elements, thus allow-
ing for a faster movement of small elements from right to left. A sequence of non-adjacent
equally-spaced elements also conveys the image of a comb’s teeth, hence the name “Comb
sort”.
Let us make this intuition rigorous and generalize the loop invariants, and the implemen-

tation, of the basic Bubble sort algorithm described in Section 4.3.4. Comb sort is also based
on swapping elements, therefore the – now well-known – invariant perm (a, old a) also ap-
plies to its two nested loops. To adapt the other loop invariant (33), we need a generalization
of the predicate sorted that fits the behavior of Comb sort. Predicate gap sorted (a, d),
defined as:

gap sorted(a, d) ⇐⇒ ∀k ∈ [a.lower ..a.upper − d] : a [k] ≤ a [k + d]

holds for arrays a such that the subsequence of d-spaced elements is sorted. Notice that, for
d = 1, gap sorted reduces to sorted:

gap sorted (a, 1) ⇐⇒ sorted (a)

This fact will be used to prove the postcondition from the loop invariant upon termination.
With this new piece of domain theory, we can easily generalize the essential and bounding

invariants of Figure 14 to Comb sort. The outer loop considers decreasing gaps; if variable
gap stores the current value, the bounding invariant

1 ≤ gap ≤ n

defines its variability range. Precisely, the main loop starts with with gap = n and terminates
with gap = 1, satisfying the essential invariant:

¬ swapped =⇒gap sorted (a, gap) (39)

The correctness of Comb sort does not depend on how gap is decreased, as long as it
eventually reaches 1; if gap is initialized to 1, Comb sort behaves exactly as Bubble sort. In
practice, it is customary to divide gap by some chosen parameter c at every iteration of the
main loop.
Let us now consider the inner loop, which compares and swaps the subsequence of d-

spaced elements. The Bubble sort invariant (34) generalizes to:

¬ swapped =⇒gap sorted (a [1.. i − 1 + gap], gap) (40)

and its matching bounding invariant is:

1 ≤ i < i+ gap ≤ n+ 1

so that when i = n+ 1+ gap the inner loop terminates and (40) is equivalent to (39). This
invariant follows from constant relaxation and aging; the substituted expression i − 1 + gap
is more involved, to accommodate how i is used and updated in the inner loop, but is
otherwise semantically straightforward.

The complete implementation is shown in Figure 16. The correctness argument is exactly
as for Bubble sort in Section 4.3.4, but exploits the properties of the generalized predicate
gap sorted instead of the simpler sorted.
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1 comb sort (a: ARRAY [T ])
2 require
3 a.lower = 1 ; a.count = n ≥ 1
4 local
5 swapped: BOOLEAN
6 i , gap: INTEGER
7 do
8 from swapped := True ; gap := n
9 invariant

10 1 ≤ gap≤ n
11 perm (a, old a)
12 ¬ swapper =⇒ gap sorted (a, gap)
13 until
14 ¬ swapped and gap = 1
15 loop
16 gap := max (1, gap //c)
17 −− c > 1 is a parameter whose value does not affect correctness
18 swapped := False
19 from i := 1
20 invariant
21 1 ≤ gap≤ n
22 1 ≤ i < i + gap≤n + 1
23 perm (a, old a)
24 ¬ swapped =⇒ gap sorted (a [1..i − 1 + gap], gap)
25 until
26 i + gap = n + 1
27 loop
28 if a [ i ] >a[ i + gap] then
29 a.swap (i , i + gap)
30 swapped := True
31 end
32 i := i + 1
33 variant n + 1 − gap − i end
34 variant |inversions (a) | end
35 ensure
36 perm (a, old a)
37 sorted (a)
38 end

Fig. 16. Comb sort.

4.4. Dynamic programming

Dynamic programming is an algorithmic technique used to compute functions that have
a natural recursive definition. Dynamic programming algorithms construct solutions itera-
tively and store the intermediate results, so that the solution to larger instances can reuse
the previously computed solutions for smaller instances. This section presents a few exam-
ples of problems that lend themselves to dynamic programming solutions.

4.4.1. Unbounded knapsack problem with integer weights. We have an unlimited collection of
items of n different types. An item of type k, for k = 1, . . . , n, has weight w[k] and value
v[k]. The unbounded knapsack problem asks what is the maximum overall value that one
can carry in a knapsack whose weight limit is a given weight. The attribute “unbounded”
refers to the fact that we can pick as many object of any type as we want: the only limit is
given by the input value of weight, and by the constraint that we cannot store fractions of
an item – either we pick it or we don’t.
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Any vector s of n nonnegative integers defines a selection of items, whose overall weight
is given by the scalar product:

s · w =
∑

1≤k≤n

s[k]w[k]

and whose overall value is similarly given by the scalar product s · v. Using this notation,
we introduce the domain-theoretical function max knapsack which defines the solution of
the knapsack problem given a weight limit b and items of n types with weight and value
given by the vectors w and v:

max knapsack (b, v, w, n) = κ⇐⇒

(

∃s ∈ Nn : s · w ≤ b ∧ s · v = κ
∧

∀t ∈ Nn : t · w ≤ b =⇒ t · v ≤ κ

)

that is, the largest value achievable with the given limit. Whenever weights w, val-
ues v, and number n of item types are clear from the context, we will abbreviate
max knapsack (b, v, w, n) by just K(b).

