
Full Eiffel on .NET†

+Raphael Simon, +Emmanuel Stapf, +*Bertrand Meyer

+Interactive Software Engineering, Santa Barbara, California
*ETH (Swiss Federal Institute of Technology), Zürich, Switzerland

http://www.eiffel.com/, info@eiffel.com

Abstract

The full power of the Eiffel language and method, including Design by
Contract™, multiple inheritance, genericity and many other advanced
facilities, is now available on the Microsoft .NET framework.

Eiffel for .NET establishes a powerful basis for the construction of
extendible, high-reliability applications, providing a unique platform for
integrating components produced with many different languages and
approaches, and bringing the benefits of Design by Contract to the .NET
world.

We describe the work done to integrate the two technologies, and the
resulting tools for constructing ambitious enterprise and Web systems.

†An earlier version of this article appeared in July, 2000 under the title Eiffel on the
Web: Integrating Eiffel systems into .NET (by the present authors and Christine
Mingins). The present version describes the current state of the implementation,
supporting the full Eiffel language.

1. INTRODUCTION

One of the most interesting aspects of the Microsoft .NET framework is the common
basis it provides for implementing many different programming languages. One of
the first language technologies to benefit from this openness was Eiffel, whose
implementation by Interactive Software Engineering (ISE) was, in an early version,
showcased at the very first public introduction of .NET in Orlando (see figure). That
initial release featured a partial version of the Eiffel language, Eiffel#, described in
the original version of this article and now obsolete. ISE has now completed the
implementation of full Eiffel on .NET and a first integration into Visual Studio .NET.

 Eiffel for .NET is a released product, available as part of the ISE Eiffel delivery
starting with version 5.0 (the current release at the time of writing is 5.1).

http://www.eiffel.com/
mailto:info@eiffel.com

Bill Gates (Microsoft) and
Bertrand Meyer (ISE) at
introduction of .NET
technology, July 2000.

2. EIFFEL AND .NET: AN OVERVIEW

Eiffel for .NET is a full implementation of the Eiffel method and language running on
the Microsoft .NET platform.

Eiffel is a comprehensive software development environment (ISE Eiffel)
based on a method that covers the entire software lifecycle — not just
implementation but also analysis, design and maintenance. The environment is
based on the Eiffel language, thoroughly applying the principles of object technology
and implementing the concepts of Design by Contract™ to produce highly reliable,
extendible and reusable applications.

ISE Eiffel is particularly geared towards large and complex systems and is
used by major organizations in the financial industry, defense, real-time and other
industries for mission-critical developments. Universities worldwide also use Eiffel to
teach programming and software engineering at all levels.

.NET is the next generation web technology developed at Microsoft,
combining many technologies for building Internet applications. The specification of
.NET is now an international standard, thanks to Microsoft’s successful submission of
the “Common Language Interface” to the ECMA standards organization, which
adopted it in December of 2001. (One of the authors, Emmanuel Stapf from ISE, is a
member of the corresponding ECMA Technical Committee.) Although a detailed
presentation of .NET is beyond the scope of this article, we may note the following
highlights, of special interest to application developers:

 2

� The architecture relies on a virtual machine, so that compilers for any
language always generate the same code, IL (Intermediate Language).

� The code that gets executed on any actual computer is native (binary) code

for that computer, translated incrementally or not through a process known
as JIT (best understood as meaning Judiciously Incremental Translation).

� The virtual machine’s equivalent of an operating system is the Common

Language Runtime (CLR), providing a number of crucial facilities ─ memory
management, garbage collection, security, exception handling ─ to programs
regardless of their language or origin (hence the word “common’).

� The memory model used by the virtual machine and the CLR does not rely on

addresses, bytes and words; instead, it is an object-oriented model based on
the notions of type, class, object, inheritance, polymorphism, typing and
dynamically bound calls.

� The language interoperability mechanisms of .NET, including the Common

Language Runtime, IL, the object model and the Common Language
Specification (CLS), enable the various parts of an application to use different
programming languages ─ each chosen to be the best for the job at hand ─
and to achieve a degree of inter-language cooperation unprecedented in the
software world. Not only may a module call a routine written in another
module; a class in an object-oriented language may inherit from a class in
another; exceptions cross language boundaries; so do debugging sessions;
and all this is achieved without any special effort on the programmer’s part,
and without any need for languages to know about each other.

� A new development environment, Visual Studio .NET, provides advanced

development facilities ─ compilation, browsing, debugging, user interface
development ─ and is, like the rest of the technology, open to many
languages.

� .NET provides thousands of reusable components extending across many

application areas, from localization to networking and language analysis.

