
Class invariants: concepts,
problems and solutions

 Bertrand Meyer Draft 3, 20 September 2016
Groucho: That’s in every contract. That’s what they call a sanity clause.
Chico: Haha! You can’t fool me. There ain’t no sanity clause.

From [19]

Abstract

Class invariants are both a core concept of object-oriented programming and the
source of the two key open OO verification problems: furtive access (particularly
from callbacks) and reference leak (from aliasing). Existing approaches force on
programmers an unacceptable annotation burden. This article explains the concept of
invariant and solves both problems modularly through the O-rule, defining
fundamental OO semantics, and the inhibition rule, using information hiding to
remove harmful reference leaks. It also introduces the concept of tribe as a basis for
other possible approaches.

For all readers: this article is long because it includes a tutorial, covers many
examples and dispels misconceptions. To understand the key ideas and results,
however, the first page-and-a-half (section 1) suffices.

For non-experts in verification: all concepts are explained; anyone with a basic
understanding of object-oriented programming can understand the discussion.

For experts: the main limitation of this work is that it is a paper proposal (no
soundness proof, no implementation). It addresses, however, the known problems
with class invariants, solving such examples as linked lists and the Observer pattern,
through a simple theory and without any of the following: ownership; separation
logic; universe types [34]; object wrapping and unwrapping [15]; semantic
collaboration, observer specifications [39, 40]; history invariants [17]; “inc” and
“coop” constructs [31]; friendship construct [3]; non-modular reasoning [25]. More
generally, it involves no new language construct and no new programmer annotations.

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §2

§1 OVERVIEW AND MAIN RESULTS 3
1 Overview and main results
In object-oriented programming, every class is characterized by a class invariant: a sanity clause
expressing that its instances are compatible with the abstract purpose of the class.

Assume that a bank account class specifies lists in and out of
deposits and withdrawals and a value balance. Not every combi-
nation of these represent a meaningful account: they must satisfy
balance = in.total – out.total where total gives the accumulated
value of a list of operations. This property is a class invariant.

Per OO rules, objects change as a result of qualified calls such as a.deposit (30). Such a call
may assume on entry that the target object satisfies the invariant and must ensure on exit that it
satisfies it again. The routine deposit must both update the value of balance (here increasing it by
30) and add to the in list an object (with value 30) representing the withdrawal operation.

Whether or not programmers use them or have even heard the term, class invariants are one of
the fundamental concepts of OO programming. They are essential to proving the correctness of
OO programs, but raise two problems which have not received satisfactory solutions so far. The
contribution of this article is a solution to both of them. The rest of this section sketches the prob-
lems and the solutions. The following sections provide background and details.

The first problem, furtive access, arises when the routine of a qualified call, here deposit, per-
forms a callback into the original object and finds it in a temporary state that does not satisfy the
invariant. The solution is the following “O-rule” for qualified calls (explanations follow):

Surprisingly, no generally accepted inference rule seemed until now to exist for the fundamental
construct of OO programming: routine call (message passing) call x.r1. The O-rule fills this gap.

Notations: a routine r with formal arguments f has implementation bodyr, precondition Prer
and postcondition Postr. The instruction call x.r (a) calls r on a target x with actual arguments a.
INV is the class invariant applied to the current object, x.INV the invariant applicable to x. Finally,
INVr is the part of INV containing only clauses that involve features exported no more than r.

A rule of this kind is a permission to infer the conclusion (below the line) if you have estab-
lished the hypothesis (above). Proving a class correct means proving the hypothesis for every
routine of the class: the body, started with the precondition and partial invariant2, yields the post-
condition and the full invariant. A class is a reusable software component (once proved, a
“trusted” component [24]) and can be used in qualified calls call x.r (a) for x of the corresponding
type. The conclusion part of the rule tells us how to reason about such a call:

• Obligation: we must establish that the context before the call satisfies INVr x.Prer (a).

• Benefit: we may then deduce that the context after the call will satisfy x.INV x.Postr (a).

The invariant plays two complementary roles:

• On the left, INVr, expresses the sanity of the current object, which “clams up” to be ready for
callbacks. The export consistency rule prevents a routine from bypassing access restrictions by
calling another with higher privilege; it ensures that callbacks need no more than INVr.

• On the right, x.INV expresses the sanity of the target. Here we need the full invariant because
we cannot predict which call will hit x next, but it must regardless find the object in a sane state.

1. Modern programming languages omit the keyword call, added in a few places in this article for clarity.
2. For secret (non-exported) r, INVr is empty, so the invariant plays no role on the left.

70

70 50in

out

balance
(ACCOUNT)

B

A

20 20 10

/O/ { INVr Prer (f)} bodyr { INV Postr (f)}
{ INVr x.Prer (a)} call x.r (a) {x.INV x.Postr (a)}

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §24
The big bonus of the O-rule is that on entry to a call we never have to establish the invariant on
the target (x.INVr). The O-rule enables us to assume, even in the presence of callbacks, that all
previous calls have preserved the invariant, therefore justifying this term.

If it can be established that r will cause no callback, the rule simplifies to:

/O’/ { Prer (f)} bodyr {INV Postr (f)}

{ } call x.r (a) {x.INV x.Postr (a)}
making it easier to prove the correctness both of the class (INV can be stronger than INVr, so we
can assume more) and of a call: no more need, on entry, to establish the invariant or any part of it.

The second problem, reference leak, arises when the invariant
for an object A involves properties of an object B — said to inhibit
A — but a third object C changes B, invalidating A’s invariant. Here
the in list (B) inhibits the account (A) since ACCOUNT’s invariant
involves in (in in.total). An object C could hold a reference l to the
list and, through l.extend (80), insert an object of value 80. Unlike
ACCOUNT, C’s class has no obligation to update A’s balance: the call will break A’s invariant,
yielding an incorrect object structure even though each routine preserves its own class’s invariant.

Previous approaches rely on “ownership”, which requires heavy annotations and fails to
address many practical cases. The new solution, the inhibition rule, is a simple addition to infor-
mation hiding. It forces B’s class to export operations affecting the inhibiting property (here in)
to A’s class only (ACCOUNT); then harmful leaks could only come from other instances of that
class. To eliminate such leaks, the rule’s second part simply prohibits A’s class from exporting to
itself any operation with an argument or result of B’s type (the type of in). The inhibition rule even
handles such cases of mutual inhibition as the Observer pattern, which ownership cannot handle.

We will now see the details. Section 2 introduces guidelines. Section 3 presents the concept of
invariant and section 4 a set of examples causing difficulties. Section 5 highlights common mis-
conceptions. Sections 6 to 8 discuss the furtive access problem and the two rules that address it:
O-rule and Export Consistency. Section 9 covers reference leak and its resolution through the inhi-
bition rule. Section 10 describes a more tentative approach: tribes. Section 11 discusses limitations.

2 Methodological guidelines
The following criteria guide this work.

The general goal is to build a software development environment applying the idea of “Verifi-
cation As a Matter Of Course” [28]: programmers should be able to verify their programs as they
develop them, treating verification not as a special step requiring extraordinary effort but as a nor-
mal part of the development process. These programmers should understand basic concepts but
do not need to be experts in verification techniques.

Any verification effort requires that programmers add some annotations to their programs —
you cannot verify programs without specifying what properties you expect them to satisfy — but
the annotation effort should remain commensurate with the benefits. Concretely, we expect pro-
grammers to express the goal of every routine through a precondition and postcondition, and the
characteristics of every class through the class invariant, but any further annotation demand is
questionable3. The approaches proposed so far to address the problems of class invariants —
whether using ownership (for example [3]), separation logic or semantic collaboration [39] —

3. Loop invariants [9] lie on the borderline. In the current state of verification technology, they are still hard to
infer automatically.

INVr

x.Prer (a)

70

70 50in

out

balance

C

(ACCOUNT)

B

l

A

20 20 10

80

§3 CLASS INVARIANTS: HISTORY AND TUTORIAL 5
require programmers to specify many properties that do not pertain to the goal of the program but
guarantee special conditions imposed by the verification technique. To turn verification into a
matter of course, we must shield programmers from these expert-level concerns.

Another characteristic of the present work is that it follows a tradition of understanding “ver-
ification” as including both static and dynamic checks: proofs and tests. Recent literature often
uses “verification” as a synonym for “proof”, but the practice of Design by Contract also uses con-
tract elements (preconditions, postconditions, invariants) as sanity conditions that can optionally
monitored at execution time, as a tool for testing and debugging.

Today’s work on verification attaches considerable importance to modularity (in the words of
Leino and Müller in [16]: “it should be possible to reason about smaller portions of a program at
a time, say a class and its imported classes, without having access to all pieces of code in the pro-
gram that use or extend the class”). The techniques developed here fulfill this criterion.

3 Class invariants: history and tutorial
We now review the concept of class invariant, beginning with its history.

3.1 Origin

The concept comes from a 1972 paper by Hoare [12], which contains the first recorded occurrence
of the term (“invariant of the class”). The paper considers a data type that has both an abstract
specification and a particular implementation using variables c1, c2, cn

4; in the example above
the abstract concept is “bank account” and the variables are in, out and balance. Hoare writes:

For practical proofs we need a slightly stronger rule, which enables the programmer
to give an invariant condition I (c1, c2, cn), defining some relationship between the
constituent concrete variables, and thus placing a constraint on the possible combi-
nations of values which they may take. Each operation (except initialization) may
assume that I is true when it is first entered; and each operation must in return ensure
that it is true on completion.

In today’s more general view of invariants, this description covers the special case of representa-
tion invariants. A few experimental 1970s languages included support for representation invari-
ants; most notable is Alphard [41], which provides for both an abstract invariant (characterizing
the abstract data type) and a representation invariant (characterizing a particular representation).

In object-oriented programming, inheritance subsumes this distinction. Abstraction and repre-
sentation become relative concepts; each class inherits the invariants of its parents, adding its
own. As a result, the refinement process may have any number of levels, rather than just two. This
observation, and more generally the development of the concept of class invariant for object-ori-
ented programming, appeared in 1985 in [20] and subsequent publications about Eiffel. [21] in
1988 and [23] in 1997 (hereafter called OOSC 1 and OOSC 2) explored the concepts further. A
number of other verification-oriented formalisms have included support for class invariants, nota-
bly JML [6, 14] and Spec# [18].

The correctness-by-construction school of program development has also relied on a notion of
invariant. In these approaches (Back [2], Morgan [32], Event-B [8]), system construction pro-
ceeds by refinement steps, starting from a abstracted high-level description of the system, to
which every subsequent step adds more detail. The process reaches its final step when all the

4. Hoare’s classic paper contains a small but interesting oversight: it talks about a “representation function” map-
ping abstract to concrete objects. This relation is not a function, since an abstract object may have many imple-
mentations. We do get a function if we consider its inverse: the abstraction function.

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §36
desired behavior elements are in place and can be directly implemented in a programming lan-
guage. Constraining the description at every step is an invariant, and constraining the refinement
to the next step is the obligation to preserve the previous invariant while adding invariant clauses
governing the new details. These rules resemble the accumulation of invariant clauses in inheri-
tance. Indeed, while refinement approaches do not use the rest of the object-oriented paradigm,
refinement is essentially the same idea as inheritance, and the concept of invariant is the same.

3.2 The class invariant concept
The define the semantics of invariants we may use the following “Fundamental Picture”, taken
from OOSC (1 and 2).

It illustrates the life of an object. In truth, a boring life:

• At the beginning, someone — a routine executed on behalf of another object5 — creates the
object, using a creation procedure of the class, or “constructor”, here make (the syntax in
languages such as Java is x = new T () where T is the desired type).

• Ever after, all that happens to the object is that routines executed on behalf of other objects6

execute qualified calls on it. Each of these calls applies to the object one of the routines
declared in its class; in the figure: r, then s, then r again.

Such calls are said to be “qualified” because they apply a routine to a target object, here called x7

and followed — in the syntax of most OO languages — by a dot. The meaning of this fundamental
construct, x . r (a,), is: “apply the routine r to the object known as x, with the given actual argu-
ments a, if any”.

The Fundamental Picture shows how the object goes from state to state (S1, S2 and son on) as
a result of qualified calls.8

There is also a possibility of unqualified calls, which the object applies to itself. For example
the routine s could be declared as

s (x: INTEGER)
do

u.do_unto_other (x + 1) -- A qualified call on the object attached to u.
 -- Possible other instructions.
do_unto_me -- An unqualified call, on the current object.

end

The Fundamental Picture only shows the states after creation and after qualified calls (each of
which, except for the final one in an execution, is also a state before a qualified call). We may call
them “sane states” of the object. In-between sane states, there may be many intermediate states,
for example just before the call to do_unto_me above. Such an “intermediate state” is represented
by a round dot in this refinement of the Fundamental Picture:

5. For the very first object in an execution, the “root” object, the trigger comes from some external mechanism.
6. Or the object itself, causing “qualified callbacks” as discussed next.
7. x is not an object but a name in the program denoting possible run-time objects. Different classes, and even
different parts of a single class (because of aliasing), may use different names for the same object.
8. The picture applies to concurrent as well as sequential computation. The successive calls can come from dif-
ferent processors (threads of control, see [30]).

 create x. make ()

x .r () x . s ()
S2

x . r ()
S3 S4S1

The Fundamental Picture:
life of an object

§3 CLASS INVARIANTS: HISTORY AND TUTORIAL 7
The class invariant characterizes sane states, those in which the object is available to other
objects. Intermediate states do not need to satisfy it. In practice, most interesting computations do
violate the invariant — if you try to do something useful, you often have to start by disturbing the
established order — then restore it.

The following analogy from OOSC helps reason about class invariants and the Fundamental Picture. Think
of a shared kitchen in an office environment, which has a sign enjoining users to “make sure you leave this
place as you want it to be when you come in”. This is what invariants are about. You may assume the invariant
on entry (clean sink, ready-to-use coffee machine,) and must ensure it on exit. “Ensure” here often means
“restore”: while using the kitchen, it is all right to mess it up, as in the red-dot state of the figure above, as long
as you clean up your mess for the next user.