The unbounded knapsack problem is NP-complete [Garey and Johnson 1979; Kellerer
et al. 2004]. It is, however, weakly NP-complete [Papadimitriou 1993], and in fact it has
a nice solution with pseudo-polynomial complexity based on a recurrence relation, which
suggests a straightforward dynamic programming algorithm. The recurrence relation defines
the value of K(b) based on the values K(b′) for b′ < b.
The base case is for b = 0. If we assume, without loss of generality, that no item has

null weight, it is clear that we cannot store anything in the knapsack without adding some
weight, and hence the maximum value attainable with a weight limit zero is also zero:
K(0) = 0. Let now b be a generic weight limit greater than zero. To determine the value of
K(b), we make a series of attempts as follows. First, we select some item of type k, such
that w[k] ≤ b. Then, we recursively consider the best selection of items for a weight limit
of b − w[k]; and we set up a new selection by adding one item of type k to it. The new
configuration has weight no greater than b− w[k] + w[k] = b and value

v[k] +K(b− w[k])

which is, by inductive hypothesis, the largest achievable by adding an element of type k.
Correspondingly, the recurrence relation defines K(b) as the maximum among all values
achievable by adding an object of some type:

K(b) =

{

0 b = 0

max
{

v[k] +K(b− w[k])
∣

∣ k ∈ [1..n] and 0 ≤ w[k] ≤ b
}

b > 0
(41)

The dynamic programming solution to the knapsack problem presented in this section
computes the recursive definition (41) for increasing values of b. It inputs arrays v and w
(storing the values and weights of all elements), the number n of element types, and the
weight bound weight. The precondition requires that weight be nonnegative, that all element
weights w be positive, and that the arrays v and w be indexed from 1 to n:

weight ≥ 0

w > 0

v. lower = w.lower = 1

v.upper = w.upper = n

The last two clauses are merely for notational convenience and could be dropped. The
postcondition states that the routine returns the value K(weight) or, with more precise
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notation:

Result = max knapsack (weight, v, w, n)

The main loop starts with b = 0 and continues with unit increments until b = weight; each
iteration stores the value of K(b) in the local array m, so that m [weight] will contain the
final result upon termination. Correspondingly, the main loop’s essential invariant follows
by constant relaxation:

—Variable m [weight] replaces constant Result, thus connecting m to the returned result.
—The range of variables [1.. b] replaces constant weight, thus expressing the loop’s incre-

mental progress.

The loop invariant it thus:

∀y ∈ [0..b] : m[y] = max knapsack(y, v, w, n) (42)

which goes together with the bounding clause

0 ≤ b ≤ weight

that qualifies b’s variability domain. With a slight abuse of notation, we concisely write
(42), and similar expressions, as:

m[0..b] = max knapsack([0..b], v, w, n) (43)

The inner loop computes the maximum of definition (41) iteratively, for all element types
j, where 1 ≤ j ≤ n. To derive its essential invariant, we first consider its postcondition
(similarly as the analysis of Selection sort in Section 4.3.2). Since the inner loop terminates
at the end of the outer loop’s body, the inner’s postcondition is the outer’s invariant (43).
Let us rewrite it by highlighting the value m[b] computed in the latest iteration:

m[0..b− 1] = max knapsack ([0..b− 1], v, w, n) (44)

m[b] = best value (b, v, w, n, n) (45)

Function best value is part of the domain theory for knapsack, and it expresses the “best”
value that can be achieved given a weight limit of b, j ≤ n element types, and assuming
that the values K(b′) for lower weight limits b′ < b are known:

best value (b, v, w, j, n) = max
{

v[k] + K(b − w[k])
∣

∣ k ∈ [1..j] and 0 ≤ w[k] ≤ b
}

If we substitute variable j for constant n in (45), expressing the fact that the inner loop
tries one element type at a time, we get the inner loop essential invariant:

m[0..b− 1] = max knapsack ([0..b− 1], v, w, n)

m[b] = best value (b, v, w, j,m)

The obvious bounding invariants 0≤ b ≤ weight and 0 ≤ j ≤ n complete the inner loop’s
specification. Figure 17 shows the corresponding implementation.

The correctness proof reverses the construction we highlighted following the usual pat-
terns seen in this section. In particular, notice that:

—When j = n the inner loop terminates, thus establishing (44) and (45).
— (44) and (45) imply (43) because the recursive definition (41) for some b only depends

on the previous values for b′ < b, and (44) guarantees that m stores those values.
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1 knapsack (v, w: ARRAY [INTEGER]; n, weight: INTEGER): INTEGER
2 require
3 weight ≥ 0
4 w >0
5 v. lower = w.lower = 1
6 v.upper = w.upper = n
7 local
8 b, j : INTEGER
9 m: ARRAY [INTEGER]

10 do
11 from b := 0 ; m [0] := 0
12 invariant
13 0 ≤ b ≤ weight
14 m [0..b] = max knapsack ([0..b], v, w, n)
15 until b = weight
16 loop
17 b := b + 1
18 from j := 0 ; m [b] := m [b − 1]
19 invariant
20 0 ≤ b ≤ weight
21 0 ≤ j ≤ n
22 m [0..b − 1] = max knapsack ([0..b − 1], v, w, n)
23 m [b] = best value (b, v, w, j , n)
24 until j = n
25 loop
26 j := j + 1
27 if w [ j ] ≤ b and m [b] <v [ j ] + m [b − w [j ]] then
28 m [b] := v [ j ] + m [b − w [j ]]
29 end
30 variant n − j end
31 variant weight − b end
32 Result := m [weight]
33 ensure
34 Result = max knapsack (weight, v, w, n)
35 end

Fig. 17. Unbounded knapsack problem with integer weights.