� Among the most important component libraries are ASP.NET, an innovative

framework for building smart Web sites; ADO.NET, an object-relational
interface library; and Windows Forms for graphical applications.

� ASP.NET and other Web-oriented mechanisms of .NET open the way to major

advances in Web services and other advanced uses of the Internet.

� These mechanisms are potentially available to developers using any

programming language ─ provided the implementors of that language offer a
compiler that’s compatible with .NET, not only by generating IL but also by
observing the .NET rules of language interoperability.

.NET is attractive to Eiffel users since it follows many of the same ideas that they
have accepted as essential to quality software development ─ use of an object
model, automatic garbage collection, exception handling ─ and offers an integrated
platform with direct access to thousands of reusable components, the prospect of full

 3

interoperability with software elements written in both Eiffel and other languages,
and the power of Web services and other Internet applications.

For .NET users, Eiffel provides the added value of an advanced object-
oriented method and language that covers the entire lifecycle ─ not just
programming, but the whole process starting with analysis and design and
continuing with implementation, reuse, extension and maintenance ─ , unique
reliability mechanisms such as Design by Contract™, advanced language features
such as genericity and multiple inheritance, and the extensive body of reusable
components developed by ISE and other parties, including the EiffelBase library of
data structures and algorithms and the EiffelVision library for multi-platform graphics.

Eiffel on .NET provides an ideal combination for companies wishing to take
advantage of best-of-breed technologies in operating systems, Internet and web
infrastructure, software development methods, and development environments. In
particular, the openness of Eiffel to other languages and environments combined
with .NET’s emphasis on language neutrality makes the resulting product an ideal
vehicle for building applications containing components in many different languages,
Eiffel serving as the “glue” between them. In the rest of this article we describe this
combination and the challenges we faced when integrating ISE Eiffel into .NET.

3. ABOUT EIFFEL

Since the rest of this document defines Eiffel for .NET by describing how it is
different from Eiffel, we first need to see the main characteristics of Eiffel. More
details may be found in the book Object-Oriented Software Construction, 2nd edition
[Meyer 1997] and Eiffel: The Language [Meyer 1992], as well as on the Eiffel Web
site at http://www.eiffel.com/, from which some of the material has been extracted.

Eiffel is the combination of four elements: a method of system development,
based on strong software engineering principles; a language supporting the method;
a development environment, ISE EiffelStudio; and a rich set of reusable libraries.

Method

The Eiffel method, language and environment emphasize seamless development, the
continuous production of a system through the successive phases of the lifecycle
using a common set of notations and tools. The language, in particular, is as useful
for analysis and design as for programming in the strict sense of the term. The tools
provide graphical descriptions of system structures and enable developers both to
produce software text from the graphics and to reverse-engineer the graphics from
the text, switching at their leisure between the two modes. This means that Eiffel
developers typically do not need a separate “CASE” tool (for example UML-based) for
analysis and design but instead use a consistent framework throughout the process.

This seamless approach also supports reversibility: if a modification is made to

the program, it will automatically be included in the analysis and design views. Since
these views, like others graphical and textual views at various levels of detail, are

 4

http://www.eiffel.com/doc/oosc/
http://www.eiffel.com/doc/
http://www.eiffel.com/

extracted from the software text by automatic tools, the various documents
associated with a project are guaranteed to be consistent. This follows from the
Single Model principle, one of the principles of the Eiffel approach.

Language

As a language Eiffel is a "pure" object-oriented language (arguably the most
systematic application of object-oriented principles in existing languages) based on a
small number of powerful concepts:

� Classes, serving as the sole basis for both the module structure and the type

system.

� Inheritance for classification, subtyping and reuse.

� A careful and effective approach to multiple inheritance (renaming, selection,

redefinition, undefinition, repeated inheritance).

� Contracts for writing correct and robust software, debugging it, and

documenting it automatically.

� Disciplined exception handling to recover gracefully from abnormal cases.

� Static Typing for reliability and clarity.

� Dynamic binding for flexibility and safety.

� Genericity, constrained and unconstrained, for describing flexible container

structures: you may declare a class VECTOR [G] to state that it will describe
vectors of elements of any type, G denoting a “formal generic parameter”; to
derive a usable type you provide an “actual generic parameter” as in VECTOR
[INTEGER] (describing vectors of integers) or even VECTOR [VECTOR
[INTEGER]] (vectors of vectors of integers).

� Covariance, enabling the flexible adaptation of routines when redefined in

descendants of the class where they originally appeared.

� Agents: high-level functional objects describing partially bound routines,

providing the power of functional languages in an object-oriented context and
a type-safe way.