Taking the Fundamental Picture as a reference implies that we only need to verify that every rou-
tine of the class (such as r and s here) preserves the invariant, in the sense that if the invariant
holds before an execution of the routine it will hold afterwards; also, that it will hold after the exe-
cution of every constructor (obviously, we do not assume that it holds before). Then in verifying
client code that uses a qualified call x . r () we may deduce that the invariant applied to x (the
notation, as the reader will remember, is x . INV); we should be entitled to this conclusion without
having to establish that x . INV holds before the qualified call9. Herein lies the beauty and power
of the notion of class invariant.

This article is devoted to studying how we can make this ideal scheme a reality.

3.3 Assumptions

Many practical cases, most in fact, do follow the Fundamental Picture. But it makes two implicit
assumptions, which do not always hold:

• The picture assumes that qualified calls (the horizontal arrows) are computations on the target
object. They may involve many tortuous steps, but all apply that object. To paraphrase a
famous marketing slogan, what happens to the target stays within the target. In reality, these
computations may themselves perform qualified calls; so they can modify, in addition to fields
of that object, the contents of other objects. So far so good, but these computations on other
object may come back to the original target, complicating the picture. This is a case of the
furtive access problem.

• The picture also assumes that we have a single name, x, for the target object. But OO
programming allows aliasing: different places in the program may know a given object under
different names. They can mess up with each other in a way not captured by the picture: even
if each operation preserves the invariant of its own class, it may break the invariant of an object
that also depends on the shared object. This is a case of the reference leak problem.

Furtive access and reference leak are the two difficulties that we will have to analyze and address.

3.4 A simple example

The following pedagogical example of an invariant-equipped class is about as simple as one can
get. The class describes points on a line, with an integer coordinate constrained to remain between
0 and a maximum value L, 4 in the following figure.

9. [31] calls this property the “data induction theorem”.

x . s ()x .r () x . r () S2 S3 S4S1

An intermediate state
 create x. make ()

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §38
We may write the class as:

class POINT feature

x: INTEGER

move_left do See below end

end

The routine move_left has the following specification and implementation:

move_left

do

x := x – 1

if x < 0 then x := L end -- When falling off on the left, jump over to the right.

ensure

(x = old x – 1) or (x = L)

end

Note that with the specific implementation shown the postcondition could have been stronger:

(old x > 0) => (x = x – 1) -- “=>” is logical implication.

(old x = 0) => (x = L)

but even with the weaker postcondition the invariant enables us to prove that after the following
creation and call, for p of type POINT, p.x will be equal to L:

create p -- Uses default creation: sets p.x to 0.

p.move_left

The postcondition only tells us that p.x is either –1 or L; but thanks to the invariant we can rule
out the first possibility. Although reduced to bare bones, this example illustrates the role of invari-
ants in object-oriented programming as suggested by the Fundamental Picture.

Terminology: the term object invariant will denote the class invariant applied to a particular
object. Here the object invariant of a particular point is the property that its x is between 0 and L.10

Class invariants are central to the OO method. They endow every class with a sanity clause
guaranteeing that the class represents the expected abstraction. The concept reflects the notion of
axiom in the underlying mathematical theory, abstract data types (OOSC explains the connec-
tion). In the teaching of OO programming, even at the elementary level, invariants deserve the
same emphasis as other fundamental OO concepts: classes, information hiding, genericity, inher-
itance and contracts ([26] is an introductory programming textbook applying this idea). As
Groucho Marx suggests, they should be in every contract and class. Regrettably, the reality is
closer to Chico’s view: in the classes most programmers write, there is no sanity clause.

10. Some articles use this term in a confusing way; see footnote 30.

Constrained point
on a line0 1 L2

x

Allowed range

invariant
0 <= x
x <= L

§4 REPRESENTATIVE EXAMPLES OF INVARIANT-RELATED TROUBLE 9
4 Representative examples of invariant-related trouble
The invariant of class POINT showed the basic idea. The following examples illustrate the two
problems, furtive access and reference leak, and will serve as a testbed for the solutions. Some are
drawn from the literature on class invariant problems, some are new, but together they are repre-
sentative of the combined set of examples used in previous discussions of these problems.

4.1 Unregistered observers
The first example introduces observer objects, each observing an instance of the class POINT, but
in a primitive sense of the notion of observer: they are not automatically notified when the
observed object changes. Such an object is like a simple “façade” to the corresponding point. The
next example will have observers in the full sense of the Observer pattern. The example shows
how easy it is to cause a reference leak as soon as aliasing occurs in the presence of inhibition
(defined as the presence of invariant clauses of the form some_object.some_property).

Our observer objects will observe a point that is not at the right boundary L of its range11:

class UNREGISTERED_OBSERVER create set feature
subject: POINT
set (other: POINT) -- Initialize subject to other.

 do subject := other ensure subject = other end
Other features, all preserving the invariant

invariant

end

The invariant states the desired property. Any exported feature of UNREGISTERED_OBSERVER
must leave the x of subject to a value less than L. On initialization, set sets subject to an existing
point, ensuring the invariant thanks to its precondition.

Although this class is simple and its semantics clear, difficulties will arise from the highlighted
invariant clause subject.x < L which involves a query on another object, the subject. We say that
this clause causes the subject to inhibit the observer.

Here now is another client of POINT, which also has a subject attribute but no particular con-
dition on it, and a reference to an instance of UNREGISTERED_OBSERVER:

class MISCHIEF create make feature
subject: POINT -- “create subject”, in make below, will initialize subject.x to 0.

make do create subject ; end
mess_up do end

end

Let us create an instance of MISCHIEF through create m.make. The first instruction of the make
creation procedure creates an instance of POINT; the second instruction creates an instance of
UNREGISTERED_OBSERVER, with a reference to the same POINT object:

11. L is an arbitrary positive constant. It can be replaced by its actual value, e.g. 100, in these examples.

require other.x < L

subject.x < L

obs: UNREGISTERED_OBSERVER
create obs.set (subject)

subject.move_left

Reference leak
subject

(UNREGISTERED_

(POINT object)0

subject
(MISCHIEF object)

x

object)OBSERVER

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §410
A reference leak has happened: the MISCHIEF object has leaked its subject reference to the
UNREGISTERED_OBSERVER object. A call to mess_up will use the leaked reference to change
the x field of the shared object, setting it to L and hence violating the invariant of
UNREGISTERED_OBSERVER.

This case in archetypal example of the reference leak problem. The trouble is that in the
absence of further rules no modular check of either class can detect this problem: MISCHIEF has
no invariant; its argument in the creation call to set satisfies that routine’s precondition (at that
stage, subject.x is still zero); and all the routines of UNREGISTERED_OBSERVER preserve the
invariant of that class. Each class, when studied by itself, appears correct; but together they are
not, since an object may become invalid without any operation being explicitly performed on it.

4.2 Observer pattern

We move now to a true observer, in the sense of the Observer pattern [10]: an object that watches
a point and gets updated automatically every time that point changes. That way, other objects can
find out the location of a point by querying the observer. The class will look like this:

class OBSERVER create make feature
x: INTEGER

feature {POINT} -- See below about the meaning of “{POINT}” and (next) {NONE}”.
subject: POINT
update do x := subject.x ensure x = subject.x end

feature {NONE} -- Initialization
make (p: POINT) do subject := p ; subject.set_observer (Current) end

-- Set p as the observed point. See below about set_observer.
invariant

: x = subject.x -- For ease of reference an assertion clause can
: subject.observer = Current -- have a tag, such as faithful and backlink here.

end

The observer scheme has been widely used as a justification for sophisticated language and veri-
fication constructs [3, 15, 31, 39, 40] and as a challenge in a verification competition [5]12.

Notation: this example uses the “selective export” mechanism, where a feature r introduced in
a clause feature {A, B, C} is only available for qualified calls x.r () in the classes listed and
their descendants. Here, some_point.subject and some_point.update are only permitted in
POINT and descendants. Selective exports apply the principle of information hiding. The mech-
anism exists in many OO languages, in various syntactic flavors such as “friends” in C++ and
“assembly” privileges in C# and Visual Basic.Net. A clause reading just feature is equivalent to
feature {ANY}, where ANY13 is the top class in the inheritance hierarchy: it introduces public fea-
tures. A clause reading feature {NONE} where NONE (Object in Java) is the bottom class, intro-
duces private (secret) features14. We could make subject and update public (like x), but good
design methodology directs that we should not let clients other than POINT access them.

12. Like practical uses of the Observer pattern, those articles assume a list of observers, rather than a single ob-
server; since the list adds nothing to the issue, the example is given here reduced to its simplest form.
13. ANY is called Object in Java.
14. make is a creation procedure since it appears in the create clause, allowing creation-cum-initialization instruc-
tions create obs.make (p1). We could also permit ordinary qualified calls obs.make (p1), to reset the subject of
an existing observer, but here they are disallowed since the feature is declared in a clause feature {NONE}.

faithful
backlink

§4 REPRESENTATIVE EXAMPLES OF INVARIANT-RELATED TROUBLE 11
Back to invariants and the semantics of the class: any routine of POINT modifying x must now
notify its associated observer. In our simplified example, there is only one such routine, move_left.
Its body will now be as follows (first two lines unchanged, the only new element is the last line):

x := x – 1 -- This is the x of POINT, observed by the x of OBSERVER

if x < 0 then x := L end

if observer Void then end -- This is the added line.

Class POINT now needs knowledge of the observer, through a new attribute and routine:

feature {OBSERVER}

observer: detachable 15 OBSERVER

set_observer (o: OBSERVER) do observer := o end -- Link point to observer o.

These features are selectively exported to OBSERVER since the association with the observer is
none of the rest of the world’s business (but we do need to let OBSERVER access observer, if only
for its backlink invariant clause). Mirroring OBSERVER, class POINT now has a backlink invari-
ant clause stating

(observer Void) => (observer.subject = Current)

Reference leak is possible here, just as with unregistered observers (because of “inhibiting”
invariant clauses involving qualified calls such as subject.x and observer.subject). But this exam-
ple also causes a new problem. Several articles using some form of it point out that the
observer.update call highlighted above catches the observer object with its pants down (so to
speak): the invariant clause faithful usually does not hold on entry, since it is precisely the purpose
of the call to update to make sure that after a change x will again faithfully reflect the observed
value subject.x.

This case illustrates the furtive access problem: accessing an object in a state that does not sat-
isfy the corresponding class invariant. Furtive access also arises, as we will see, as a result of qual-
ified callbacks.

To address the problem, the literature offers special language and verification constructs. But
we may note that in this case the invariant violation does not matter. It occurs in an intermediate
state of the object where it is harmless. (When you invite an office colleague to join a party
already in progress, you are not promising that the kitchen is in order.) This article’s solution to
furtive access —the O-rule — will take advantage of this observation.

4.3 Cloning

The following example, like the observer case, illustrates furtive access.

It arose early in the design of the EiffelBase library [22]. Any class may offer its own version
of the copy, cloned and is_equal routines. Default versions exist, pre-programmed, in the top class
ANY: respectively, they copy an object onto another, create a new object as a duplicate of an exist-
ing one, and test two objects for field-by-field equality. The difference between copy and cloned
is that y.copy (x) copies the contents of an existing object x16 onto those of an existing object y,
whereas y := x.cloned produces a new object y identical to x.

15. detachable indicates that observer, unlike subject in OBSERVER, can be void (null). This entire discussion
assumes a void-safe language — one that guarantees statically that no null-pointer dereferencing will ever hap-
pen during the execution of any program. On how to achieve void safety see [27].
16. Small abuse of language for “the object denoted by x” etc.

observer.update

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §412
To adapt copy and equality semantics to a particular class (in a linked list class, for example,
the routines should copy and compare entire lists, not just the list headers as the default versions
do), you must redefine copy and is_equal, maintaining for copy (x) the postcondition is_equal (x).

You should not, however, have to redefine cloned in addition to copy. The semantics should be
the same except for the creation of a new object; cloned should automatically follow copy. In the
original version of the library the implementation of cloned directly applied this idea:

Result := Blank_object (Current_type)

with a system function Blank_object returning a zeroed-out freshly allocated object of the given
type. The first time someone ran a program using cloned with run-time contract monitoring17 on,
the highlighted instruction violated an invariant. Indeed, a zeroed-out object will not satisfy any
non-trivial invariant.That is precisely why we call copy to turn it into a sane object18.

The last observations reveal how similar the cloning case is to our other example of furtive
access, the observer case: a non-updated observer will usually not satisfy the invariant clause; that
is precisely why we call copy to turn it into a sane observer.

As a start towards the solution (7.5), note that in the history of the
library criticism arose — independently of considerations of static
verification — over the export status of copy, which originally was
public by default. Imagine a class with attributes (fields) a, a refer-
ence, and n, an integer, and the property (n = 0) => (a = Current). As illustrated, copying or clon-
ing an object for which n = 0 yields an inconsistent new object since its a field points to the
original, not the copy. There is no contradiction since the class is incorrect: one of its features,
copy, does not preserve the invariant. But that feature is inherited, and it is not a good idea to force
programmers to redefine it if they do not actually want to provide copying. A wiser solution is in
ANY to export copy and cloned selectively to a class COPIABLE, from which a class must inherit
if it is to provide copy and clone capabilities to its clients. With the O-rule, the call Result.copy
(Current) only assumes invariant clauses involving properties of COPIABLE, and does not con-
flict with other invariant properties of a specific class. On exit, copy must yield the full invariant.

4.4 Monogamy
The next example comes from the dependent delegate paper [25]. It is delicate not only to verify
but also to write in the first place, and provides a good benchmark for OO verification techniques.

We want a class PERSON with queries spouse: detachable PERSON and is_married: BOOL-
EAN satisfying the invariant property

The reason spouse is declared detachable is that not everyone is married, so Void has to be a valid
value for spouse; it is in fact its initial value on creation of a PERSON object. To change this value
by making a person married we need a routine marry (other: PERSON)19. Enforcing monogamy,
the routine has preconditions not is_married and not spouse.is_married. (Also, spouse other.)