4.4.2. Levenshtein distance. The Levenshtein distance of two sequences s and t is the min-
imum number of elementary edit operations (deletion, addition, or substitution of one el-
ement in either sequence) necessary to turn s into t. The distance has a natural recursive
definition:

distance(s, t) =



































0 m = n = 0

m m > 0, n = 0

n n > 0,m = 0

distance
(

s[1..m− 1], t[1..n− 1]
)

m > 0, n > 0, s[m] = t[n]

1 + min







distance(s[1..m− 1], t),

distance(s, t[1..n− 1]),

distance(s[1..m− 1], t[1..n− 1])






m > 0, n > 0, s[m] 6= t[n]

where m and n respectively denote s’s and t’s length (written s .count and t .count when s
and t are arrays). The first three cases of the definition are trivial and correspond to when
s, t, or both are empty: the only way to get a non-empty string from an empty one is by
adding all the former’s elements. If s and t are both non-empty and their last elements
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coincide, then the same number of operations as for the shorter sequences s[1..m − 1] and
t[1..n − 1] (which omit the last elements) are needed. Finally, if s’s and t’s last elements
differ, there are three options: 1) delete s[m] and then edit s[1..m− 1] into t; 2) edit s into
t[1..n− 1] and then add t[n] to the result; 3) substitute t[n] for s[m] and then edit the rest
s[1..m − 1] into t[1..n − 1]. Whichever of the options 1), 2), and 3) leads to the minimal
number of edit operations is the Levenshtein distance.

It is natural to use a dynamic programming algorithm to compute the Levenshtein dis-
tance according to its recursive definition. The overall specification, implementation, and
the corresponding proofs, are along the same lines as the knapsack problem of Section 4.4.1;
therefore, we briefly present only the most important details. The postcondition is simply

Result = distance (s, t)

The implementation incrementally builds a bidimensional matrix d of distances such
that the element d[i, j] stores the Levenshtein distance of the sequences s[1..i] and t[1..j].
Correspondingly, there are two nested loops: the outer loop iterates over rows of d, and
the inner loop iterates over each column of d. Their essential invariants express, through
quantification, the partial progress achieved after each iteration:

∀h ∈ [0..i− 1], ∀k ∈ [0..n] : d[h, k] = distance(s[1..h], t[1..k])

∀h ∈ [0..i− 1], ∀k ∈ [0..j − 1] : d[h, k] = distance(s[1..h], t[1..k])

The standard bounding invariants on the loop variables i and j complete the specification.
Figure 18 shows the implementation, which uses the compact across notation for loops,

similar to “for” loops in other languages. The syntax

across [a ..b] invariant I as k loop B end

is simply a shorthand for:

from k := a invariant I until k = b + 1 loop B ; k := k + 1 end

For brevity, Figure 18 omits the obvious loop invariants of the initialization loops at lines 11
and 12.

4.5. Computational geometry: Rotating calipers

The diameter of a polygon is its maximum width, that is the maximum distance between
any pair of its points. For a convex polygon, it is clear that a pair of vertices determine
the diameter (such as vertices p3 and p7 in Figure 19). Shamos showed [1978] that it is not
necessary to check all O(n2) pairs of vertices: his algorithm, described below, runs in time
O(n). The correctness of the algorithm rests on the notions of lines of support and antipodal
points. A line of support is analogue to a tangent: a line of support of a convex polygon p
is a line that intersects p such that the interior of p lies entirely to one side of the line. An
antipodal pair is then any pair of p’s vertices that lie on two parallel lines of support. It is
a geometric property that an antipodal pair determines the diameter of any polygon p, and
that a convex polygon with n vertices has O(n) antipodal pairs. Figure 19(a), for example,
shows two parallel lines of support that identify the antipodal pair (p1, p5).
Shamos’s algorithms efficiently enumerates all antipodal pairs by rotating two lines of

support while maintaining them parallel. After a complete rotation around the polygon,
they have touched all antipodal pairs, and hence the algorithm can terminate. Observing
that two parallel support lines resemble the two jaws of a caliper, Toussaint [1983] suggested
the name “rotating calipers” to describe Shamos’s technique.
A presentation of the rotating calipers algorithm and a proof of its correctness with the

same level of detail as the algorithms in the previous sections would require the development
of a complex domain theory for geometric entities, and of the corresponding implementation
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1 Levenshtein distance (s , t : ARRAY [T ]): INTEGER
2 require
3 s . lower = t.lower = 1
4 s .count = m
5 t .count = n
6 local
7 i , j : INTEGER
8 d: ARRAY [INTEGER, INTEGER]
9 do

10 d := {0}m+1 × {0}n+1

11 across [1..m] as i loop d [i ,0] := i end
12 across [1..n] as j loop d [0, j ] := j end
13

14 across [1..m] as i
15 invariant
16 1 ≤ i ≤ m + 1
17 ∀h ∈ [0..i− 1], ∀k ∈ [0..m]: d [h, k] = distance (s [1..h], t [1..k])
18 loop
19 across [1..n] as j
20 invariant
21 1 ≤ i ≤ m + 1
22 1 ≤ j ≤ n + 1
23 ∀h ∈ [0..i− 1], ∀k ∈ [0..j − 1]: d [h, k] = distance (s [1..h], t [1..k])
24 loop
25 if s [ i ] = t [ j ] then
26 d [ i , j ] := d [ i − 1, j − 1]
27 else
28 d [ i , j ] := 1 + min (d [i − 1, j − 1], d [i, j − 1], d [ i − 1, j ])
29 end
30 end
31 end
32 Result := d [m, n]
33 ensure
34 Result = distance (s, t)
35 end

Fig. 18. Levenshtein distance.

p1

p2
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p4
p5
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jaw a

jaw b

angle a

angle b

(a) Initial jaw configuration: antipo-
dal pair (p1, p5).

p1

p2

p3

p4
p5

p6

p7

jaw a

jaw b

(b) Jaws after one iteration: antipodal
pair (p2, p5).