� Open architecture providing easy access to software written in other

languages such as C, C++ and others.

For a flavor of the ─ clear and simple ─ language syntax, and the typical Eiffel style
(not yet in this first version including contracts), here is the outline of a simple class
COUNTER describing a counter:

 5

indexing
 description: "[

Counters that you can increment by one,
 decrement, and reset
]”
class
 COUNTER

feature – Access

item: INTEGER
 -- Counter's value.

feature -- Element change

increment is
 -- Increase counter by one.
 do
 item := item + 1
 end

decrement is
 -- Decrease counter by one.
 do
 item := item - 1
 end

reset is
 -- Reset counter to zero.
 do
 item := 0
 end

end -- class COUNTER

At run time this class will have instances: each instance is an object that represents
a separate counter. To create a counter you declare the corresponding entity, say

my_counter: COUNTER

create the corresponding object

create my_counter

(where the keyword create introduces the the object creation operation), and can
then apply to it the operations of the class (its features):

my_counter.increment
...
my_counter.decrement
...
print (my_counter.item)

 6

Such operations will appear in features of other classes, called the clients of class
COUNTER. A couple more comments about this example: all values are initialized by
default, so every counter object will start its life with its value, item, initialized to
zero (you don't need to call reset initially). Also, item is an attribute, which is

exported in read-only mode: clients can say print (my_counter..item) but not, for

example, my_counter..item := 657, which would be a violation of the "information
hiding" principle. Of course the class author may decide to provide such a capability
by adding a feature

set (some_value: INTEGER) is
 -- Set value of counter to some_value.
 do
 item := some_value
 end

in which case the clients will simply use my_counter.set (657). But that's the
decision of the authors of class COUNTER: how much functionality they provide to
their clients. The indexing clause at the beginning of the class does not affect its
semantics (i.e. the properties of the corresponding run-time objects), but attaches
extra documentation to the class.

Design by Contract

Alone in design methodologies and languages, Eiffel directly enforces Design by
Contract through constructs such as class invariants, preconditions and
postconditions. Assume for example that we want our counters to be always non-
negative. The class will now have an invariant:

indexing ... class
 COUNTER
feature
 ...
invariant
 item >= 0
end

and feature decrement now needs a precondition, to make sure that clients do not
attempt illegal operations. The keyword require introduces the precondition:

decrement is
 -- Decrease counter by one.
 require
 item > 0
 do
 item := item - 1
 ensure
 item = old item - 1
 end

 7

The keyword ensure introduces the postcondition.

The precondition tells the client: "Never even think of calling me unless you
are sure the counter is strictly positive".

The postcondition says "If you are good (i.e. observe the precondition) here is
what I promise to do for you in return: I will decrease the counter by one."

The invariant adds the promise that "Also, all my operations will maintain the

counter positive or zero". Preconditions, postconditions and invariants are called
assertions.

Libraries

Eiffel emphasizes reuse at all steps and is supported by a rich set of libraries,
carefully crafted with strict design and style guidelines. Two worth noting here are
EiffelBase, covering the set of fundamental structures of computing science, and
EiffelVision, an advanced graphical library providing portable graphic solutions across
many platforms, which offers users the guarantee of both source-level compatibility
and automatic adaptation to the look-and-feel of the target platform.

Challenges

This brief introduction to Eiffel has enough to suggest some of the issues that arose
in the .NET integration. The .NET object model provides no native support for
multiple inheritance (a class in the .NET model may inherit from at most one other
class), for genericity, for covariance, for agents.

Several of these mechanisms, in particular multiple inheritance, proved difficult to
implement under .NET. They have all now been successfully tackled, so that there is
no difference in the language supported under Eiffel for .NET and other
implementations.

4. HOW EIFFEL RUNS UNDER .NET

Targeting .NET for a language compiler really means being able to produce IL and
the associated metadata.

Goals

Generating IL would be enough if the aim was just to “compile Eiffel under .NET”, but
would fall short of our goal of providing a general-purpose framework for multi-
language interoperability, since other languages would not be able to reuse Eiffel
types without the metadata that describes them. Multiple inheritance provides a

 8

typical example: producing an IL version of a multiple inheritance structure as shown
below is, in itself, just a compiling issue, and not necessarily more difficult than
implementing multiple inheritance for some other target code. The more ambitious
issue is to make sure that code using these classes in another language can see the
inheritance hierarchy and benefit from it, for example by declaring a variable of type
A and assigning to it a value of type D (as Eiffel code can do through polymorphism).