17. Run-time contract monitoring evaluates invariants and other contract elements during execution, as an ex-
ample of dynamic verification, the widely applied use of contracts so far until static verification technology be-
comes fully practical.
18. The first reaction was to add instructions disabling invariant monitoring before the call to copy and restoring
it afterwards, a kludge (but in some sense a precursor to Boogie’s “unpack/pack”). Then the implementation of
cloned was moved to a built-in function in the run-time system. With this article’s O-rule is possible to restore
the original code.
19. other is not detachable since the chosen spouse object must exist.

Result.copy (Current)

n

a

Original

0 n

a

Copy

0

is_married => ((spouse Void) and (spouse.spouse = Current))

§4 REPRESENTATIVE EXAMPLES OF INVARIANT-RELATED TROUBLE 13
Its job includes marrying the other object back to the current person; but marry cannot just call
other.marry (Current) without causing infinite recursion. [25] presents several intermediate
solutions, which it shows to be incorrect, and arrives at the following implementation for marry:

set_married -- 1 Body of marry; not final version, see 7.5.
other.set_married -- 2 (numbers added for reference)
set_spouse (other) -- 3
other.set_spouse (Current) -- 4

with two utility routines:
set_married do is_married := True end
set_spouse (other: PERSON) do spouse := other end

Each does part of marry’s job: setting is_married, and setting the spouse reference. Here too the
principles of OO design suggest exporting both routines selectively to PERSON itself (as in [25]).

This example is a concentrate of problems that can occur with invariants. Put another way, it
is the OO verification nightmare.

First, furtive access:

• At the start of the first qualified call other.set_married, the invariant (highlighted above) is
trivially satisfied for other, since is_married is false for that object. But at the end it is violated
since is_married is now true for other but its spouse has not been set yet.

• For the second qualified call, the invariant will be satisfied at the end, but violated at the start.

Next, reference leak. Assume as a thought experiment that set_spouse were exported instead of
being just a utility routine for marry20. Then we could write

Dominique.marry (Claude)
Dominique.set_spouse (Leslie)

After the second instruction, Dominique.spouse is Leslie, but
Claude.spouse is still Dominique from the first instruction, so
Claude.spouse.spouse is Leslie, causing Claude to violate its invariant
property spouse.spouse = Current.

We may brush off this form of the example because set_spouse should not be exported, pre-
cisely because it does not preserve the invariant. We cannot replace set_spouse by marry above,
because marry has precondition clauses including not is_married. But consider a new routine:

divorce do spouse := Void ; is_married := False ensure spouse = Void ; not is_married end

This is not how we should normally write such a routine: if we divorce A from B, we should also
divorce B from A. Nevertheless, the version given preserves the invariant — as would any routine
that sets is_married to false — and satisfies its postcondition. The code

Dominique.marry (Claude)
Dominique.divorce

causes the Claude object to violate its invariant. The disturbing part, as
in other cases of reference leak, is that we broke an object invariant21

through an operation (Dominique.divorce) that does not even mention
or involve that object.

It is a good bet that whoever can verify the monogamous marriage example has a shot at solv-
ing the OO program verification problem.

20. Variables all of type PERSON, objects all initialized as needed.
21. Reminder: “object invariant” means the class invariant applied to one particular instance.

spouse

Leslie

spouse

Claude

Dominique

spouse

spouse

Claude

Dominique

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §414
4.5 Linked lists and linkables
Consider the standard implementation of a linked list structure, where an object of type
LINKED_LIST is exported to clients, with operations to insert, remove and access elements; the
implementation uses objects of a type LINKABLE. The LINKED_LIST object contains general
bookkeeping information about the list, such as the number of elements, count, as well as a refer-
ence first22 to the first LINKABLE cell, and possibly references (not shown) to other such cells.

The LINKABLE cells are not meant for independent use: they are subservient to the
LINKED_LIST header object. All other clients should go through that header. By having sole con-
trol over list elements, the header can maintain crucial properties of the list, expressed in the class
invariant of LINKED_LIST, which might contain such clauses as:

• first.right_acyclic, where right_acyclic expresses23 that the sequence of cells obtained by
repeatedly following right links has no cycle.

• count = first.computed_count, where computed_count counts the number of elements
encountered by following right links as far as possible.

In the terminology of this article, these clauses make LINKABLE inhibit LINKED_LIST.

Reference leak in this example would occur if some object other than the list header somehow
got hold of the reference first, and used it as the target of routine calls to modify cells directly,
bypassing the header object’s control. We can use the same model as in the unregistered observer
example, using LINKABLE instead of POINT (the inhibiting class) and replacing both UNREG-
ISTERED_OBSERVER and MISCHIEF (the inhibited classes) by LINKED_LIST.

Of course the classes in the actual library do not engage in any such mischievous games, but
verification needs to ascertain this property rigorously. A simple way to mischief would be for
LINKED_LIST to export the default version of copy and cloned (the non-redefined shallow-copy
version, which simply copies an object field by field); then we could produce two list headers
referring to the same LINKABLE objects:

Initially they are consistent, as shown, but it is easy, for example through a call l2.remove_last,
which removes the last element, to invalidate l1 — its associated list now has two elements, but
its count field still says 3 — without any explicit operation on l1. Reference leak in its full horror.

The proper approach is to make the default copy and clone routines secret, and in
LINKED_LIST export the redefined versions, which duplicate the LINKABLE list cells along with

22. In the actual library this feature is called first_element. For brevity this article uses the name first (reserved
in the library for a public feature returning the value of the first element, i.e. first_element.item).
23. Assuming the appropriate formalism, not explored further here.

Linked list implementation:
Header and cells

item right item right item right

first

count3
(LINKED_LIST

(LINKABLE objects)

object)

Void

Cloning the header causes
reference leak

first

3

(LINKED_LIST

(LINKABLE objects)

 objects) first

3
l1

count
l1 l2

§4 REPRESENTATIVE EXAMPLES OF INVARIANT-RELATED TROUBLE 15
the list header. But methodological advice is not a substitute for verification. The sad reality in
this example is that the default copy routine will preserve the invariant of LINKED_LIST, even
though it introduces a time bomb into the data structure in the form of a reference leak.

4.6 Merging lists

The last example continues with linked lists, focusing on the tricky operation that merges a list
with another: the routine merge_right (there is also merge_left) in class LINKED_LIST. It takes
another list as argument; as illustrated, the call list1.merge_right (list2) concatenates the second
list to the first, and zeroes out that second list (making its first reference void).

What makes things delicate is that programming the operation efficiently requires a reference leak:

• In implementing merge_right (other)24, we could stay on the safe side of information hiding
by taking the successive values v in the other list — not the actual LINKABLE cells, but the
list values, obtained through the public interface of class LINKED_LIST — and adding each
of them to the end of the first list through the call extend (v), then at the end use other.wipe_out,
calling another public routine wipe_out to empty the list.

• This implementation, however, is O (count2), where count2 is the number of elements in the
second list, assuming we initially have access to the last cell of the first one. We can get O (1)
by using the implementation illustrated in the last figure: directly link the last LINKABLE cell
of the first list to the first cell of the second one, then set the second list’s first to void.

We may call the two implementations “dumb” and “smart”25. The smart implementation has to
use other.first directly; in other words, it must take advantage of a reference leak from the second
list to the first. Perhaps this is the reason why merge_right turned out to be one of the most bug-
prone routines in the entire library; for example an early version omitted the precondition clause
other Current, without which things can turn messy.Verification, both static (AutoProof) and
dynamic (AutoTest) uncovered the bug [38]26. (A different version of LINKED_LIST is part of
the EiffelBase 2 library, which was mechanically verified as part of Polikarpova’s PhD work[40].)

Such routines should of course be programmed with particular attention, and presumably no
error remains in the current version. But the problem is more general. The routine merge_right
indulges in precisely the kind of internal pointer shenanigans, with the attendant reference leaks,
that in other cases yields mayhem. This is the scary part: why is shallow-copy bad and
merge_right OK? How do we distinguish — in a form that can be codified into simple formal
rules, and taught to a verification system — the good cases from the bad?

Like monogamous marriage, list merging is a challenge and test of effectiveness for any OO
verification method hoping to address class-invariant-related issues.

24. other is list2 in the example call.
25. “Smart” and “dumb” in terms of run-time performance. Verification gives us another perspective: the first
implementation is obviously correct, the second one far trickier to verify, hence not so smart if correctness is the
main concern. But in practice no project will renounce efficiency for the sake of verification. We need both.
26. The bug also served as a testbed for the AutoFix system for automatic suggestions of bug correction.

merge_right
3list1 2 list205

first first

right

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §516
5 Misconceptions
The preceding analysis has identified the two serious problems raised by class invariants. It is also
important to understand that some aspects gravely studied in the literature are not problematic.

A common misconception is to believe that invariants govern all routines and all calls. In reality
it only governs exported routines and qualified calls. But the Wikipedia entry on the topic [43] cur-
rently27 proclaims that “temporary breaking of class invariants between private method calls is
possible, although not encouraged ”28, without giving any reason why it should be discouraged29.

No such reason exists; and breaking the invariant in unqualified calls is not only allowable but
essential. The first item in the charter of the programmers’ inalienable rights must surely be the
right to abstraction: take any part of the code, give it a name, plus (optionally) arguments to make
it parameterizable. Then you may replace the code, where it appeared, by a call to the resulting
routine. To such a routine, the class invariant is irrelevant. We might for example rewrite the
implementation of move_left (page 8) as:

-- This line is the only change; it previously read: x := x – 1
if x < 0 then x := 0 end

introducing a routine go_back which simply performs x := x – 1. This routine does not preserve
the invariant. It will naturally be secret (private), since we must not allow qualified calls
p.go_back. But unqualified calls go_back are fine, as here in move_left.

This misconception is bad enough in Wikipedia but we find it in scholarly articles as well. For
example [4] has, in a class T, an exported routine M with an unqualified call to a routine P. It notes:
“at the time P is called, the object invariant30 for the T object is not certain to hold ” and goes on
to develop solutions to this imagined problem. But the invariant is irrelevant here: we simply have
an issue of indirect recursion, which arises identically in a non-OO setting, and is susceptible to
classical treatment in axiomatic semantics. Reference [15] has a similar example and discussion.

Surprisingly, all these articles cite OOSC 2, which explained the property emphatically31:

Qualified calls, of the form a. f (), executed on behalf of a client, are the only ones
that must always start from a state satisfying the invariant and leave a state satisfying
the invariant; there is no such rule for unqualified calls of the form f (), which are
not directly executed by clients but only serve as auxiliary tools for carrying out the
needs of qualified calls. As a consequence, the obligation to maintain the invariant
applies only to the body of features that are exported either generally or selectively;
a secret feature — one that is available to no client — is not affected by the invariant.

Dynamic invariant verification in EiffelStudio naturally follows this policy: a qualified call trig-
gers an invariant check, an unqualified call does not. This means in particular that a qualified call
Current. r (a), using the current object (Current, this, self) as its target, is not exactly the same
as the unqualified call r (a): one triggers the invariant, the other does not32.

There is indeed a serious callback problem with invariants, causing furtive access and studied
below (6.4); but it only arises for qualified calls.

27. As of September 2016.
28. It is better to correct a Wikipedia entry than to criticize it, but I leave this task to others.
29. This practice of guarding against a certain practice (“X considered harmful”), without explaining why or giv-
ing actionable criteria for when it is acceptable and when not, is unfortunately common in today’s discussions
of software methodology. Right or wrong, Dijkstra knew better.
30. Without any good reason, some authors use “object invariant” for what has for almost half a century been
known as a class invariant. One of the reasons for rejecting this practice is that it makes it impossible to use “ob-
ject invariant” to denote the class invariant as applied to a particular object (an instance of the class).

go_back

§6 TOWARDS A PROOF RULE FOR OBJECT-ORIENTED PROGRAMMING 17
6 Towards a proof rule for object-oriented programming
The examples of section 4 give us a good measure of the difficulty of using invariants in the prac-
tice of verification. The first step is to develop a solution to furtive access (reference leak follows
in section 9). While recent work has tended to propose “methodologies” for dealing with invari-
ants, we seek a more solid result: a proof rule covering the semantics of object-oriented program-
ming through its central mechanism, qualified calls.

To arrive at that result — the O-rule, already revealed in the introduction — we will go through
several intuitively appealing initial attempts and show why they are unsound or insufficient. The
final version appears in the next section (7).

6.1 First attempts
Let us start with the non-object-oriented world, where calls are all unqualified. The classical rule
for such calls comes from another Hoare article [11]. We call it the N-rule, for Non-object; like
all others in this discussion, it appears in a form that does not handle recursion (adding recursion,
through techniques found in the literature, would make the rules a bit heavier, and is independent
of the issues under examination). The notations are as in section 1.

/N/ {Prer (f)} bodyr {Postr (f)}

{Prer (a)} call r (a) {Postr (a)}

This rule states that the effect of a call is the effect of executing the body after substitution of
actual for formal arguments. It captures the fundamental role of routines (subprograms, methods):
abstracting some computation by giving it a name and parameterizing it.

Soundness: yes (needs to be adapted for recursion).

Usefulness: not just for non-OO programming, but also for unqualified calls in an OO context.

We need to adapt the idea to object-oriented programming, where routine calls can be quali-
fied, as in call x.r (a). A first simple version is:

/O1/ {Prer (f)} bodyr {Postr (f)}

{x.Prer (a)} call x.r (a) {x.Postr (a)}

(The final O-rule is actually /O6/, so we have some way to go.)

Soundness: yes, with same qualifications as N-rule.

Usefulness: this rule is simply the N-rule: although the syntax is object-oriented, the rule sim-
ply treats r as if it had one more argument, x, enjoying a special syntax but no special semantics.
It does in the formal world what compilers for OO languages, including compilers that generate
C code, do: add an argument, representing the target, to every routine. But it does nothing to
reflect the specific nature of OO programming, in particular the distinguished role of the target of
qualified calls (corresponding to the notion of “current object” at any time during execution).