Fig. 19. The rotating calipers algorithm illustrated.

primitives. Such a level of detail is beyond the scope of this paper; instead, we outline the
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1 diameter calipers (p: LIST [POINT ]): INTEGER
2 require
3 p.count ≥ 3 ; p. is convex
4 local
5 jaw a, jaw b: VECTOR −− Jaws of the caliper
6 n a, n b: NATURAL −− Pointers to vertices of the polygon
7 angle a , angle b : REAL −− Angle measures
8 do
9 n a := “Index, in p, of the vertex with the minimum y coordinate”

10 n b := “Index, in p, of the vertex with the maximum y coordinate”
11

12 jaw a := “Horizontal direction from p[n a] pointing towards negative”
13 jaw b := “Horizontal direction from p[n b] pointing towards positive”
14 from
15 total rotation := 0
16 Result := |p[n a] − p[n b ]| −− Distance between pair of vertices
17 invariant
18 parallel (jaw a, jaw b) −− Jaws are parallel
19 0 <Result≤ diameter (p) −− Result increases until diameter(p)
20 0 ≤ total rotation <360
21 until total rotation ≥ 180 −− All antipodal pairs considered
22 loop
23 angle a := “Angle between p[n a] and the next vertex in p ”
24 angle b := “Angle between p[n b] and the next vertex in p ”
25 if angle a < angle b then
26 −− Rotate jaw a to coincide with the edge p[n a]—p[n a].next
27 jaw a := jaw a + angle a
28 −− Rotate jaw b by the same amount
29 jaw b := jaw b + angle a
30 −− Next current point n a
31 n a := “Index of vertex following p[n a]”
32 −− Update total rotation
33 total rotation := total rotation + angle a
34 else
35 −− As in the then branch with a’s and b’s roles reversed
36 end
37 −− Update maximum distance between antipodal points
38 Result := max (|p[n a] − p[n b]|, Result)
39 variant 180 − total rotation end
40 ensure
41 Result = diameter (p)
42 end

Fig. 20. Diameter of a polygon with rotating calipers.

essential traits of the specification and give a description of the algorithm in pseudo-code
in Figure 20.6

The algorithm inputs a list p of at least three points such that it represents a convex poly-
gon (precondition on line 3) and returns the value of the polygon’s diameter (postcondition
on line 41).

6The algorithm in Figure 20 is slightly simplified, as it does not deal explicitly with the special case where
a line initially coincides with an edge: then, the minimum angle is zero, and hence the next vertex not on
the line should be considered. This problem can be avoided by adjusting the initialization to avoid that a
line coincides with an edge.
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It starts by adjusting the two parallel support lines on the two vertices with the maximum
difference in y coordinate, such as p1 and p5 in Figure 19(a). Then, it enters a loop that
computes the angle between each line and the next vertex on the polygon, and rotates both
jaws by the minimum of such angles. At each iteration, it compares the distance between the
new antipodal pair and the currently stored maximum (in Result), and updates the latter
if necessary. In the example of Figure 19(a), jaw a determines the smallest angle, and hence
both jaws are rotated by angle a in Figure 19(b). Such an informal description suggests the
obvious bounding invariants that the two jaws are maintained parallel (line 18), Result
varies between some initial value and the final value diameter (p) (line 19), and the total
rotation of the calipers is between zero and 180 + 180 (line 20). The essential invariant is,
however, harder to state formally, because it involves a subset of the antipodal pairs reached
by the calipers. A semi-formal presentation is:

Result = max

{

|p1, p2|

∣

∣

∣

∣

p1, p2 ∈ p ∧
reached (p1, total rotation) ∧
reached (p2, total rotation)

}

whose intended meaning is that Result stores the maximum distance between all points
p1, p2 among p’s vertices that can be reached with a rotation of up to total rotation degrees
from the initial calipers’ horizontal positions.

4.6. Algorithms on data structures

Many data structures are designed around specific operations, which can be performed ef-
ficiently by virtue of the characterizing properties of the structures. This section presents
linked lists and binary search trees and algorithms for some of such operations. The pre-
sentation of their invariants clarifies the connection between data-structure properties and
the algorithms’ correct design.

4.6.1. List reversal. Consider a list of elements of generic type G implemented as a linked
list: each element’s attribute next stores a reference to the next element in the list; and
the last elements’s next attribute is Void. This section discusses the classic algorithm that
reverses a linked list iteratively.
We introduce a specification that abstracts some implementation details by means of a

suitable domain theory. If list is a variable of type LIST [G] – that is, a reference to the
first element – we lift the semantics of list in assertions to denote the sequence of elements
found by following the chain of references until Void. This interpretation defines finite
sequences only if list ’s reference sequence is acyclic, which we write acyclic ( list ). Thus,
the precondition of routine reverse is simply

acyclic ( list )

where list is the input linked list.
For a sequence s = s1 s2 . . . sn of elements of length n ≥ 0, its reversal rev (s) is induc-

tively defined as:

rev(s) =

{

ǫ n = 0

rev(s2 . . . sn) ◦ s1 n > 0
(46)

where ǫ denotes the empty sequence and “◦” is the concatenation operator. With this
notation, reverse’s postcondition is:

list = rev (old list )

with the matching property that list is still acyclic.
The domain theory for lists makes it possible to derive the loop invariant with the usual

techniques. Let us introduce a local variable reversed, which will store the iteratively con-
structed reversed list. More precisely, every iteration of the loop removes one element from
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list temp

· · ·

Void

reversed

· · ·

Void

(a) Before executing the loop body.

reversed temp list

· · ·

Void

· · ·

Void

(b) After executing the loop body: new links are in red.

Fig. 21. One iteration of the loop in routine reverse.

the beginning of list and moves it to the beginning of reversed, until all elements have been
moved. When the loop terminates:

— list points to an empty list;
— reversed points to the reversal of old list .

Therefore, the routine concludes by assigning reversed to overwrite list . Backward substi-
tution yields the loop’s postcondition from the routine’s:

reversed = rev (old list ) (47)

Using (46) for empty lists, we can equivalently write (47) as:

rev( list ) ◦ reversed = rev (old list ) (48)

which is the essential loop invariant, whereas list = Void is the exit condition. The other
component of the loop invariant is the constraint that list and reversed be acyclic, also by
mutation of the postcondition.
Figure 22 shows the standard implementation. Figure 21 pictures instead a graphical

representation of reverse’s behavior: Figure 21(a) shows the state of the lists in the middle
of the computation, and Figure 21(b) shows how the state changes after one iteration, in a
way that the invariant is preserved.
The correctness proof relies on some straightforward properties of the rev and ◦ functions.