D

A B C
Multiple
inheritance
from classes

Inherits
from

f
g

h i
j

k
l

One of the goals set by ISE regarding the integration of Eiffel was the ability to reuse
existing types written in any language as well as the generation of types that can be
understood by any other .NET development environment. Eiffel is a .NET extender,
meaning that you can write Eiffel classes that inherit from classes written in other
languages, extend them and then recompile them to IL, giving other environments
the possibility of reusing the new type.

Another fundamental goal, in making Eiffel a full player in the .NET interoperability
games, was to provide ISE Eiffel under Visual Studio .NET. As a result, Eiffel users
have a choice between two modes of development:

� For an environment that is fully devoted to Eiffel, they can use the

EiffelStudio environment.

� For multi-language development and close integration with other languages,

for example multi-language debugging, they can use Eiffel under Visual
Studio .NET.

An associated design goal was to avoid forcing users into a final choice between
these two solutions: it must be possible to compile a given project alternatively in
EiffelStudio or Visual Studio .NET.

Finally, it was deemed essential to enable the writing of ASP.NET applications and
Web services in Eiffel, embedding Eiffel into ASP+ pages through the
@language="Eiffel" directive.

 9

Properties of the implementation

Giving Eiffel the status of “full player in the .NET interoperability games” has meant
achieving the following properties of the implementation of Eiffel for .NET:

� Eiffel is, starting with version 5.2, fully integrated in Visual Studio .NET,

taking advantage of the environment’s mechanism for editing, compiling,
cross-language browsing and (particularly important in practice) cross-
language debugging. Visual Studio “solutions” have exactly the same status
as those in other languages, and may integrate (or be integrated into)
solutions in other languages.

� Eiffel for .NET generates managed code: the generated code runs under the

control of the .NET Common Language Runtime (CLR), follows its constraints,
and takes advantage of its mechanisms for memory management, garbage
collection, exception handling, security, debugging and others. On .NET
platforms, ISE Eiffel uses a runtime system that addresses similar issues; on
.NET, its functions are taken over by the CLR.

� Eiffel for .NET generates verifiable code: you can produce code that will

satisfy the .NET security requirements.

� Eiffel for .NET generates CLS-compliant code: the generated code satisfies

the requirements of the Common Language Specification, a set of rules, now
part of the international standard for .NET, that guarantees that modules
produced from one language can be reused by others. This makes Eiffel an
ideal tool for producing high-quality reusable .NET components, which any
other .NET application, written for example in C# or Visual Basic.NET, can
freely rely on.

� Eiffel for .NET is also CLS-consumer and CLS-extender: this means that

Eiffel classes can use CLS-compliant code from other languages, and even
inherit from a CLS-compliant class in any of these languages and add or
redefine features.

� Eiffel for .NET is compatible with the CodeDom mechanisms, ensuring

possible translation into other CodeDom languages, and usability as source
language in ASP.NET for smart web pages and web services.

� Whether within Visual Studio .NET or independently from it, Eiffel for .NET is

compatible with the debugging and exception mechanisms of .NET. A run-
time error triggered and not processed in a non-Eiffel module will be handled
by its Eiffel caller, and conversely.

� As a particularly significant consequence, contract violations detected on the

Eiffel side (if contract monitoring is on) will be passed as exceptions to non-
Eiffel callers. This equips applications with an invaluable technique to detect
errors and improve their reliability by taking advantage of Eiffel’s Design by
Contract facilities.

 10

Practical setup: EiffelStudio

Under EiffelStudio, compiling for .NET simply means checking the appropriate option
in the Project Settings. As a result, a few supplementary buttons will appear in the
interface, including the button for the “assembly manager”, discussed in the next
section.

The result of this setup is that existing Eiffel programmers will be able to work the
exact same way they did before the integration, while having access to all the
mechanisms of .NET.

Practical setup: Visual Studio .NET

Under Visual Studio .NET, you may include an Eiffel solution as part of any project.
The project may include elements in Eiffel and elements in other languages, as in
this Microsoft demo involving C# and Visual Basic as well as Eiffel:

Eiffel and other languages under Visual Studio .NET

 11

Here now is Visual Studio .NET opened on an Eiffel project:

Eiffel project under Visual Studio .NET

The left pane shows a class text (CALCULATOR). The top-right pane shows the
hierarchy of the project clusters; note that it uses the same graphical conventions for
classes and clusters, standard for Eiffel, as in EiffelStudio. The bottom-right pane
shows contextual help; it indexes the standard Eiffel documentation.