The class invariant is part of that specificity. To express that every routine available for quali-
fied calls preserves the invariant, we may add the invariant to both the precondition and the post-
condition, in both the hypothesis and the conclusion:

/O2/ { Prer (f)} bodyr { Postr (f)}

{ x.Prer (a)} call x.r (a) { x.Postr (a)}

31. Citation from [23], 11.8, p. 370.
32. While there is little reason to write Current. r (a) rather than the simpler form, the more relevant case is
x. r (a) where at execution time x could sometimes denote the same object as Current and sometimes not.

INV INV

x.INV x.INV

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §618
For all rules on exported routines involving the invariant, there has to be a companion rule involv-
ing creation procedures, corresponding to the initial vertical transition in the Fundamental Picture
(page 6). Creation does not assume the invariant on entry, but has to ensure it on exit. Using the
name make for a typical creation procedure, the rule here is:

/C2/ { Premake (f)} bodymake { Postmake (f)}

{x.Premake (a)} create x.make (a) { x.Postmake (a)}

where DEF expresses that all fields have the standard initialization values (such as 0 for integers).

Soundness (of /O2/ with its companion /C2/): yes, with same qualifications as N-rule.

Usefulness: /O2/ fails to capture part of the role of the invariant. It recognizes that the precon-
ditions and postconditions of all exported routines (routines available for qualified calls) share a
property, INV, but does not take advantage of the resulting preservation property, since every call
must still ensure x.INV on entry. So in fact it is still the N-rule: similar to /O1/, with the common
pre- and postcondition elements factored out.

OOSC 1 and 2 use the following version, which does take advantage of the invariant:

/O3/ {INV Prer (f)} bodyr {INV Postr (f)}

 { } call x.r (a) { }

The associated creation rule C3 is the same as /C2/ without the addition of x.INV to the postcon-
dition in the conclusion.

Soundness: yes, with same qualifications as N-rule.

Usefulness: this version recognizes the specificity of the class invariant as a preservation prop-
erty. But it uses that property purely inside the class, to define class correctness (a class is correct
if every exported routine, starting in a state satisfying the invariant and the precondition, yields a
state satisfying the postcondition and the invariant). This means for example that client of the
ACCOUNT class using a bank account object a cannot rely on the property that a.balance =
a.in_total – a.out_total33. So we are still missing an important part of the concept.

6.2 The verification process
/O3/ is only an imperfect step towards the final rule, but we can use it to understand how such
rules determine the process of verifying OO software. The focus is on static verification (proofs),
but the discussion also has consequences (explored further in 7.7) on using invariants as dynamic
checks for testing and debugging.

All versions of the rule have the same general form, differing only in the invariant-related
properties that are added to the precondition and postcondition in the hypothesis (above the line),
the conclusion (below the line) or both.

The proof process has two parts:

• Verifying a class — once and for all. This step applies to every routine r of the class the
hypothesis part of the rule.

• Once a class has been verified, verifying its clients. This step applies to every call x.r (a) the
conclusion part of the rule.

If the client relation is cyclic (two or more classes have qualified calls to each other), the steps are
not as neatly distinct and the process becomes iterative. It is still useful to study them separately.

33. Since the lists in and out in the class ACCOUNT should most likely be secret (private to the class), we assume
exported features in_total and out_total which return in.total and out.total.

DEF INV

 x.INV

x.Prer (a) x.Postr (a)

§6 TOWARDS A PROOF RULE FOR OBJECT-ORIENTED PROGRAMMING 19
6.2.1 Proving the correctness of a class

Proving the correctness of a class means establishing, for every routine r:

• If r appears in unqualified calls, its N-rule correctness: {Prer (f)} bodyr {Postr (f)}.

• If r is exported, to either all or some clients (details in section 7.2), hence available for qualified
calls, its O-rule correctness, which in all versions of the rule has the form {INV’ Prer (f)}
bodyr {INV’ Postr (f)} where INV’ is INV, as in /O3/, or some part of INV in later versions.

• If r is a creation procedure, its C-rule correctness (again similar for all versions):
{DEF Prer (f)} bodyr {INV’ Postr (f)}.

The conditions are not exclusive: a routine can be both usable internally in unqualified form and
exported to clients; and it may be available both for calls and for creation34. In such a case, the
routine’s proof of correctness must include all the applicable rules.

The class proof process is modular: to establish the above properties, assuming the ancestors
of a class have been verified, it suffices to examine its text. The second property states that the
class text declares r as exported, not that some qualified call (which could be anywhere in the
entire system) actually uses r; and the third, that it declares r as available for creation, not that
some creation instruction (again anywhere) uses it.

Once a class — that is to say, each of its routines — has been proved correct in this way, we
can prove properties of calls to these routines, typically to prove the correctness of the calling rou-
tines and classes.

6.2.2 Reasoning about unqualified calls

For an unqualified call r (a), the N-rule applies: we must establish that Prer (a) holds before the
call (obligation) and may deduce that Postr (a) holds after the call (benefit).

6.2.3 Reasoning about creation instructions

For a creation instruction create x.make (a) (which creates a new object with default fields, then
updates them by applying the creation procedure make35), the C-rule applies: we must establish
Premake (a) before the call and may deduce INV’ Postmake (a) afterwards.

6.2.4 Reasoning about qualified calls

To reason about a qualified call x.r (a), we use the conclusion part of the rule (below the line):

• We have to establish on entry the precondition part of the conclusion, which always includes
x.Prer (a) (to verify a call unless we must know that the routine’s precondition initially holds
for the target object). In /O3/ this is all, but /O2/ also forces us to establish x.INV which, as
noted, loses the benefit of the very idea of invariant: if it is an invariant, it should have been
maintained by previous calls; it should not be our job as client to establish it again.

• We may deduce on exit the postcondition part of the conclusion, which always includes
x.Postr (a) but should also (as in and subsequent versions beginning with /O4/) x.INV, so that
we know the call leaves the object in a sane state.

34. C++ and, following it, Java and C# use a special convention for creation procedures: they are not features of
the class but use the overloaded class name. In these languages the third case is disjoint from the first two.
35. The simplified version create x is a shorthand for create x.default_create using the class’s version of the
default creation procedure.

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §620
6.2.5 Benefits and obligations

In comparing the various forms of the rule, we should remember the usual give-and-take of Design
by Contract [21, 23]. If we add elements to the left part P of a Hoare-style property {P} A {Q}:

• In the hypothesis part of a rule, it makes the process of proving class correctness easier since
we can assume more.

• In the conclusion part, it makes the process of reasoning about a call harder since we have to
establish more.

If we add elements to the right part Q:

• Proving class correctness is harder.

• Reasoning about a call is more rewarding since we can deduce more.

Comparing the conclusion parts of /O2/ and /O3/ in this light (their hypothesis parts are the same)
shows that /O2/ is both better and worse: better because it gives us the target invariant x.INV on
exit, but worse because we have to establish that same property on entry. The rule of the game, as
we resume our effort to get the right version of the rule, is to keep the benefit and get rid of the
undue obligation.

6.3 The ideal rule

To treat the invariant as a conservation property, so that we may assume it on exit but do not have
to establish it on entry, the desirable rule would be:

/O4/ {INVPrer (f)} bodyr {INVPostr (f)}

{ } call x.r (a) { x.Postr (a)}

The associated creation rule C4 is the same as C3.

/O4/ directly reflects the Fundamental Picture; we will call it the “ideal rule”. In a simple world
it would be final.

Soundness: only in the absence of qualified callbacks (see next), reference leaks and recursion.

Usefulness: when applicable, the ideal rule captures the essence of object-oriented program-
ming and makes reasoning about OO programs simple and effective.

The ideal rule will make a comeback in 7.6 as the “O’-rule”, applicable when there is demon-
strably no possibility of a callback.

6.4 Qualified callbacks

The problem with the ideal rule /O4/ is the risk — discussed as the “Dependent Delegate
Dilemma” in [25] — of furtive access arising from qualified callbacks, which endanger the beau-
tiful simplicity of the Fundamental Picture:

x.Prer (a) x.INV

 create x. make ()

x . rSn
y . u

Sn+1S1

Qualified callback

z .v
 (u)(v)

Object S
(source)

Object T
(target) u u

 r v

 (t)
Return from t

 t
Execution or
continuation of t

 r

§6 TOWARDS A PROOF RULE FOR OBJECT-ORIENTED PROGRAMMING 21
Argument lists have been omitted. Routine r gets called on target x and start executing on the
attached “Object S”. It makes a qualified call of target y, attached to “Object T”. The routine in
that call is u. It execution in turn makes a qualified call whose target z happens — tough luck! —
to be attached to S. That call uses the routine v; its execution terminates, execution of u on T
resumes and terminates; control returns to the rest of the execution of r on S. The problem is that
the callback z .v catches S in a temporary state, marked by a red dot in the figure, where the invari-
ant has no reason to hold. Unlike the unqualified callbacks of section 5, this is a qualified call, for
which we would normally expect the invariant to apply.

The scenario shown is not just a theoretical possibility but arises with normal program
schemes, as shown next. But before we start adding another Rube Goldberg contraption to the
programming language, two observations are in order:

• The invariant violation does not matter for the original routine r. From r’s perspective, the call
y .u and its consequences such as z .v are just steps in the algorithm, and need not concern
themselves with the invariant of S’s class any more than unqualified calls do.

• The reasoning behind rule /O4/, however, was that we can drop the x .INV part on the left of
the conclusion line (as it appeared in /O2/, added to x.Prer (a)) because qualified calls occur
in sequence, each one finding a sane state36 and leaving a sane state. But here such a call
happens in the middle of another, destroying this reasoning.

The first of the preceding observations led to a solution described in the Dependent Delegates
paper [25]: treat qualified callbacks like unqualified calls. An exported routine must satisfy some
version of the O-rule ([25] uses /O3/); if it can be used in a qualified callback, that solution
requires it in addition to satisfy the /N/-rule (the non-OO version that does not involve the invari-
ant, and is applicable to unqualified calls).

This solution does not use the right version of the O-rule, and making it modular requires extra
work. Still, it has the merit of simplicity and is a step in the right direction.

6.5 The strongest rule

To be safe we may simply require that whenever computation branches out of an object, as r does
in the last figure, the object clams up — makes sure its invariant holds — to be ready for any even-
tuality. At home you can dress, or not, as you like, but before getting out you make sure you have
something on. In the kitchen metaphor from section 3.2, you are having a small office party and
have messed up the kitchen, and need to get out to ask your boss a question; but first you clean
the place, just in case during the discussion he decides that he needs a cup of coffee.

The “Boogie methodology” [3, 4, 15, 18, 33, 39] has a ghost instruction37 wrap functioning as
an assertion — to be verified by a prover — that, at the given program point, the invariant holds.
The clamming-up idea is similar. The difference is that it is not an instruction that programmers
must write, but instead, it will be part of the proof rule. Also, we do not need a counterpart to Boo-
gie’s unwrap instruction, which states that the invariant might not be satisfied. In general, the
Boogie methodology understands a class invariant INV not in the classical sense dating back to
Hoare and OOSC — a property that holds on entry and exit of qualified calls — but as a shortcut
for something like is_wrapped => INV. This view is disturbing. “The kitchen must be clean
between uses” is a simple and clear rule. If every such rule automatically includes the implicit
qualification “unless otherwise noted ”, the benefit of having any rules at all becomes doubtful.

36. Reminder: a sane state is one satisfying the invariant.
37. “Ghost” in the sense that it only serves for verification and has no influence on correct executions. Some
publications use the names pack and unpack instead of wrap and unwrap.

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §722
The next version of the O-rule restores the classical view:

/O5/ {INVPrer (f)} bodyr {INVPostr (f)}

{ } call x.r (a) { x.Postr (a)}
(Not the final rule yet, but we are getting close.) The invariant part added to the postcondition is
x.INV, as before; but on the precondition side it is just INV. (Some readers may find it more clearly
expressed as Current.INV, or, Java-style, this.INV.) We do not want x.INV here: that would just
be /O2/ (which, as we saw, loses the value of the invariant since the client has to establish it before
every qualified call, whereas we should be able to trust that the previous operations on our target
object have preserved it). Adding INV on the client side expresses the clamming-up obligation:
before getting out of the house, we put something on.

As far as I know, no one has proposed any such rule; while it requires one more improvement
to be applicable in practice, it captures the interplay, fundamental to an understanding of object-
oriented programming, between the client and the supplier, reflected in their invariants.

In the usual get-and-take of Design by Contract, the concept of invariant brings the client both
an extra obligation and an extra benefit: before a qualified call, you must ascertain, in addition to
the precondition, your own invariant; after the call, you are entitled to know, in addition to the
postcondition, that the supplier object satisfies its invariant.

As with all rules, these observations apply to both static and dynamic verification:

• With a static prover such as AutoProof/Boogie, “you” means the prover, “ascertain” means
obligation to prove (assert ghost instruction in ESC-Java, JML, Boogie etc.), and “entitled to
know” means that the prover may add the property to its list of established assertions (assume).

• With run-time contract monitoring as in EiffelStudio, “you” means the contract monitoring
mechanism, “ascertain” means evaluate (raising an exception if the clause evaluates to false,
doing nothing more otherwise), and “entitled to know” means not having to evaluate anything.

We will now refine the rule to avoid clamming up objects more than strictly necessary.

7 The O-rule
Designing programming support for verification is a trade-off between three criteria: soundness;
flexibility (how few forms of expression we have to renounce); and ease of use (how few verifi-
cation-oriented annotations we have to add). The Boogie methodology does well on the first two,
but explicit wrapping and unwrapping — and we have not even seen ownership yet — removes
the prospect of “Verification As a Matter Of Course”, usable by ordinary programmers.

Rule /O5/ fails the flexibility test. Requiring that an object always satisfy the full class invari-
ant before branching out is too much. Many practical examples do not meet this requirement.To
turn /O5/ into a more realistic rule we will take advantage of the notion of restricted export.