Initiation follows from the property that s ◦ ǫ = s. Consecution relies on the definition (46)
for n > 0, so that:

rev ( list .next) ◦ list . first = rev ( list )

Proving the preservation of acyclicity relies on the two properties:

acyclic(s1 s2 . . . sn) =⇒ acyclic(s2 . . . sn)

|s1| = 1 ∧ acyclic(r) =⇒ acyclic(s1 ◦ r)

4.6.2. Binary search trees. Each node in a binary tree has at most two children, convention-
ally called left and right. Binary search trees are a special kind of binary trees whose nodes
store values from some totally ordered domain T and are arranged reflecting the relative
order of their values; namely, if t is a binary search tree and n ∈ t is one of its nodes with
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1 reverse ( list : LIST [G])
2 require
3 acyclic ( list )
4 local
5 reversed , temp: LIST [G]
6 do
7 from reversed := Void
8 invariant
9 rev ( list ) ◦ reversed = rev (old list )

10 acyclic ( list )
11 acyclic (reversed)
12 until list = Void
13 loop
14 temp := list .next
15 list .next := reversed
16 reversed := list
17 list := temp
18 variant list .count end
19 list := reversed
20 ensure
21 list = rev (old list )
22 acyclic ( list )
23 end

Fig. 22. Reversal of a linked list.

value v, all nodes in n’s left subtree store values less than or equal to v, and all nodes in
n’s right subtree store values greater than or equal to v. We express this characterizing
property using domain-theory notation as:

s ∈ t [n. left ] =⇒ s .value ≤ n.value
s ∈ t [n. right ] =⇒ s .value ≥ n.value

(49)

where t [n] denotes t’s subtree rooted at node n. This property underpins the correctness of
algorithms for operations such as searching, inserting, and removing nodes in binary search
trees that run in time linear in a tree’s height ; for trees whose nodes are properly balanced,
the height is logarithmic in the number of nodes, and hence the operations can be performed
efficiently. We now illustrate two of these algorithms with their invariants.

Consider searching for a node with value key in a binary search tree t. If t .values denotes
the set of values stored in t, the specification of this operation consists of the postcondition

key ∈ t .values =⇒ Result ∈ t ∧ key = Result.value (50)

key 6∈ t .values =⇒ Result = Void (51)

where Void is returned if no node has value key. For simplicity, we only consider non-empty
trees – handling the special case of an empty tree is straightforward.

We can obtain the essential invariant by weakening both conjuncts in (50) based on two
immediate properties of trees. First, Result ∈ t implies Result 6=Void, because no valid
node is Void. Second, a node’s value belongs to the set of values of the subtree rooted at
the node:

n.value ∈ t [n ]. values

for n ∈ t. Thus, the following formula is a weakening of (50):

key ∈ t .values =⇒ Result 6=Void ∧ key ∈ t [Result].values (52)

which works as essential loop invariant for binary-search-tree search.
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Search works by moving Result to the left or right subtree – according to (49) – until a
value key is found or the subtree to be explored is empty. This corresponds to the disjunc-
tive exit condition Result = Void ∨Result.value = key and to the bounding invariant
Result 6=Void =⇒ Result∈ t: we are within the tree until we hit Void. Figure 23 shows
the corresponding implementation.

1 has bst (t : BS TREE [T ]; key: T): NODE
2 require
3 t . root 6=Void −− nonempty tree
4 do
5 from Result := t.root
6 invariant
7 Result 6=Void =⇒ Result ∈ t
8 key ∈ t.values =⇒ Result 6=Void ∧ key ∈ t[Result].values
9 until Result = Void ∨ key = Result.value

10 loop
11 if key <Result.value then
12 Result := Result.left
13 else
14 Result := Result.right
15 end
16 end
17 ensure
18 key ∈ t.values =⇒ Result ∈ t ∧ key = Result.value
19 key 6∈ t.values =⇒ Result = Void
20 end

Fig. 23. Search in a binary search tree.

Initiation follows from the precondition and from the identity t [ t . root ] = t. Consecution
relies on the following domain property, which in turn follows from (49):

n ∈ t ∧ v ∈ t [n ]. values ∧ v < n.value =⇒ n. left 6=Void ∧ v ∈ t [n. left ]. values

n ∈ t ∧ v ∈ t [n ]. values ∧ v > n.value =⇒ n. right 6=Void ∧ v ∈ t [n. right ]. values

The ordering property (49) entails that the leftmost node in a (non-empty) tree t – that
is the first node without left child reached by always going left from the root – stores the
minimum of all node values. This property, expressible using the domain-theory function
leftmost as:

min(t .values) = leftmost(t).value (53)

leads to an algorithm to determine the node with minimum value in a binary search tree,
whose postcondition is thus:

Result = leftmost(t) (54)

Result.value = min(t .values) (55)

The algorithm only has to establish (54), which then implies (55) combined with the prop-
erty (53). In fact, the algorithm is oblivious of (49) and operates solely based on structural
properties of binary trees; (55) follows as an afterthought.

Duplicating the right-hand side of (54), writing t in the equivalent form t [ t . root ] , and
applying constant relaxation to t . root yields the essential invariant

leftmost(t [Result]) = leftmost(t) (56)
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with the bounding invariant Result∈ t that we remain inside the tree t. These invariants
capture the procedure informally highlighted above: walk down the left children until you
reach the leftmost node. The corresponding implementation is in Figure 24.

1 min bst (t : BS TREE [T ]): NODE
2 require
3 t . root 6=Void −− nonempty tree
4 do
5 from Result := t.root
6 invariant
7 Result ∈ t
8 leftmost (t [Result]) = leftmost (t)
9 until Result.left = Void

10 loop
11 Result := Result.left
12 end
13 ensure
14 Result = leftmost (t)
15 Result.value = min (t.values)
16 end

Fig. 24. Minimum in a binary search tree.