 Here now is an example of using the Visual Studio .NET “object browser” (in
fact a class browser) to display the inheritance structure and other inter-class
relations of a project:

 12

Object (class) browser under Visual Studio .NET

Next here is a Visual Studio .NET “property sheet” for displaying and editing the
project properties, which in EiffelStudio would appear as “Project Settings” reflecting
the contents of the system’s “Ace file”:

 13

Property sheet under Visual Studio .NET

Our final example shows a debugging session under Visual Studio .NET for Eiffel:

 14

Debugging an Eiffel system with the Visual Studio .NET debugger

The top-left pane shows the place in a routine text where the execution is currently
stopped, and the enclosing class text, with the browsing mechanism in the top-right
pane. At the bottom right is the execution’s output. The bottom-left pane shows local
variables, at different levels, their declared types (second column) and their values.
You can use that bottom-left pane, using the Visual Studio .NET mechanisms, to
define “watch lists” and to evaluate expressions on the fly.

These examples show that Visual Studio .NET users will be able to take full
advantage of the Eiffel mechanisms, and that Eiffel users will for their part fully
benefit from Visual Studio .NET.

 15

5. TAKING ADVANTAGE OF .NET MECHANISMS IN
EIFFEL

We have seen how you can use Eiffel to build .NET components. Since the compiler
generates all the necessary metadata, other languages can reuse the Eiffel

components in any way they like (heritance or client relationship). The next question
is “how do I reuse existing .NET components in Eiffel?”. Providing a complete and
easy-to-use mechanism for this purpose is a key part of the Eiffel offering on .NET,
delivering on the promise of multi-language interoperability. The “existing
components” may be parts of a system written in another language; or, most
importantly, they may be library components, such as the Microsoft-supplied
fundamental .NET libraries that are one of the framework’s principal attractions.

Strategy
For reusable components, the goal is clear: to enable Eiffel developers to combine
the power of Eiffel libraries and non-Eiffel .NET libraries. The result is an
unprecedented collection of reuse facilities:

On the Eiffel side, libraries such as EiffelBase (for fundamental data structures
and algorithms) and EiffelVision 2 (for portable graphics) are the result of a decade
and a half of continuous work and have reached a high level of quality and
practicality.

On the .NET side, a rich set of advanced mechanisms is provided in particular by:
• The Base Class Library, providing basic types, collections, remoting services,

threading services, security, IO access, and many other facilities.

• Windows Forms for Windows-oriented GUI building.

• Web Forms for Web User Interfaces, with types such as DataGrid and

HTMLImage.

• ADO.NET for object-relational database programming.

Eiffel for .NET provides access to both sides.

Eiffel libraries

Thanks for the availability of full Eiffel and to the reuse of .NET mechanisms, the
basic Eiffel libraries are available to .NET developers, providing a considerable
practical advantage. One of the most interesting parts of the offering is EiffelVision 2,
an advanced graphical library providing an elegant GUI programming model and the
ability to port an application, graphics included, to many other platforms without any
change to the source code, and automatic adaptation to the native look-and-feel of
the target platform.

Particularly interesting is the ability to combine Eiffel mechanisms such as EiffelVision
to .NET mechanisms such as Windows Forms. For example you can embed, in a

 16

possibly complex EiffelVision application, an advanced Windows Form control such as
a Datagrid providing direct display of a database through ADO.NET. The figure below
shows such a Datagrid displayed as part of an EiffelVision window.

.NET libraries

From the .NET side, Eiffel for .NET by default makes the Base Class Library, Windows
Forms and Web Forms directly available to the Eiffel developer as if they were Eiffel
classes. This means in particular that the tools of the environment will display the
interface properties in a style consistent with Eiffel’s, and that the classes can be
used directly, without any need for special interface code.

 This makes it possible to build powerful applications that tightly combine the
benefits of these libraries with those Eiffel, as illustrated in the last figure by the
combination of EiffelVision, Windows Forms and ADO.NET.

The Assembly Manager

The three .NET libraries mentioned are just examples ─ the most commonly needed
ones ─ of non-Eiffel software that Eiffel for .NET makes available to any Eiffel class.
The general mechanism for making any set of .NET classes available in this way is an
ISE Eiffel tool called the Assembly Manager.

 The principle of the Assembly Manager is simple. You can call the Assembly
Manager from either EiffelStudio (the Eiffel-specific environment) or Visual Studio

 17

.NET. You select the assembly to import; typically, it will include classes originally
written in a language other than Eiffel, although you don’t need to know what that
language is, and it could in fact be Eifffel. The Assembly Manager lets you choose the
assembly from those in the .NET Global Assembly Cache, which holds “shared
assemblies” made available to all applications on the machine; or you may use
Browse to find a private assembly. Once you have made that selection, the
Assembly Manager will generate a set of XML files containing all the needed
information about the classes of the assembly; this is made possible by the
metadata-based reflection mechanisms of .NET. For global assemblies, the result is
stored into an Eiffel Assembly Cache, including enough information to let Eiffel
classes access the assembly’s classes as if they were Eiffel classes, whether from
EiffelStudio (the Eiffel-specific environment) or from Visual Studio .NET.