7.1 About furtive access

All the section 4 examples causing furtive access involve restricted exports:

• In the observer pattern (4.2), OBSERVER and POINT export their mutually relevant features,
subject and observer, to each other only.

• In the attempt to define cloning from copying (4.3), we noted the proposed policy of exporting
copy selectively to a class COPIABLE.

• In monogamous marriage (4.5), PERSON exports the utility routines set_spouse and
set_married to itself only.

INV x.Prer (a) x.INV

§7 THE O-RULE 23
The decision to use restricted exports in each of theses cases, although not indispensable (the fea-
tures could have been public, arises from good design methodology. But the examples illustrate
that in cases of qualified callbacks, and furtive access in general, it is natural to give the corre-
sponding features a limited export status. That cannot be a coincidence!

This observation will yield the final form of the O-rule.

7.2 About selective exports
As a reminder, the selective export mechanism extends the Information Hiding principle [37] by
expressing that not all clients are created equal. Most OO languages, as noted, provide some form
of it (C++ friends, .NET assembly). The effect is to restrict the availability of certain operations
of a class to specified classes (hence “friend”). When one of the feature clauses of class C reads

feature {A, B, C}
r1 Routine declaration -- The example ignores arguments
r2 Routine declaration

it specifies (as part of the static type rules) that a qualified call x.r1 or x.r2 is only permitted (for
x of type based on C38) if it appears in A, B, C or one of their descendants. A clause feature with-
out further qualification introduces fully exported features and is equivalent to feature {ANY};
secret features are introduced in a feature {NONE} clause39.

Export restrictions also govern to the use of a class as its own client: for x of type C, x.r1 is
only permitted if we did list C as above, even though the feature clause appears in the text of C
itself. Unqualified calls such as a plain call r1 () are, of course, always valid within C, but qual-
ified calls have to abide by the normal client export rules40.

What is the relation of this concept to furtive access? We noticed earlier that qualified callbacks
are similar in spirit to unqualified calls. A more precise version of this observation is that they
usually come from friends. (In the middle of the office party gone a bit wild, you may not want
the boss to enter the kitchen, but there is nothing wrong in letting your buddies in.)

With the final O-rule and its companion, the Export Consistency rule, this advice (“they usu-
ally come ”) will becomes an obligation: we will only accept callbacks from friends. “Friend”
being an informal term, we need a finer analysis.

7.3 Slicing an invariant according to privilege
Consider a routine with a certain export status: for example r1 above is exported to A, B and C
(and their descendants). Also consider an invariant clause involving features of the same class:

is_ready => (balance > 0 and other.credit > 0)

(An invariant, like other assertions, is made of any number of such clauses, implicitly “and”-ed.)
The clause involves three features of the enclosing class: is_ready, balance and other. These fea-
tures also have an export status. INVr, for any such feature r (for example INVother), will denote
the part of the invariant including only those clauses with no more export rights than r.

Definition: for a feature r in a class C, INVr is the invariant of C deprived of any clause that
contains an unqualified call to a feature of C exported to classes to which r is not exported.

38. Every type is “based on a class”. Often the class and the type are the same thing but the “based on” concept
accounts for generic types such as LIST [INTEGER] as LIST [PERSON]: in both cases the “base class” is LIST
independently of the generic parameter. The base class determines the applicable operations (features).
39. In the lattice-like multiple inheritance graph of classes, ANY is the top, ancestor to all classes, and NONE is
the bottom, descendant to all classes.
40. Some OO languages muddle this matter, from a lack of attention to the difference between qualified and un-
qualified calls.

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §724
In deciding which clauses to retain, we only consider features of unqualified calls. In the exam-
ple the export status of credit, in its own class, does not matter, since credit is the feature of a qual-
ified call. But the target of that call, other, does matter (its use is an unqualified call).

The clause above will be part of INVr (where r is a feature of the enclosing class) if and only
if other, is_ready and balance are only exported to the same classes as r or a subset of them.

For callbacks emanating directly or indirectly from a routine r, considering INVr rather than
the whole INV reflects the need for fine granularity. To let your boss in, you want a clean kitchen.
To let the safety inspector in, you want no chairs blocking exits and no cables lying on the floor.
To let your coffee-loving colleague in, you want the coffee machine ready. In each of these cases,
the other two conditions may not be relevant; the applicable condition is tailored to the selected
client. For the world at large (arbitrary clients), all invariant properties must hold.

Hence the final version of the O-rule, differing from /O5/ in the replacement of INV by INVr
in the precondition part:

/O6/ { } bodyr {INV Postr (f)}

{ } call x.r (a) {x.INV x.Postr (a)}

For a fully exported feature r, INVr is the same as INV, so /O6/ reduces to /O5/.

The soundness of the O-rule requires a simple consistency condition preventing x.r from mak-
ing a qualified call y.u that would affect properties beyond those accessible to r. Section 8 will
present this condition, the Export Consistency rule.

7.4 Invariants on entry and exit
Both the hypothesis and conclusion of the O-rule (/O6/) add a different version of the invariant to
the precondition and to the postcondition: INVr on the left, INV (x.INV in the conclusion) on the
right. This asymmetry is surprising at first but inevitable. On entry, we have to take into account
the possibility that the call may be furtive, catching the object in an intermediate state:

• In the observer case (4.2), at the time of the call observer.update, an observer that has not yet
made itself consistent with its subject.

• In the cloning case (4.3), at the time of the call Result.copy (Current), a freshly created object
that has not yet filled its field with sane values.

• In the marriage case (4.4), at the time of the call other.set_spouse (Current), a person object
that has done only half of what it takes to get married.

The use of INVr on the precondition side addresses the issue on entry. On exit, however, we cannot
resort to the same technique. The problem is that once a qualified call terminates, we have no way
to know which qualified call, if any, will hit the same target next. It might be another consequence
of the current higher-level call to r, in which case INVr would be fine, but it might be a completely
independent call targeting the same object at any later time — including, in a concurrent object,
from a different processor. In such cases we have no guarantee that INVr will suffice; we have no
better bet than the full INV.

In other words, we may know that a given call comes from a friend, but since we do not know
that the next call will we always have to leave the object in a state suitable for any client.

The unpleasant consequence is that when proving the hypothesis INVr Prer (f) bodyr {INV
 Postr (f)} to prove correctness of the class (6.2.1) we must establish the full invariant INV on
exit but can only assume the partial invariant INVr on entry. How do we know that the implemen-
tation of r will ensure properties beyond r’s own export privilege?

INVr Prer (f)

INVr x.Prer (a)

§7 THE O-RULE 25
In many practical cases, this requirement raises no difficulty. The observer case is typical. The
invariant (4.2) is

faithful: x = subject.x
backlink: subject.observer = Current

and the body of update has the postcondition x = subject.x. Since update and subject have the
same export privilege, being exported selectively to POINT, while x (in OBSERVER) is public,
the invariant slice INVupdate includes the clause backlink but not faithful. As a consequence:

• Since update does not affect subject, it conserves the backlink property41.

• Its postcondition is exactly the same property as faithful.

• As a consequence, update yields the full INV starting from INVupdate.

Such cases are common, but in others we will need to establish that a qualified call to a routine r
leaves the target object in a state satisfying not only INVr (as part of the routine’s normal business)
but also INVr, using this notation to denote the remaining clauses of the invariant. To this effect,
we may simply add INVr to the precondition Prer of r, and check that the implementation of r does
not affect properties with a higher export privilege than r, hence does not invalidate INVr. In prac-
tice this policy means transferring part of the responsibility to clients: on entry to a call x.r (a) we
must establish, as part of x.Prer (a) (and in addition to INVron the source object) that x.INVr
holds. We are partly back to the naïve rule /O2/ which forced us to establish the invariant on the
target object before a qualified call — but only for a part of that invariant, not the full x.INV.

7.5 Addressing furtive access examples

The O-rule immediately legitimates two of the preceding furtive access examples:

• In the observer case, as just seen, the call observer.update is now correct: it does not require
the invariant clause x = subject.x on entry, but guarantees it on exit, while preserving the other
clause and hence ensuring the full x = subject.INV.

• In the cloning case, if copy is selectively exported, the call Result.copy (Current) does not
need the rest of Result’s object invariant, but ensures it on exit (as copy must do).

The marriage case is more subtle. In 4.4 the invariant was

is_married => ((spouse Void) and (spouse.spouse = Current))

and the implementation of marry, taken from [25]:

set_married -- 1
other.set_married -- 2
set_spouse (other) -- 3
other.set_spouse (Current) -- 4

with the auxiliary routines set_married do is_married := True end and set_spouse (other: PER-
SON) do spouse := other end. These routines are exported only to PERSON itself, so we again
have no problem on entry (remember that the export status of a routine r of a class C governs all
qualified calls to r, so that even in C itself x.r for x of type C is only valid if r is exported to C).
But the call other.set_married does not yield other.INV since on exit other.is_married is true but
other.spouse still void. In other words, this code from [25] is incorrect in the formal framework
of the present article as expressed by the O-rule.

41. The absence of any change to subject is a “frame property”. It should either appear explicitly in the postcon-
dition of update or be inferred automatically [13].

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §726
To rectify the situation it suffices to reverse lines 2 and 4. In fact as long as 4 appears before 2
the relative timing of the other instructions does not matter.

How bad was the original error? If the code is exactly as given, set_spouse and set_married do
no more than their job of setting a field, and the computation is sequential, it does not matter. But
if these conditions do not hold, mischief can occur:

• In a concurrent setting, a different thread could access other after instruction 2, expecting the
invariant to hold and hence its spouse field to be non-void, causing a null-pointer dereferencing
if it tries to access it42.

• Even without concurrency, it is easy for such code to go wrong. Let us tweak the example by
adding public features is_minor and drink. Both drink and marry have the precondition not
is_minor, and marry also has not other.is_minor. The class has a new invariant clause:
is_married => not is_minor. We insert in marry, after instruction 2, instructions drink and
other.drink — starting to celebrate even before the marriage is finalized. Now assume a bizarre
implementation in which set_married sets the age to a value satisfying is_minor, and
set_spouse restores its original value. Bizarre, but in principle correct since the routine overall
preserves the invariant. Since instruction 1 now invalidates the invariant, we know that we
should replace the call drink by if not is_minor then drink end. The instruction other.drink is
different: it is a qualified call to a public routine, and hence should be able on entry to assume
that other satisfies it object invariant, which implies the routine’s precondition; but at this point
(after instruction 2 and before instruction 4) the invariant is broken. With its precondition not
satisfied, other.drink can malfunction; we are allowing a minor to drink.

These examples — which the O-rule rejects — illustrate the preceding explanation (7.4) of why
a qualified call x.r should always yield a state satisfying the full target invariant x.INV.

7.6 The no-callback O’-rule

In the conclusion of the O-rule, the reason to add INVr to the precondition in the conclusion part
is to protect against qualified callbacks; but in practice they rarely occur. If we have the guarantee
that r will not produce any, the O-rule simplifies to a variant of the earlier “ideal rule” /O4/:

/O’/ { Prer (f)} bodyr {INV Postr (f)}

{ } call x.r (a) {x.INV x.Postr (a)}

This version (O’-rule) facilitates the proof of correctness of qualified calls, since in the conclusion
we have less to establish before allowing a call: just the precondition, no invariant or any slice of
it. Without the risk of qualified callbacks there is no more need to clam up. (If you go see your
boss during the wild office party and are sure the meeting will all take place in his office, no need
to clean the kitchen first.)

How realistic is it to expect a no-callback guarantee in a qualified call? The answer has two parts:

• In a general setting, establishing the absence of callbacks requires full alias analysis: we have
to find out whether any variable anywhere in the code could hold a reference to the source
object). The “alias calculus” [29, 13] is an effort to provide an automated mechanism for alias
analysis. The implementation, however, is not yet fully operational. In addition, alias analysis
is not naturally modular.

42. This scenario is not possible in Eiffel: first, the concurrency rules [30] ensure that marry will have exclusive
access to other during its execution; then, the void safety mechanism will reject any code that could cause a null-
pointer dereferencing [27]. But other concurrency mechanisms and frameworks may not have those guards.

INVr

x.Prer (a)

§7 THE O-RULE 27
• In specific cases, it may be possible to obtain the guarantee more simply. An example is a
routine that has no qualified calls whatsoever, although this is an implementation (rather than
specification) property. Another is the case of a call to a routine r of a pre-existing library,
which cannot possibly call into newer application code. It is not always easy in practice to
guarantee such a property, since in some cases — particularly event loops and various forms
of UI programming — the routine of the callback is known not statically but through a variable
(closure/agent/delegate/function pointer, see [36]).

So while we might long for the more straightforward O’-rule, the O-rule is our default tool.

Two more consequences of the fundamental proof rule are worth noting.

7.7 Dynamic checking policy

Class invariants and other assertions can serve not only for proofs (static verification) but also as
dynamic checks that can be enabled at run-time for testing and debugging purposes. Proofs are
almost always better than run-time checks, but they are not always possible and are not yet part
of mainstream development processes. In the practical application of Design by Contract tech-
niques, run-time assertion monitoring remains an essential tool, dramatically facilitating testing
and debugging.

Run-time contract monitoring, when activated, evaluates the invariant after creation, then both
before and after every qualified call. It was always known that in an ideal world — more precisely,
a world satisfying the Ideal Picture (3.2) — the “before” check would be superfluous; but also
that the problems discussed in this article, furtive access and reference leak, may cause external
interference between the last check of an object’s invariant and the next qualified call on that
object. OOSC includes a detailed discussion of the both-before-and-after policy as a response to
these problems43.

In light of the O-rule, the “before” check seems unnecessary: we need at most to check INVr for
the source object, not the target’s invariant. But unless we also address the risk of reference leak
(see below), it is not yet time to perform this simplification.