Initiation follows by trivial identities. Consecution relies on a structural property of the
leftmost node in any binary tree:

n ∈ t ∧ n. left 6=Void =⇒ n. left ∈ t ∧ leftmost(t [n]) = leftmost(t [n. left ])

4.7. Fixpoint algorithms: PageRank

PageRank is a measure of the popularity of nodes in a network, used by the Google Internet
search engine. The basic idea is that the PageRank score of a node is higher the more nodes
link to it (multiple links from the same page or self links are ignored). More precisely, the
PageRank score is the probability that a random visit on the graph (with uniform probability
on the outgoing links) reaches it at some point in time. The score also takes into account a
dampening factor, which limits the number of consecutive links followed in a random visit.
If the graph is modeled by an adjacency matrix (modified to take into account multiple
and self links, and to make sure that there are no sink nodes without outgoing edges), the
PageRank scores are the entries of the dominant eigenvector of the matrix.
In our presentation, the algorithm does not deal directly with the adjacency matrix but

inputs information about the graph through arguments reaching and outbound. The former
is an array of sets of nodes: reaching [k] denotes the set of nodes that directly link to
node k. The other argument outbound [k] denotes instead the number of outbound links (to
different nodes) originating in node k. The Result is a vector of n real numbers, encoded as
an array, where n is the number of nodes. If eigenvector denotes the dominant eigenvector
(also of length n) of the adjacency matrix (defined implicitly), the postcondition states that
the algorithm computes the dominant eigenvector to within precision ǫ (another input):

|eigenvector −Result| < ǫ (57)

That is, Result [k] is the rank of node k to within overall precision ǫ.
The algorithm computes the PageRank score iteratively: it starts assuming a uniform

probability on the n nodes, and then it updates it until convergence to a fixpoint. Before
every iteration, the algorithm saves the previous values of Result as old rank, so that it
can evaluate the progress made after the iteration by comparing the sum diff of all pairwise
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absolute differences, one for each node, between the scores saved in old rank and the newly
computed scores available in Result. Correspondingly, the main loop’s essential invariant is
postcondition (57) with diff substituted for ǫ. diff gets smaller with every iteration of the
main loop, until it becomes less than ǫ, the main loop terminates, and the postcondition
holds. The connection between the main loop invariants and the postcondition is thus
straightforward.

1 page rank (dampening, ǫ: REAL; reaching: ARRAY [SET [INTEGER]];
2 outbound: ARRAY [INTEGER]): ARRAY [REAL]
3 require
4 0 <dampening <1
5 ǫ >0
6 reaching .count = outbound.count = n >0
7 local
8 diff : REAL
9 old rank : ARRAY [REAL]

10 link to : SET [INTEGER]
11 do
12 old rank := {1/n}n −− Initialized with n elements all equal to 1/n
13 from diff := 1
14 invariant
15 | eigenvector − Result | <diff
16 until diff <ǫ
17 loop
18 diff := 0
19 across [1..n] as i loop
20 Result [i] := 0
21 link to := reaching [ i ]
22 across [1.. link to .count] as j loop
23 Result [i] := Result [i] + old rank [ j ] / outbound [j ]
24 end
25 Result [i] := dampening ∗ Result [i] + (1 − dampening)/n
26 diff := diff + |Result [i] − old rank [ i ]|
27 end
28 old rank := Result −− Copy values of Result into old rank
29 variant 1 + diff − ǫ
30 end
31 ensure
32 | eigenvector − Result | < ǫ
33 end

Fig. 25. PageRank fixpoint algorithm.

Figure 25 shows an implementation of this algorithm. The two across loops nested within
the main loop update the PageRank scores in Result. Every iteration of the outer across
loop updates the value of Result [i] for node i as:

(1− dampening)

n
+ dampening ·

∑

j

old rank[j]

outbound[j]
(58)

The inner loop computes the sum in (58) for j ranging over the set reaching [ i ] of nodes that
directly reach i. The invariants of the across loops express the progress in the computation
of (58); we do not write them down explicitly as they are not particularly insightful from
the perspective of connecting postconditions and loop invariants.
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5. RELATED WORK: AUTOMATIC INVARIANT INFERENCE

The amount of research work on the automated inference of invariants is substantial and
spread over more than three decades; this reflects the cardinal role that invariants play in
the formal analysis and verification of programs. This section outlines a few fundamental ap-
proaches that emerged, without any pretense of being exhaustive. A natural classification
of the methods to infer invariants is between static and dynamic. Static methods (Sec-
tion 5.1) use only the program text, whereas dynamic methods (Section 5.2) summarize the
properties of many program executions with different inputs.

Program construction. In the introductory sections, we already mentioned classical for-
mal methods for program construction [Dijkstra 1976; Gries 1981; Meyer 1980; Morgan
1994] on which this survey paper is based. In particular, the connection between a loop’s
postcondition and its invariant buttresses the classic methods of program construction; this
survey paper has demonstrated it on a variety of examples. In previous work [Furia and
Meyer 2010], we developed gin-pink, a tool that practically exploits the connection between
postconditions and invariants. Given a program annotated with postconditions, gin-pink
systematically generates mutations based on the heuristics of Section 3.2, and then uses
the Boogie program verifier [Leino 2008] to check which mutations are correct invariants.
The gin-pink approach borrows ideas from both static and dynamic methods for invariant
inference: it is only based on the program text (and specification) as the former, but it
generates “candidate” invariants to be checked – like dynamic methods do.