 One of the tasks of the Assembly Manager is to remove overloading. For
clarity, simplicity and compatibility with object-oriented principles, Eiffel maintains a
one-to-one correspondence, within a class, between feature names and features (for
a rationale, see [Meyer 2001]). The .NET model, however, permits overloading a
name with several meanings. The Assembly Manager removes any ambiguity by
generating unique names for any overloaded feature variant. The disambiguating
algorithm will be presented below.

6. PRODUCING .NET SYSTEMS FROM EIFFEL

The preceding discussion has described the goals which we set ourselves at the start
of the project in 1999, and which have now been achieved by the current
implementation. We will now give the reader a view of the internals, to explain how
we reached these goals.

Implementation strategy

At the start of the project, ISE organized the integration around three major
milestones. The first step of the integration was to obtain a first usable version while
avoiding the most delicate language aspects, especially multiple inheritance. This
resulted in a language subset, Eiffel#, whose implementation became available in
beta form in mid-2000 and as part of the first released version of Eiffel for .NET in
July of 2001 (version 5.0). Eiffel# included support for Design by Contract and
genericity and was sufficient to build real applications, but of course it was not the
real thing. It enabled us, however, to provide an early product, gain in-depth
experience with the implementation issues, and obtain invaluable feedback from our
customers.

The second step was the implementation of full Eiffel, including multiple
inheritance, agents and covariance. This was part of version 5.1 (December 2001).

 18

http://ww.inf.ethz.ch/personal/meyer/publications/joop/overloading.pdf

The final step is to provide full Visual Studio .NET and ASP.NET integration.
This is part of the latest release, 5.2, commercially available in May 2002.

Multiple inheritance

Multiple inheritance was, as noted, recognized from the start as a key
implementation issue. The reader may indeed wonder how we can provide multiple
inheritance on a platform that doesn’t support it, especially with the requirement
stated above that other languages should see the Eiffel multiple inheritance
structure.

 The solution used relies on the ability for a .NET class to inherit multiply from
interfaces ─ completely abstract classes, without any implementation at all. In the
generated code, the compiler shadows every class with interface. The following
figure shows the result for the structure illustrated above; note that the counterpart
of an original Eiffel class A is a .NET class called IMPL.A, whereas the “shadow”
interface retains the name of the class, A, since it’s what programmers in other
languages will need to use:

D

IMPL.A

Shadowing
classes by
interfaces

IMPL.B

A B C

IMPL.C

IMPL.D
Interface

Class
Inherits
from

Programmers using these classes from another .NET language, such as C# or Visual
Basic.NET, do not need to know about the IMPL classes. They will declare the
corresponding variables using types A, B, C, D. To create objects of the

corresponding types, they will use a third set of generated classes: Create.A,

Create.B and so on; this is because interfaces, such as A, cannot have constructors
(creation procedures in Eiffel), so the CREATE classes provide the necessary
mechanisms, one for each creation procedure of the corresponding Eiffel class. By
using namespaces Impl and Create, this technique takes full advantage of .NET
concepts.

 19

Application packaging

.NET packages applications in an original way, using assemblies and modules rather
than plain EXE or DLL files (executables or Dynamic Link Libraries). An assembly is
made of a group of modules and corresponds to an application. A module may be
either a DLL or an EXE. For that reason, the Eiffel compiler generates one assembly
whose name is the name of the system as given in the system description file, or Ace
(Assembly of Classes for Eiffel, written in a control language called Lace). You may
specify whether the assembly should be an EXE or a DLL in the
msil_generation_type default option as follows in the Ace file:

 system
 sample
 root

ROOT_CLASS: “make”
 default
 msil_generation (yes)
 msil_generation_type (“exe”) -- “dll” to generate a DLL
 …

In this example, the compiler generates a single file “sample.exe” containing both
the assembly and the module

Another feature specific to .NET is the notion of namespace. Any .NET type is
associated with a namespace that ensures the uniqueness of the type name in the
system. You can define a default namespace for all the classes of the Eiffel system
by using the following default ACE option:

 system
 sample
 root

ROOT_CLASS: “make”
 Default
 msil_generation (yes)
 msil_generation_type (“exe”) -- “dll” to generate a DLL
 namespace (“MyApp”)
 …

In this example, all the classes of the Eiffel system will be generated in the
namespace “MyApp.<cluster_name>” where <cluster_name> is the name of the
cluster that contains the class. You may override the default namespace for each
cluster as follows:

 20

 system
 sample
 root

ROOT_CLASS: “make”
 default
 msil_generation (yes)
 msil_generation_type (“exe”) -- “dll” to generate a DLL
 namespace (“MyApp”)
 cluster
 root_cluster: “c:\my_app”
 default
 namespace (“Root”)
 end
 …

With this ACE file, all the classes part of the cluster root_cluster will be generated in
the namespace “Root”. Note that the name specified in the cluster clause is not
appended to the namespace defined in the default clause.