7.8 Selective exports and invariants

An already given citation from OOSC states44:

The obligation to maintain the invariant applies only to the body of features that are
exported either generally or selectively

No deep thinking was probably involved: selectively exported features simply seemed to fall in
the same category as exported ones. But surely there is a gradation between a fully exported fea-
ture, formally understood as declared in feature {ANY}, and a fully secret one, feature {NONE}.
Why consider all intermediate cases, such as feature {B, C}, equivalent to the first?

Only with the present discussion does the answer appear: invariant semantics follows (in the
pre-part) a parallel gradation, obtained by considering every clause of an invariant individually.

43. [23], 11.14, page 410.
44. [23], 11.8, page 370, emphasis added.

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §828
8 The Export Consistency rule
To apply the final O-rule (/O6/) soundly, we must enforce proper
information hiding. Assume that x.r (ignoring arguments) is exe-
cuted on behalf of an object S and then, as in the figure illustrating
callbacks (6.4, page 20, see extract on the right), calls back into S,
for example through a call z.v where z happens to be attached to S. If the routine v has broader
export privileges than r, it could modify properties of the class that appear in the invariant outside
of INVr. This scenario is incompatible with the soundness of the O-rule.

It is in fact — regardless of verification concerns — incompatible with the principle of informa-
tion hiding. In a class PRIVATE consider a routine r exported to FRIEND but not to FOE. Class
FOE may not call p.r (args) for p of type PRIVATE; but it can easily bypass that restriction without
inheriting from PRIVATE and without any modification to FRIEND or FOE. Just add a simple class

class SPY inherit FRIEND feature
bypass (p: PRIVATE; args:) do p.r (args) end -- args declared like formals of r.

end

Then have FOE inherit from SPY and use bypass (p, args). (If you dislike using inheritance for
such purposes, just write create sp; sp.bypass (p, args) for a local variable sp of type SPY.)

Surprisingly, no one seems to have complained about this information hiding loophole so far,
but it should be corrected. The appropriate language rule requires the following property45.

Definition: a routine r satisfies the Export Consistency rule if no routine of a qualified call
appearing in the text of r, or of a routine called by r unqualified, has a greater privilege than r or,
if r is a redefinition, its precursor.

The “privilege” of a routine (short for “qualified call privilege”) is, informally, the set of rou-
tines that it can use in qualified calls. Here are the formal details expressing this intuition:

• The privilege of a class is a partial function from classes to routines46 of those classes. An
example is {[A, {r, s}], [B, {t}]},47 indicating permission to access r and s from A and t from B.

• The order relation between privileges is simply the subset relation (between partial functions:
p q if every [argument, result] pair of p is also in q).

• A privilege contains explicit elements directly induced by feature clauses; if A has the clause
feature {A} r, s (feature declarations omitted) and B has feature {A} t, then the privilege of A
includes the example function above.

• In addition, the privilege of a class A contains implicit elements: the function pair [X, u] for
every public (fully exported) routine u of any class X48, as well as the privileges of all the
ancestors of A (since exporting to a class means also exporting to its descendants).

• The privilege of any routine of a class A is the privilege of A.

• The last part of the Export Consistency rule prohibits any redefinition (overriding) of a routine
from making qualified calls that the rule would prohibit for its precursor (the original version).

45. Web browsers such as Firefox offer a “private” mode protecting users from sites’ tracking. From a public
window, you may choose to open a link in a new public or private window; but from a private window, the new
window can only be private. This is the same idea as the Export Consistency rule.
46. More generally, features/members (including attributes/fields).
47. Using braces {} for sets and brackets [] for pairs and representing a partial function as a set of pairs;
here the first element of each pair is a class and the second element a set of routines.
48. Considering implicit elements is convenient but not conceptually necessary: since a public routine is formal-
ly equivalent to one declared in an explicit feature {ANY} clause, implicit elements follow from the other cases.

y . u
z .v

Object S

 u

 v r

Object T

§9 REFERENCE LEAK AND THE INHIBITION RULE 29
The notion of privilege covers the classic information hiding rule49, which states (in traditional
terms) that one may use x.s, in a routine r of a class C with x of type T, only if T exports s to C:
just rephrase it as “the privilege of r must include the pair [T, s]”. The Export Consistency rule
goes further by preventing r from calling (in qualified form) a routine that would circumvent this
restriction. While it is necessary for the soundness of the O-rule, it makes sense independently,
and will be proposed as an addition to the language standard [7].

As a verification rule, Export Consistency is modular. To apply the rule it suffices, when com-
piling a routine s or analyzing it for verification, to compute its privilege — as compilers must do
anyway, to enforce standard information hiding — and include it in the interface information for
the routine. Then the processing of any routine r that includes a qualified call y.s should check
that the privilege of s is no greater than the privilege of r and, if applicable, its precursor.

The privilege includes only information on the routine and the interface of some of the routines
it calls. “Some of” because one may choose to hide part of that information, for example the inter-
nal routines used by a library routine; clients will simply not be able to call them directly. Such
hiding is compatible with the rule since it makes the published privilege smaller.

“Implicit elements” mentioned in the definition of “privilege” serve conceptual purposes only
and need not be computed. The tools should only compute explicit elements, from selective
export clauses of the form feature {X, Y, }. Then in checking the validity of y.s in the text of r:

• If r is public, the call satisfies the rule regardless of s’s privilege.

• If r is selectively exported and s public, the call violates the rule regardless of r’s privilege.

• If r and s are selectively exported, s’s privilege must be no greater than r’s privilege.

Each case only uses privilege information about r and s. The rule requires no global information.

The following property summarizes this article’s solution to furtive access50:

Proposition: if x is of a type T that has been proved correct (6.2.1) and r satisfies the Export
Consistency rule, any call x.r (a) executed under INVr x.Prer (a) will yield x.INV x.Postr
(a). (In other words, the Fundamental Picture holds, even in the presence of qualified callbacks.)

9 Reference leak and the inhibition rule
We will now develop a solution of the second problem, reference leak.

9.1 Reference leak examples: a quick reminder
Reference leak, as we saw, can occur in the marriage case (4.4): the code

Dominique.marry (Claude)
Dominique.divorce

causes the Claude object to violate its invariant. The reference leak
scheme that we witnessed for unregistered observers (4.1) can also arise with standard observers
(4.2) if they have the extra invariant property subject.x < L:

class MISCHIEF create make feature
subject: POINT
obs: OBSERVER
make do create subject ; create obs.set (subject) end
mess_up do subject.move_left end

end

49. In the Ecma standard [7], it appears in the definition of “available for call” in clause 8.7.13 and the rest of 8.7.
50. “Proposition” because the property, justified by a detailed discussion in the previous sections, is more than
a conjecture, but — not having been proved mathematically — less than a theorem.

spouse

Claude
Dominique

spouse

subject

(OBSERVER
(POINTL

subject
(MISCHIEF

x
object)

object)

object)

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §930
So can the “divorcing” scheme: in class POINT, a procedure remove_observer that sets observer
to void will preserve the invariant

(observer Void) => (observer.subject = Current)

but then executing the instructions

Pt.set_observer (deceived) -- deceived could be Current.
Pt.remove_observer

will break the invariant of deceived.

Note, however, that here since POINT exports set_observer only to OBSERVER, this code has
to appear in OBSERVER or a descendant. This observation will help us towards a solution that is
not applicable in the marriage case, where spouse is public.

The linked list examples of 4.5 and 4.6 involved corrupting the first
field of a linked list object (the object that represents the list header) so
that it will point to the wrong LINKABLE, such as one from another list,
endangering the sanity of the header object since — for example — the
count field might not give the actual number of list elements. In the
example, there were initially three elements, and procedure
remove_last was applied to the first list object, which has its count cor-
rectly updated to 2, but the second object still has 3.

Finally, remember that even the basic example of bank accounts
with their lists in and out of deposit and withdrawal operations will
suffer from if one of the lists, in in the figure, leaks to another object
C, which through its own operations can invalidate the account
object’s invariant balance = in.total – out.total.

9.2 Reference leak conditions
Going beyond individual examples, we must define the general pattern that cause reference leak.
As correctly identified in [3], reference leak happens because of invariant clauses containing qual-
ified calls q.r where q, of some type T, is a query of the enclosing class and r is a query of T. If q
is detachable (possibly void), a common form is

q Void => q.r -- In this case r is a boolean property.

Terminology: any occurrence of q.r with q of type T in the invariant
of class D causes T to inhibit D through q with r. T is the inhibitor, I
the inhibited class, q the inhibiting tag, and r the inhibiting query.
The concepts transpose from classes to the corresponding objects: in
the figure on the right, object B, an instance of T, inhibits object A, an instance of D, through q.

The reference leak scenario is simply that a third object C obtains
a reference q1 to B (the reference has been “leaked” to C) and uses it
to modify the value of r, through some operation q1.mess_up. In the
examples:

• The banking-operations-list class inhibits ACCOUNT through in and out with total.

• POINT inhibits UNREGISTERED_OBSERVER and OBSERVER through subject with x, and
OBSERVER through subject with observer.

• OBSERVER inhibits POINT through observer with subject.

• PERSON inhibits itself through spouse with spouse.

• LINKABLE inhibits LINKED_LIST through first.

observer

subject
deceived

Pt

2
(LINKED_LIST

(LINKABLE

first

3count
objects)

objects)

70

70 50in

out

balance

C

(ACCOUNT)

B

A

20 20 10

80

qA

r

B

(T)(D)

qA

r

B

C q1

§9 REFERENCE LEAK AND THE INHIBITION RULE 31
The inhibition concept resembles the widely used notion of ownership[35]51, which in such situ-
ations would require the programmer to declare (in some extension of the language and type sys-
tem) that A “owns” B. Ownership is too coarse-grained: it applies to objects in their entirety,
whereas with inhibition the relation between A and B only applies to a specific tag q. Various
objects may inhibit each other in different ways for different tags q and queries r.

In fact, while ownership is inherently non-symmetric (if A owns B, B cannot own A), inhibi-
tion can be symmetric. As just seen, OBSERVER inhibits OBJECT through observer, and
OBJECT inhibits OBSERVER through subject. The relation, between classes, can even be reflex-
ive. as with PERSON inhibiting itself through spouse.

A general solution to the reference leak problem can only be of two kinds:

• A condition under which reference leak will not occur. The inhibition rule, coming next, falls
into this category.

• A condition under which reference leak does not invalidate the inhibiting object’s invariant.
The concept of tribe (section 10) is a tentative step in this direction.

9.3 External sanity

The first step towards a solution is, as elsewhere in this article, to remove layers of complication
and realize that the problem may be less difficult than it seems: standard OO information hiding
principles already go a long way. Selective exports played a major role in the solution to furtive
access; they will be just as essential to addressing reference leak.

Any well-written implementation of an inhibition scheme will use restricted exports to limit
access to features that could cause leak issues. For example LINKED_LIST will not export first
and other features giving access to LINKABLE cells. Class LINKABLE will export its own fea-
tures to LINKED_LIST only:

class LINKABLE [G] feature {LINKED_LIST}
right: detachable LINKABLE [G] -- Next cell.
item: G -- Value stored in current cell.
put_right (other: detachable LINKABLE [G]) -- Link to other.

do ensure right = other end
put (value: G) -- Set cell’s value to value.

do ensure item = other end
end

Similarly, OBSERVER and POINT each exports the features that can cause reference leaks, respec-
tively subject and observer, to the other class. (In the elementary example of 4.1 UNREGIS-
TERED_OBSERVER does not follow this rule, but a carefully written version will.)
This common-sense policy gives us the first part of the inhibition rule:

Definition: Class B inhibiting A with52 r satisfies the external sanity clause if it selectively
every feature that may modify the value of r, and r itself if it is of a reference type, to A only.

Determining which features may modify r is a simple modular check, using only the text of
class A53. (We could even use a stronger version of the rule, trivial to implement and possibly

51. The literature on ownership is huge; this citation is to one of the first publications, with no intended slight to
authors of others.
52. Remember that an invariant clause containing q.r causes inhibition “through” q and “with” r.
53. The rule also applies to descendants of B, but inheritance does not threaten modular verification here since
descendants may only restrict privileges, not broaden them.

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §932
good enough in practice: apply the export restriction to any feature of A that has an argument or
result of a type that conforms to the type of r.)

If r is of a reference type, exporting it is prohibited, since a call r.some_operation could mod-
ify the associated object. For a non-reference type such as INTEGER (also called an “expanded”
or “value” type, exporting r is harmless.

9.4 Internal sanity

The external sanity clause almost rules out reference leaks, although in this “almost” lies thirty
years of verification research. The clause tells us that harmful leaks only matter for objects of type
A. Objects of other types can have all the leaked references they like to B objects (LINKABLE
cells in the example), and we do not care: they will not be able to use them for mischief since they
cannot apply any operations to them.

All that remains is the case of other A objects having their own leaked references to B objects
that are supposedly under the control of the initial A object — their gateway. This case could
indeed occur, for example with the following two routines added to LINKED_LIST [G]:

leak_and_mess_up (thief: LINKED_LIST [G]) do thief.mess_up (first) end
mess_up (f: LINKABLE [G]) do f.put_right (Void) end

A call to leak_and_mess_up (ll), where ll is another linked list, will, as shown, transform any non-
empty list into a one-element list, invalidating the count field and the corresponding invariant.54

Here is the analysis. If B inhibits A through q, the external sanity clause takes care of leaks to
would-be thieves of types other than A; but we must also keep A objects, other than the original
inhibited object A55, from messing up with the inhibitor object B, known to the original though
q (first in the example). Such a “thief” object could access B through its own leaked reference f,
and use it to perform f.modify. The routine modify (put_right in the example) is available to the
thief since it is exported to the class A; but we do not want any object other than A to use it on B.

How can the thief obtain such a leaked alias f of A’s q? Regardless of who — A, the thief or a
third party — created the inhibitor B, the reference to B had to be passed to at least one of the two
A objects through a qualified call x.mess_up () where x (denoting either A or the thief) is of
type A, and the routine mess_up either:

• Has, as in the example, a formal argument f whose value could be a reference to B.

• Is a function whose result could be a reference to B.