Reasoning about domain theories. To bridge the gap between the levels of abstraction
of domain theories and of their underlying atomic assertions (see Section 2), one needs to
reason about first- or even higher-logic formulas often involving interpreted theories such
as arithmetic. The research in this area of automated theorem proving is huge; interested
readers are referred to the many reference publications on the topic [Robinson and Voronkov
2001; Buchberger 2006; Bradley and Manna 2007; Kroening and Strichman 2008].

5.1. Static methods

Historically, the earliest methods for invariant inference where static as in the pioneering
work of Karr [1976]. Abstract interpretation and the constraint-based approach are the two
most widespread frameworks for static invariant inference (see also [Bradley and Manna
2007, Chap. 12]). Jhala and Majumdar [2009] provide an overview of the most important
static techniques and discuss how they are applied in combination with different problems
of program verification.

Abstract interpretation is a symbolic execution of programs over abstract domains that
over-approximates the semantics of loop iteration. Since the seminal work by Cousot and
Cousot [1977], the technique has been updated and extended to deal with features of modern
programming languages such as object-orientation and heap memory-management (e.g.,
[Logozzo 2004; Chang and Leino 2005]). One of the main successes of abstract interpretation
has been the development of sound but incomplete tools [Blanchet et al. 2003] that can
verify the absence of simple and common programming errors such as division by zero or
void dereferencing.

Constraint-based techniques rely on sophisticated decision procedures over non-trivial
mathematical domains (such as polynomials or convex polyhedra) to represent concisely
the semantics of loops with respect to certain template properties.

Static methods are sound and often complete with respect to the class of invariants that
they can infer. Soundness and completeness are achieved by leveraging the decidability of
the underlying mathematical domains they represent; this implies that the extension of
these techniques to new classes of properties is often limited by undecidability. State-of-the-
art static techniques can infer invariants in the form of mathematical domains such as linear
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inequalities [Cousot and Halbwachs 1978; Colón et al. 2003], polynomials [Sankaranarayanan
et al. 2004; Rodŕıguez-Carbonell and Kapur 2007], restricted properties of arrays [Bradley
et al. 2006; Bozga et al. 2009; Henzinger et al. 2010], and linear arithmetic with uninterpreted
functions [Beyer et al. 2007].
Following Section 3.1, the loop invariants that static techniques can easily infer are often

a form of “bounding” invariant. This suggests that the specialized static techniques for loop
invariant inference discussed in this section, and the idea of deriving the loop invariant
from the postcondition, demonstrated in the rest of the paper, can be fruitfully combined:
the former can easily provide bounding loop invariants, whereas the latter can suggest the
“essential” components that directly connect to the postcondition.

To our knowledge, there are only a few approaches to static invariant inference that take
advantage of existing annotations [Păsăreanu and Visser 2004; Janota 2007; de Caso et al.
2009; Lahiri et al. 2009; Kovács and Voronkov 2009]. Janota [2007] relies on user-provided
assertions nested within loop bodies and tries to check whether they hold as invariants of
the loop. The approach has been evaluated only on a limited number of straightforward
examples. De Caso et al. [2009] briefly discuss deriving the invariant of a “for” loop from
its postcondition, within a framework for reasoning about programs written in a specialized
programming language. Lahiri et al. [2009] also leverage specifications to derive intermediate
assertions, but focusing on lower-level and type-like properties of pointers. On the other
hand, Păsăreanu and Visser [2004] derive candidate invariants from postconditions within
a framework for symbolic execution and model-checking.

Finally, Kovács and Voronkov [2009] derive complex loop invariants by first encoding the
loop semantics as recurring relations and then instructing a rewrite-based theorem prover
to try to remove the dependency on the iterator variables in the relations. This approach
exploits heuristics that, while do not guarantee completeness, are practically effective to
derive automatically loop invariants with complex quantification – a scenario that is beyond
the capabilities of most other methods.

5.2. Dynamic methods

Only in the last decade have dynamic techniques been applied to invariant inference. The
Daikon approach of Ernst et al. [2001] showed that dynamic inference is practical and sprung
much derivative work (e.g., Perkings and Ernst [2004], Csallner et al. [2008], Polikarpova et
al. [2009], Ghezzi et al. [2009], Wei et al. [2011a], Nguyen et al. [2012], and many others). In
a nutshell, the dynamic approach consists in testing a large number of candidate properties
against several program runs; the properties that are not violated in any of the runs are
retained as “likely” invariants. This implies that the inference is not sound but only an
“educated guess”: dynamic invariant inference is to static inference what testing is to pro-
gram proofs. Nonetheless, just like testing is quite effective and useful in practice, dynamic
invariant inference can work well if properly implemented. With the latest improvements
[Wei et al. 2011b], dynamic invariant inference can attain soundness of over 99% for the
“guessed” invariants.
Among the numerous attempts to improve the effectiveness and flexibility of dynamic

inference, Gupta and Heidepriem [2003] suggest to improve the quality of inferred contracts
by using different test suites (based on code coverage and invariant coverage), and by
retaining only the contracts that are inferred with both techniques. Fraser and Zeller [2011]
simplify and improve test cases based on mining recurring usage patterns in code bases; the
simplified tests are easier to understand and focus on common usage. Other approaches to
improve the quality of inferred contracts combine static and dynamic techniques [Csallner
et al. 2008; Tillmann et al. 2006; Wei et al. 2011b].
To date, dynamic invariant inference has been mostly used to infer pre- and postconditions

or intermediate assertions, whereas it has been only rarely applied [Nguyen et al. 2012] to
loop invariant inference. This is probably because dynamic techniques require a sufficiently
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varied collection of test cases, and this is more difficult to achieve for loops – especially if
they manipulate complex data structures.