Disambiguating overloaded names
We have noted above that feature names from non-Eiffel classes may require
disambiguating if they have been overloaded.

The disambiguating algorithm is the following, which we would welcome other
implementers adopting for no-overloading languages (so as to ensure commonality
in the spirit of .NET and the Common Language Specification).

Let f1, f2, ..., fn be overloaded .NET functions with the same name (n >= 2)

For 1 <= i <= n, let Si be the signature of fi:

 Si = [Ti1, Ti2, ..., Tim]
 (im >= 0)

All the Si are different by the rules of overloading.

We say that a position u is unique for a function fi (for 1 <= u <= im) if there
is at least one other function fj (1 <= j <= n, j /= i) such that u <= jm and
Tju /= Tiu.

We determine a unique name Ni for fi as follows. Ni is of the form
N_Ti1_Ti2..._Tiu (0 <= u <= im) where [Ti1, Ti2, ... ,Tiu] is the smallest
initial subsequence of Si different from the corresponding subsequence for all
other functions. By the rules of overloading such a subsequence exists and
uniquely characterizes Si.

Informally, the algorithm appends as many signature type names as needed after
the name of the function to obtain a unique name. So for example the following C#
function:

 21

 public static void WriteLine (String format, Object arg0);
 public static void WriteLine (int value);
 public static void WriteLine (String value);

is translated into Eiffel as follows:

 WriteLine_String_ Object (format: STRING; arg0: SYSTEM_OBJECT)
 WriteLine_ Int32 (value: INTEGER)
 WriteLine_ String (value: STRING)

By default the type names used by the algorithm do not include the namespaces. In
the rare case of conflicts between type names in different name spaces, digits are
appended to remove any remaining ambiguity.

Note that this algorithm only applies to features that are overloaded. Non-overloaded
names will remain intact, except for optional adaptation to different letter case
conventions. (Eiffel style rules prescribe clearly separating successive words in a
feature name by underscores, as in write_line; this differs from the “camelCase”
convention usually applied by C# and other .NET languages. Users can choose to
retain the original names or convert them to the familiar Eiffel convention.)

Basic types

The Assembly Manager must also take care of mapping CLS types into their Eiffel
equivalents, to guarantee the correct semantics. The following table shows the
correspondence:

CLS Primitive Type (Description) Eiffel Type

System.Char (2-byte unsigned integer) CHARACTER
System.Byte (1-byte unsigned integer) UNSIGNED_INTEGER_8
System.Int16 (2-byte signed integer) INTEGER_16
System.Int32 (4-byte signed integer) INTEGER
System.Int64 (8-byte signed integer) INTEGER_64
System.Single (4-byte floating point number) REAL
System.Double (8-byte floating point number) DOUBLE
System.String (string, zero or more chars, null allowed) STRING
System.Object (root of all class inheritance hierarchies) SYSTEM_OBJECT
System.Boolean (true or false) BOOLEAN

External Classes
Eiffel has for a long time provided extensive syntax for accessing mechanisms from
other languages, in particular C, C++ and Java. Not only can you call routines
written in those languages; you can also let them call back into an Eiffel system,
through the Cecil library; and you can specify that an Eiffel routine is mapped into a
C macro, that you want to use a certain C++ constructor or destructor for a
particular class, that a C or C++ routine has a particular type signature in its
language of origin, that a pair of getter-setter routines directly manipulate a certain
field of a C struct, and so on. This has enabled the use of Eiffel as a component

 22

combinatory, a tool widely open on the outside world and letting system developers
take advantage of Eiffel’s architectural mechanisms ─ classes, single and multiple
inheritance, genericity, Design by Contract, information hiding, uniform access ─ to
package components which may come from different languages.