Expressing these conditions exactly would require global analysis on the object structure. The fol-
lowing stronger condition, however, is easy for a compiler to enforce as a simple addition to the
existing rules of type checking and information hiding:

54. The reader will have noted how disturbingly close this example is to the case, in principle legitimate, of
merge_right. More on this point below.
55. It is generally not a good idea to distinguish things by font and color alone, but here it should cause no con-
fusion that A and B are classes and objects A and B instances of each.

Messing up through argument passing

item right item right item right

first

count3
(LINKED_LIST

(LINKABLE objects)

objects)
fA

B

thief

ll

(q)

§9 REFERENCE LEAK AND THE INHIBITION RULE 33
Definition: Class B inhibiting A through q satisfies the internal sanity clause if no feature of
A other than q having an argument or result of a type conforming to B is available to A for calls
or creation.

A “conforming” type is the itself or a descendant (taking genericity into account [23, 7]56). A
feature is “available” to a class if it is exported to it. This discussion assumes the Export Consistency
rule (section 8), so that thieves cannot use tricks to gain access indirectly to the banned features.

Definition: a class inhibiting another through a query satisfies the inhibition rule if it satisfies
both the external and internal sanity clauses.

Proposition57: an inhibition satisfying the inhibition rule cannot invalidate the inhibited
class’s invariant through reference leak.

This proposition is the second main result of the present article, addressing the second ope
problem of class invariants, reference leak.

Lest us revisit the reference leak examples to see how they fare under the inhibition rule.

9.5 Non-leaking banking records

For bank accounts, external sanity means that in the list-of-banking-operations class the features
that may affect total must be exported to ACCOUNT only. Since they include all routines that
modify the list, we cannot directly use a list class from the library, for example declaring in and
out as LINKED_LIST [ACCOUNT]. A simple solution is to use delegation, going through a class

class OPERATIONS_LIST feature {ACCOUNT}
list: LINKED_LIST [ACCOUNT]
List features applied to list, for example count defined as list.count and so on

end

For internal sanity, it suffices to make sure that class ACCOUNT declares no entity (routine argu-
ment, attribute, function result) of type OPERATIONS_LIST, except for in and out.

9.6 Non-leaking unregistered observers

For POINT inhibiting UNREGISTERED_OBSERVER through subject with x (4.1, 9.1):

• The classes as written do not satisfy the external inhibition rule since POINT publicly exports
the routine move_left, which modifies x. To correct this problem, POINT must make move_left
selectively exported to UNREGISTERED_OBSERVER only. There is no restriction on
exporting x itself since it is of an expanded (non-reference) type, INTEGER.

• The classes also do not satisfy the internal rule, since UNREGISTERED_OBSERVER exports
set publicly and hence to itself, making MISCHIEF’s leaking call obs.set (subject) possible.
UNREGISTERED_OBSERVER has to exclude itself from the availability of set. It should only
be available to classes such as MISCHIEF which create UNREGISTERED_OBSERVER
objects and need to initialize them with a reference subject to the point they will be watching.

These changes limit the use of class POINT, making the status of its instances similar to those of
LINKABLE cells in linked lists, which clients can only modify through a gateway object (the list
header). Here the gateway is the UNREGISTERED_OBSERVER object.

Such a restriction becomes inevitable — per the inhibition rule — as soon as instances of one
type, here UNREGISTERED_OBSERVER, rely for their sanity on the properties of instances of

56. A more formal version of the rule should state the type constraint in terms not of B but of the type T of q; T
is “based on” class B. See footnote 38.
57. As for the other fundamental “proposition” (see footnote 50), not yet a theorem but more than a conjecture.

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §934
another, here POINT. Then we have to prevent instances of other types from breaking that special
relationship: the penalty is that they may only access the relevant features (here routines modify-
ing the x of a point) by going though an instance of the gateway type. (Section 10 points to a com-
pletely different approach, which would not require such hiding of critical features.)

Unlike ownership, the special relationship does not apply to the classes in toto, only to specific
operations, here those modifying x. UNREGISTERED_OBSERVER does not “own” POINT; it is
simply inhibited by POINT with x through subject. Instances of other classes can access any other
properties of a POINT object without interference from UNREGISTERED_OBSERVER.

9.7 Non-leaking observers

For standard observers (4.2, 9.1), the first step, because of the inhibition of OBSERVER by POINT
though subject with x (here in the invariant clause x = subject.x) is, as with unregistered observ-
ers, to make sure that POINT exports move_left — and in a more general version of the class, any
routine that can modify x — to OBSERVER only.

For other inhibiting queries, the Observer scheme as written almost passes the inhibition rule:

• Both classes satisfy the external sanity clause since subject and observer are the inhibiting
queries involved in the respective inhibiting clauses, make and set_observer are the only
routines that may modify them, and each of the two classes exports these features to the other
one only (or, in the case of make, to no class at all).

• They almost satisfy the internal sanity clause, since they do not export these features to
themselves for calls.

“Almost”, because OBSERVER exports make for creation. Excerpting from 4.2:

class OBSERVER make feature
x: INTEGER

feature {NONE}
make (p: POINT) do subject := p ; subject.set_observer (Current) end

See 4.2 for rest of class
The definition of internal sanity (9.4) specifies (using the names of the classes and features of this
example) that: “no feature of OBSERVER other than subject having an argument or result of a type
conforming to POINT is available to OBSERVER for calls or creation”. Having make generally
available for creation, including to OBSERVER itself, violates this rule. Indeed the following code
in OBSERVER would cause a reference leak:

thief: OBSERVER
create thief.make (subject)

making the current observer and thief share a subject point58, and breaking the current observer’s
backlink invariant clause subject.observer = Current. So the problem is real.

To remove this problem, it suffices to satisfy the internal sanity clause by replacing the plain
create clause with , restricting observer creation to a class OF (for “Observer Fac-
tory”) and its descendants, none of which is OBSERVER itself. (Alternatively, it could be useful
to have syntax, not available today, for making features available to all classes except a designated
one — or simply. for the sake of internal sanity, to all classes except the current one).

58. Of course in the actual Observer pattern several observers can observe the same subject (see footnote 12).
They still do not share the subject, only the list of subjects, to which the scheme described here exactly applies.

create

create {OF}

§9 REFERENCE LEAK AND THE INHIBITION RULE 35
It is one of the tangible results of this article to allow the verification of a plainly written
Observer pattern, without any verification-oriented annotation or other extra code:

• Even though the pattern relies on furtive access, accessing an object in a state that does not
satisfy its invariant, the O-rule guarantees correctness.

• The inhibition rule shows that no reference leak can occur.

9.8 Non-leaking spouses

The marriage example resembles the Observer pattern in its use of mutual inhibition. But here,
rather than two classes, we have only one, PERSON. The inhibition rule cannot apply, since the
external clause would require PERSON to export spouse to itself and the internal clause not to.

This impossibility is not an artifact of the rule but conceptually inevitable. If persons may
know about other persons (as permitted if the internal clause does not apply) the earlier leaking
scheme is possible from within class PERSON:

Dominique.marry (Claude)
Dominique.divorce

satisfying all the invariants of the objects involved. (As noted, this scheme assumes a bad version
of divorce which does not divorce the other person; but there is no way to force the good version
since the invariant to be preserved is that of another object, not named in the call. The bad version
does preserve the invariant of the current object.)

An immediate solution is to remove marry from the public interface of PERSON and hand over
marriage rights to a class BROKER, with attributes spouse1 and spouse2 of type PERSON. Rou-
tines marry and divorce, in their public versions, are now features of that class, used in the style
my_broker.marry (Dominique, Claude). In a relationship reminiscent of that of LINKABLE to
LINKED_LIST, class PERSON exports its marriage-related features such as set_spouse, set_mar-
ried and (since it is a reference) spouse to BROKER only.

The effect of this solution on software design is significant, but any solution that both relies on
a single class PERSON as described in previous sections and allows clients to use marry and
divorce directly on PERSON objects will raises the possibility of reference leaks. The only other
way is to take a different view of class invariants, as outlined in section 10.

9.9 Linked lists and linkables

With the inhibition rule we can make linked lists — temporarily setting aside merge_right —
demonstrably leak-free. The external sanity clause already holds since LINKABLE exports its fea-
tures to LINKED_LIST only. To satisfy the internal clause, it suffices to find the few features of
LINKED_LIST taking arguments or yielding a result of LINKED_LIST type and remove
LINKED_LIST from the set of classes to which they are exported.

In the actual library class, these features are all restrictively exported already, indicating that
the class authors realized the need to handle them with care. More precisely, LINKED_LIST
exports feature first59 to LINKED_LIST_ITERATION_CURSOR (a class used to provide iteration
capabilities on lists), respecting the strict internal sanity clause; but it also exports first to itself.

After removal of the export of first to LINKED_LIST, everything still compiles with the only
exception— surprise! — of two routines: merge_right and merge_left.

The “dumb” version, not directly using references to LINKABLE objects, will of course compile.

59. As noted (footnote 22), the actual name is first_element.

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §936
9.10 Merging lists

What would it take to legitimize the “smart” versions of merge_right and merge_left? With the
inhibition rule, it is not possible to write these routines in LINKED_LIST. We may use a solution
similar to the introduction of a BROKER in the marriage case: use calls such as
h.merge_right (list1, list2) using as the type of h a new class LIST_HANDLER to which
LINKED_LIST and LINKABLE selectively export the appropriate features.

Since that approach again affects the software’s design, we should again ask whether the inhi-
bition rule’s rejection of the smart merge_right is justified. Indeed, the rejection is not due to a
quirk of the rule. It comes from a good reason: these routines could cause havoc. Compare two
earlier figures, the first showing a harmful leak:

and the second one how merge_right works:

They are remarkably similar. In both cases a list object gets access to the internals (LINKABLE
references) of another object of the same type — as prohibited by the inhibition rule — and uses
this access to reorganize the list cells; for evil in the first case, for good in the second, but it
appears impossible to distinguish on the basis of a single class text.

It is for example easy to write a slight variation on merge_right, say share, through which
list1.share (list2) will cause list2 to refer to a part of the first list:

Such sharing contradicts the expectation that linked lists should never share the actual list cells.
That expectation cannot, however, be made part of the invariant of LINKED_LIST: it is not a prop-
erty of any particular list, but of the object structure as a whole. Even with the best invariants,
expressing for example that the LINKABLE structure is acyclic, it is possible to write share so that
it will preserve the object invariants of both list1 and list2. The separateness property is also an
invariant, but its scope is bigger than individual lists since it talks about the disjointness of pairs
of lists. It can still be expressed as a class invariant, but not for the list class; a LIST_HANDLER
class can host it.

Messing up through argument passing

item right item right item right

first

count3
(LINKED_LIST

(LINKABLE objects)

objects)
fA

B

thief

ll

(q)

merge_right
3

list1
2
list2

05

first first

right

share
3

list1
2
list2

5

first first

right

§10 OBJECT TRIBES 37
10 Object tribes

This last part of the discussion sketches out a different approach. Unlike the previous sections, it
is not fully developed; rather, it presents a possible direction for development, which, if deemed
attractive, will require further work.

The one-way inhibition rule may seem to be the last word on the reference leak problem: we
have seen strong arguments (although not a proof) that it is sound, that is to say sufficient to guar-
antee the absence of reference leaks; and the discussion of example violations shows it to be nec-
essary in typical situations (as soon as we allow arguments or results of routines exported to A we
can create a reference leak). Can there be room for anything else?

There can if we note that reference leaks are only harmful if they cause missing the leaked
object’s invariant during an update to another object. If every object’s invariant included the
invariant of other objects which it affects, then we would not need any particular restriction: nor-
mal invariant checking would suffice. For example, assume the invariant of every married person
somehow includes the invariant of the spouse, and even if the person changes spouse that property
remains in effect for the previous spouse (alimony). Then in the example

Dominique.marry (Claude)
Dominique.divorce

the first instruction adds Claude to the set of objects whose invariants Dominique follows: Claude
and Dominique now belong to the same tribe. What defines a tribe (“all for one, one for all”) is
that the invariant of any object in the tribe includes the invariant of all others. The second instruc-
tion must preserve this combined invariant: then the sloppy version of divorce, which only sets
spouse to void for the target object (here Dominique), will not pass verification; but the good ver-
sion, which also sets it for the spouse object if any, will.

Definition: a set of objects is a tribe if they all have the same object invariant.

To make this definition practical, we must distinguish, for an object o in a tribe T, between its
“written invariant” I (o), deduced from the class text (the class invariant as applied to o) and its
effective invariant, which must be

o’: T | I (o’)

For this discussion, tribes are useful in connection with inhibition. We may always assume that
the set of objects is partitioned into tribes (if only through the trivial partition where every object
makes up its own tribe); so we may talk of “the tribe of an object”. From the tribe condition fol-
lows a new approach to reference leaks:

Definition: a set of classes satisfies the tribe rule if any of their instances that inhibits another,
or inhibited it earlier in the execution, belongs to the same tribe.

(Note the reference to the past: in the current state of this work it is an open problem under
what terms we may remove an object from a tribe.)

The tribe rule provides a completely different solution to the reference leak problem. If class
PERSON satisfies the tribe rule, the first call above, Dominique.marry (Claude), will cause the
Claude object to join Dominique’s tribe; the effective invariant, which includes both objects’
invariants, then rules out foul play. We can handle all the other reference-leak examples in the
same way, forcing into a single tribe: a subject and its observer; a linked list and the LINKABLEs
on which it depends; two persons being married; two linked lists being right-merged (ensuring
that each will be consistent, although not that they will be disjoint).

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §1138
How could we make that approach work? A potential solution (described here tentatively and
in general terms) would combine language and library properties. A library class INHIBITED pro-
vide features about an object’s tribe: tribe_has (x) says whether x belongs to the current object’s
tribe, and tribe_put (x) adds x to that tribe. (Internally, they may be implemented as tribe.has (x)
and tribe.put (x), where the attribute tribe is of type TRIBE, a class offering set-like operations.)
The class INHIBITED has the invariant

 o | (tribe_has (o) (o Current)) => o.INV

or, in strict programming language notation

across tribe as o all (o.item /= Current) implies o.INV end

where INV yields an object’s written invariant. The language rule is that any class A inhibited by
a class B through a query q must:

• Be a descendant of INHIBITED.