6. LESSONS FROM THE MECHANICAL PROOFS

Our verified Boogie implementations of the algorithms mirror the presentation in Section 4,
as they introduce the predicates, functions, and properties of the domain theory that are
directly used in the specification and in the correctness proofs. The technology of automatic
theorem proving is, however, still in active development, and faces in any case insurmount-
able theoretical limits of undecidability. As a consequence, in a few cases we had to introduce
explicitly some intermediate domain properties that were, in principle, logical consequences
of other definitions, but that the prover could not derive without suggestion. Similarly, in
other cases we had to guide the proof by writing down explicitly some of the intermediate
steps in a form acceptable to the verifier.
A lesson of this effort is that the syntactic form in which definitions and properties of the

domain theory are expressed may influence the amount of additional annotations required
for proof automation. The case of the sorting algorithms in Section 4.3 is instructive. All
rely on the definition of predicate sorted as:

∀i ∈ [a.lower ..a.upper − 1]: a [ i ] ≤ a [ i + 1] (59)

which compares adjacent elements in positions i and i + 1. Since Bubble sort rearranges
elements in an array also by swapping adjacent elements, proving it in Boogie was straight-
forward, since the prover could figure out how to apply definition (59) to discharge the
various verification conditions – which also feature comparisons of adjacent elements. Selec-
tion sort and Insertion sort required substantially more guidance in the form of additional
domain theory properties and detailing of intermediate verification steps, since their logic
does not operate directly on adjacent elements, and hence their verification conditions are
syntactically dissimilar to (59). Changing the definition of sorted into something that re-
lates non-adjacent elements – such as ∀i, j : a.lower ≤ i ≤ j ≤ a.upper=⇒ a[i] ≤ a[j] –
is not sufficient to bridge the semantic gap between sortedness and other predicates: the
logic of Selection sort and Insertion sort remains more complex to reason about than that
of Bubble sort. On the contrary, Comb sort was as easy as Bubble sort, because it relies on
a generalization of sorted that directly matches its logic (see Section 4.3.6).
A similar experience occurred for the two dynamic programming algorithms of Section 4.4.

While the implementation of Levenshtein distance closely mirrors the recursive definition
of distance (Section 4.4.2) in computing the minimum, the relation between specification
and implementation is less straightforward for the knapsack problem (Section 4.4.1), which
correspondingly required a more complicated axiomatization for the proof in Boogie.

7. CONCLUSIONS AND ASSESSMENT

The concept of loop invariant is, as this review has attempted to show, one of the foun-
dational ideas of software construction. We have seen many examples of the richness and
diversity of practical loop invariants, and how they illuminate important algorithms from
many different areas of computer science. We hope that these examples establish the claim,
made at the start of the article, that the invariant is the key to every loop: to devise a
new loop so that it is correct requires summoning the proper invariant; to understand an
existing loop requires understanding its invariant.
Invariants belong to a number of categories, for which this discussion has established a

classification which we hope readers will find widely applicable, and useful in understanding
the loop invariants of algorithms in their own fields. The classification is surprisingly simple;
perhaps other researchers will find new criteria that have eluded us.
Descriptions of algorithms in articles and textbooks has increasingly, in recent years,

included loop invariants, at least informally; we hope that the present discussion will help
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reinforce this trend and increase the awareness – not only in the research community but
also among software practitioners – of the centrality of loop invariants in programming.

Informal invariants are good, but being able to express them formally is even better.
Reaching this goal and, more generally, continuing to make invariants ever more mainstream
in software development requires convenient, clear and expressive notations for expressing
loop invariants and other program assertions. One of the contributions of this article will
be, we hope, to establish the practicality of domain-theory-based invariants, which express
properties at a high level of abstraction, and their superiority over approaches that always
revert to the lowest level (suggesting a possible slogan: “Quantifiers considered harmful”).

Methodological injunctions are necessary, but the history of software practice shows that
they only succeed when supported by effective tools. Many programmers still find it hard
to come up with invariants, and this survey shows that they have some justifications: even
though the basic idea is often clear, coming up with a sound and complete invariant is
an arduous task. Progress in invariant inference, both theoretical and on the engineering
side, remains essential. There is already, as noted, considerable work on this topic, often
aimed at inferring more general invariant properties than the inductive loop invariants of
the present discussion; but much remains to be done to bring the tools to a level where they
can be integrated in a standard development environment and routinely suggest invariants,
conveniently and correctly, whenever a programmer writes a loop. The work mentioned in
Section 5 is a step in this direction.
Another major lessons for us from preparing this survey (and reflecting on how different

it is from what could have been written on the same topic 30, 20, 10 or even 5 years ago)
came from our success in running essentially all the examples through formal, mechanized
proofs. Verification tools such as Boogie, while still a work in progress, have now reached
a level of quality and practicality that enables them to provide resounding guarantees for
work that, in the past, would have remained subject to human errors.

We hope that others will continue this work, both on the conceptual side – by providing
further insights into the concept of loop invariant – and on the practical side – by extending
the concept to its counterpart for data (i.e., the class invariant) and by broadening our
exploration and classification effort to many other important algorithms of computer science.
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Henzinger, T. A., Hottelier, T., Kovács, L., and Voronkov, A. 2010. Invariant and type inference for
matrices. In Proceedings of the 11th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI’10). Lecture Notes in Computer Science. Springer.

Hoare, C. A. R. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10, 576–580.

Hoare, C. A. R. 1972. Proof of correctness of data representations. Acta Inf. 1, 271–281.

Hoare, C. A. R. 2003. The verifying compiler: A grand challenge for computing research. Journal of the
ACM 50, 1, 63–69.

Janota, M. 2007. Assertion-based loop invariant generation. In Proceedings of the 1st International Work-
shop on Invariant Generation (WING’07).

Jhala, R. and Majumdar, R. 2009. Software model checking. ACM Computing Surveys 41, 4.

Karr, M. 1976. Affine relationships among variables of a program. Acta Informatica 6, 133–151.

Kellerer, H., Pferschy, U., and Pisinger, D. 2004. Knapsack problems. Springer.

Knuth, D. E. 2011. The Art of Computer Programming (volumes 1–4A). Addison-Wesley. First edition:
1968–1973.
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