A few extensions have been made to this “external” mechanism to account for the
specific facilities of .NET:

.NET Function Kind Eiffel External

Method “IL signature … use class_name”
Static Method “IL signature … static use class_name”
Field Getter “IL signature … field use class_name”
Static Field Getter “IL signature … static_field use class_name”
Field Setter “IL signature … set_field use class_name”
Static Field Setter “IL signature … set_static_field use class_name”
Constructor “IL signature … creator use class_name”

The external features can be called from clients or descendants of the class the same
way you would call any other Eiffel feature. So if your system includes a feature that
needs user input, it can include the following code:

 need_user_input is
 -- Take user input and do stuff.
 local
 io: SYSTEM_CONSOLE
 input: STRING
 do
 create io.make
 input := io.ReadLine -- calls System.Console.ReadLine()
 -- do stuff
 end

In this case, ReadLine is a static external, so you do not need to instantiate io.
Instead you can use the syntax feature {CLASS}.static_routine, applicable only to
external classes:

 need_user_input is
 -- Take user input and do stuff.
 local
 io: SYSTEM_CONSOLE
 input: STRING
 do
 -- removed creation of io
 input := {SYSTEM.CONSOLE}.ReadLine
 -- do stuff
 end

 23

The .NET Contract Wizard

As part of the Eiffel.NET development, we produced a new tool, the .NET Contract
Wizard, which through the metadata mechanism enables users, interactively, to add
Eiffel-like contracts to .NET components coming from arbitrary languages. This tool,
which will be described in detail in a separate paper, makes it possible to apply some
of the benefits of Design by Contract in languages other than Eiffel. This important
extension was made possible by the metadata facilities of .NET.

7. CONCLUSION

Eiffel for .NET provides the combination of the two most exciting software
technologies to have appeared in a decade. The combined power of the platform and
the development environment should yield the dream environment for building the
powerful Internet applications that society expects from us today.

 The closeness of the integration enables developers to use the most advanced
features of both technologies. The flexibility of the toolset ─ supporting both
EiffelStudio on .NET, for developers coming from an Eiffel background, and Eiffel for
Visual Studio .NET, for close integration with other .NET languages and use of
common tools for editing, compiling, browsing, debugging ─ enables each company
to adopt the development model that best fits its needs and its culture.

 Eiffel on .NET provides flexibility, productivity, and high reliability. It is
impossible in particular to overestimate the benefits of Design by Contract in a
distributed environment, where looking for bugs after the fact can be an excruciating
and money-wasting experience.

 The level of reuse provided by the combination of Eiffel and .NET libraries
provides an immediate and exceptional competitive advantage, letting companies
leverage off quality reusable solutions resulting from thousands of person-years of
quality-focused effort, and concentrate on their own added value to bring products to
market quickly and successfully.

Together with the other benefits of the Eiffel method — seamless
development, generic programming, information hiding and other software
engineering principles, a powerful inheritance mechanism — Eiffel on .NET provides a
best-of-breed solution for ambitious Internet software developers.

References

[ISE] Eiffel Web sites at http://www.eiffel.com/ and http://www.dotnetexperts.com.

[Meyer 1992] Bertrand Meyer: Eiffel: The Language, Prentice Hall, 1992.

[Meyer 1997] Bertrand Meyer: Object-Oriented Software Construction, 2nd edition,
Prentice Hall, 1997.

[Meyer 2001] Bertrand Meyer: Overloading vs. Object Technology, in Journal of
Object-Oriented Programming (JOOP), November 2001, also online at se.inf.ethz.ch/
publications/joop/overloading.pdf.

 24

http://www.eiffel.com/
http://www.dotnetexperts.com/
http://www.eiffel.com/doc/
http://www.eiffel.com/doc/oosc/
http://se.inf.ethz.ch/publications/joop/overloading.pdf
http://se.inf.ethz.ch/publications/joop/overloading.pdf

About the authors

Raphael Simon is a senior engineer at Interactive Software Engineering (Santa
Barbara, California), in charge of the Windows applications and tools division.
Emmanuel Stapf is a senior engineer at ISE, head of the compiler and environment
division. Bertrand Meyer is a professor of software engineering at the Swiss Federal
Institute of Technology (ETH) in Zürich and scientific advisor to ISE, as well as an
adjunct professor at Monash University in Melbourne (Australia).

To contact the authors, use info@eiffel.com.

 25

mailto:info@eiffel.com

	Full Eiffel on .NET†
	
	
	
	
	Abstract

	Method
	Language
	Design by Contract
	Libraries
	Challenges
	Goals
	Properties of the implementation
	Practical setup: EiffelStudio
	Practical setup: Visual Studio .NET
	Strategy
	Eiffel libraries
	.NET libraries
	The Assembly Manager
	Implementation strategy
	Multiple inheritance
	Application packaging
	Disambiguating overloaded names
	Basic types
	External Classes
	
	“IL signature … use class_name”

	The .NET Contract Wizard
	
	
	
	References
	About the authors