• Have the invariant clause tribe_has (q) (qualified by q Void if the inhibiting clause is).

The second condition guarantees that the inhibitor object is in the tribe. In practice, maintaining
it as part of the invariant will mean (as enforced by the verification process) that any routine which
can change q includes an instruction tribe_put (q) or equivalent. For example, marry should now
include tribe_put (spouse).

The tribe idea resembles the requirement to record “observers”60 in the semantic collaboration
approach [38, 40], but it is more general. “Observer” constructs in semantic collaboration use
“ghost” variables, present only for verification and without a run-time effect. It is not clear
whether tribe properties could have the same status; they are treated above as ordinary features,
so they can serve for dynamic verification — run-time contract monitoring — as well as proofs.
In this approach, every inhibited object has one more field, a reference to its tribe; in our exam-
ples, every PERSON will have a tribe field, and so will every LINKED_LIST (but not LINK-
ABLEs, of which there are many more). The tribes themselves will, of course, use up space.

Beyond this particular language-plus-library solution (only outlined here, and possibly
kludgy), the question to be addressed further is whether the underlying approach, the tribe rule,
can lead to effective solutions to the reference leak problem, complementing the more straight-
forward solution of enforcing the inhibition rule.

11 Limitations

A formal proof of soundness is necessary, but is currently only in an early stage.

The approach has not yet been implemented in a compiler or verification system.

The internal sanity clause (9.4) could be made more flexible though alias analysis [13] (by con-
sidering not all entities of the inhibiting query’s type, but only those which risk having the same
value as that query).

The rules ignore recursion.

A few details have been left open, particularly about object creation. The rules apply to rou-
tines that yield commands (procedures); their transposition to queries (functions and attributes,
which return a result) needs to be made explicit.61

60. Semantic collaboration reuses the term “observer” from the Observer pattern, but with a specific meaning.
61. Also, too many footnotes.

§12 ACKNOWLEDGMENTS 39
12 Acknowledgments
This article is greatly indebted to the authors of the cited work about class-invariant-related
issues. One should note, in considering its criticism of that work, that the first natural target for
criticism is my own work in OOSC 1 and 2, which in its enthusiasm for the concept did not devote
enough attention to the associated difficulties. More precisely it explained the reference leak
problem in some detail (pages 407-410 in [23]) but not furtive access.

The development of AutoProof involved many discussions on the role of class invariants in
verification; for the many insights gained I am grateful to the project members: Carlo Furia, Mar-
tin Nordio, Nadia Polikarpova, Julian Tschannen.

To advance the present work I gave several talks presenting intermediate states, prompting
many important observations from the audiences. I cannot thank everyone but may note Sergey
Velder at the PSSV 2016 symposium in Saint Petersburg, the organizers of that conference
(Mikhail Itsykson and Nicolay Shilov); Philippe Quéinnec (whose comments led to an important
clarification of the O-rule in 7.4), Iulian Ober, Mamoun Filali, Jean-Paul Bodeveix, Jan-Georg
Smaus, Sergei Soloviev and Peter Matthes at the University of Toulouse (in three “Vériclub”
talks), Daniel de Carvalho, Alexander Chichigin and Alexander Naumchev at Innopolis Univer-
sity, Elisabetta di Nitto and Dino Mandrioli at Politecnico di Milano. Alexander Kogtenkov from
Eiffel Software provided important comments on the first draft of this article.

For the furtive access problem, Daniel de Carvalho explored a notion of “aggregate invariant”,
which takes export status into consideration and led to useful discussions.

At one point during the course of her PhD thesis [40], Nadia Polikarpova mentioned that she
was considering relying on export rights to address invariant-related problems; I am not sure why
the idea was not pursued further.

13 References
[1] AutoProof page, with documentation, online tutorial, and references to publications, available
at se.inf.ethz.ch/research/autoproof/.

[2] Ralph Back: On Correct Refinement of Programs, in Journal of Computer and System
Sciences, vol. 23, no.1, pages 49-68, August 1981,

[3] Mike Barnett, David A. Naumann: Friends Need a Bit More: Maintaining Invariants Over
Shared State, in MPC 2004, Mathematics of Program Construction, 7th International Conference,
Stirling, Scotland, 12-14 July 2004, ed. Dexter Kozen, Lecture Notes in Computer Science 3125,
Springer, 2004, pages 54-84.

[4] Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino and Wolfram Schulte:
Verification of object-oriented programs with invariants, Proceedings of FTfJP workshop at
ECOOP 2004, in Journal of Object Technology, vol. 3, no. 6, 2004, pages 27-56.

[5] Mike Barnett (contact person): “Observer” verification challenge at SAVCBS workshop at
ESEC/FSE conference 2007, www.eecs.ucf.edu/~leavens/SAVCBS/2007/challenge.shtml.

[6] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary T. Leavens, K.
Rustan M. Leino, and Erik Poll: An overview of JML tools and applications, in International
Journal on Software Tools for Technology Transfer, vol. 7, no. 3, June 2005, pages 212-232.

[7] Ecma TC49-TG4 committee: Eiffel: Analysis, Design and Programming Language, Standard
ECMA-367, 2nd edition, June 2006, available at www.ecma-international.org/publications/stan
dards/Ecma-367.htm.

[8] Event-B page at www.event-b.org.

http://se.inf.ethz.ch/research/autoproof/
http://www.eecs.ucf.edu/~leavens/SAVCBS/2007/challenge.shtml
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.event-b.org

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §1340
[9] Carlo Furia, Bertrand Meyer and Sergey Velder: Loop invariants: Analysis, Classification and
Examples, in ACM Computing Surveys, vol. 46, no. 3, February 2014.

[10] Erich Gamma, Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides: Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1994.

[11] C.A.R. Hoare: Procedures and Parameters: An Axiomatic Approach, in Symposium on
Semantics of Algorithmic Languages, ed. E. Engeler, Lecture Notes in Mathematics 188,
Springer, 1971, pages 102-116.

[12] C.A.R. Hoare: Proof of Correctness of Data Representation, in Acta Informatica, vol. 1, no.
4, December 1972, pages 271–281.

[13] Alexander Kogtenkov, Bertrand Meyer and Sergey Velder: Alias Calculus, Change Calculus
and Frame Inference, in Science of Computer Programming, 2015, pages 163-172, available at
se.ethz.ch/~meyer/publications/aliasing/alias-scp.pdf.

[14] Gary Leavens and others: JML (Java Modeling Language) home page at www.jmlspecs.org.

[15] K. Rustan M. Leino and Peter Müller: Object invariants in dynamic contexts, in ECOOP
2004, Proc. 18th European Conference on Object-Oriented Programming, Oslo, 14-18 June 2004,
ed. Martin Odersky, Lecture Notes in Computer Science 3086, Springer, pages 491-515.

[16] K. Rustan M. Leino and Peter Müller: Modular verification of static class invariants, in FM
2005: Formal Methods, International Symposium of Formal Methods Europe, Newcastle, July
18-22, 2005, eds. John Fitzgerald, Ian J. Hayes and Andrzej Tarlecki, Lecture Notes in Computer
Science 3582, Springer, pages 26-42.

[17] K. Rustan M. Leino and Wolfram Schulte: Using history invariants to verify observers, in
ESOP'07, Proc. 16th European Symposium on Programming, Springer, 2007, pages 80-94.

[18] K. Rustan M. Leino and Mike Barnett: Spec# home page at www.microsoft.com/en-
us/research/project/spec/.

[19] Marx Brothers: A Night at the Opera, 1935. (The given citation starts at 3:54 at
www.youtube.com/watch?v=G_Sy6oiJbEk.)

[20] Bertrand Meyer: Eiffel: A Language for Software Engineering, Technical Report TR-CS-85-
19, Univ. of California, Santa Barbara, 1985, available at se.ethz.ch/~meyer/publications/eiffel/
eiffel_report.pdf.

[21] Bertrand Meyer: Object-Oriented Software Construction, first edition, Prentice Hall, 1988.

[22] Bertrand Meyer: Reusable Software: The Base Object-Oriented Component Libraries,
Prentice Hall, 1994.

[23] Bertrand Meyer: Object-Oriented Software Construction, second edition, Prentice Hall, 1997.

[24] Bertrand Meyer: The Grand Challenge of Trusted Components, in ICSE '03: Proc. 25th Int.
Conf. on Software Engineering, Portland, Oregon, May 2003, IEEE Computer Society Press,
2003, pages 660-667, available at se.ethz.ch/~meyer/publications/ieee/trusted-icse.pdf.

[25] Bertrand Meyer: The Dependent Delegate Dilemma, in Engineering Theories of Software
Intensive Systems, Proceedings of the NATO Advanced Study Institute on Engineering Theories
of Software Intensive Systems, Marktoberdorf, Germany, 3 to 15 August 2004, eds. Manfred
Broy, J Gruenbauer, David Harel and C.A.R. Hoare, NATO Science Series II: Mathematics,
Physics and Chemistry, vol. 195, Springer, June 2005.

[26] Bertrand Meyer: Touch of Class: An Introduction to Programming Well Using Objects and
Contracts, Springer, 2009.

http://se.ethz.ch/~meyer/publications/aliasing/alias-scp.pdf
http://www.jmlspecs.org
https://www.microsoft.com/en-us/research/project/spec/
https://www.microsoft.com/en-us/research/project/spec/
https://www.youtube.com/watch?v=G_Sy6oiJbEk
http://se.ethz.ch/~meyer/publications/eiffel/ eiffel_report.pdf
http://se.ethz.ch/~meyer/publications/eiffel/ eiffel_report.pdf
http://se.ethz.ch/~meyer/publications/ieee/trusted-icse.pdf

§13 REFERENCES 41
[27] Bertrand Meyer, Alexander Kogtenkov and Emmanuel Stapf: Avoid a Void: The Eradication
of Null Dereferencing, in Reflections on the Work of C.A.R. Hoare, eds. C. B. Jones, A.W. Roscoe
and K.R. Wood, Springer, 2010, pages 189-211, available at www.eiffel.org/doc-file/eiffel/void-
safe-eiffel.pdf.

[28] Bertrand Meyer: Verification as A Matter Of Course, blog article with slides from a talk, 29
March 2010, available at bertrandmeyer.com/2010/03/29/verification-as-a-matter-of-course/.

[29] Bertrand Meyer, Steps Towards a Theory and Calculus of Aliasing, in International Journal
of Software and Informatics, Chinese Academy of Sciences, 2011, pages 77-116, available at
se.ethz.ch/~meyer/publications/aliasing/alias-revised.pdf.

[30] Bertrand Meyer et al.: SCOOP (Simple Concurrent Object-Oriented Programming) site, at
www.eiffel.org/doc/solutions/Concurrent%20programming%20with%20SCOOP.

[31] Ronald Middelkoop, Cornelis Huizing, Ruurd Kuiper, and Erik J. Luit: Invariants for non-
hierarchical object structures, in Electronic Notes in Theoretical Computer Science,195, 2008,
pages 211–229.

[32] Caroll Morgan: Programming from Specifications, Prentice Hall, 1990-1998.

[33] Michal Moskal, Wolfram Schulte, Ernie Cohen and Stephan Tobies: A Practical Verification
Methodology for Concurrent Programs, Microsoft Technical Report MSR-TR-2009-2019, 2009.

[34] Peter Müller: Modular Specification and Verification of Object-Oriented Programs, PhD
thesis, Fernuniversität Hagen, 2001, Lecture Notes in Computer Science 2262, Springer, 2002.

[35] James Noble, David Clarke and John Potter: Object Ownership for Dynamic Alias
Protection, in TOOLS Pacific, Melbourne, November 1999.

[36] Martin Nordio, Cristiano Calcagno, Peter Müller, Julian Tschannen and Bertrand Meyer:
Reasoning about Function Objects, in TOOLS Europe 2010, Málaga (Spain), 28 June - 2 July
2010, ed. J. Vitek, Lecture Notes in Computer Science, Springer, 2010, available at
se.ethz.ch/~meyer/publications/proofs/agents.pdf.

[37] David Parnas, On the criteria to be used in decomposing systems into modules, in
Communications of the ACM, vol. 15 no. 12, December 1972, pages 1053-1058.

[38] Nadia Polikarpova, Carlo A. Furia, Yi Pei, Yi Wei and Bertrand Meyer: What Good are
Strong Specifications?, in Proceedings of ICSE 2013 (35th International Conference on Software
Engineering), San Francisco, May 2013, IEEE Computer Press, pages 262-271, 2013, available
at se.ethz.ch/~meyer/publications/methodology/strong_specifications_icse.pdf.

[39] Nadia Polikarpova, Julian Tschannen, Carlo A. Furia and Bertrand Meyer: Flexible
Invariants Through Semantic Collaboration, in FM 2014 (proceedings of 19th International
Symposium on Formal Methods), Singapore, May 2014, Lecture Notes in Computer Science
8442, eds. C. Jones, P. Pihlajasaari and J. Sun, Springer, 2014, pages 514-530, available at
se.ethz.ch/~meyer/publications/proofs/flexible_invariants.pdf.

[40] Nadia Polikarpova: Specified and Verified Reusable Components, PhD thesis, ETH Zurich,
available at se.ethz.ch/people/polikarpova/thesis.pdf.

[41] Mary Shaw, Ralph L. London and William A. Wulf: An Introduction to the Construction and
Verification of Alphard Programs, in IEEE Transactions on Software Engineering, vol. 2, no 4,
1976, pages 53–265.

[42] Julian Tschannen, Carlo A. Furia, Martin Nordio and Bertrand Meyer: Automatic
Verification of Advanced Object-Oriented Features: The AutoProof Approach, in Tools for
Practical Software Verification; International Summer School, LASER 2011, eds. Bertrand

https://www.eiffel.org/doc-file/eiffel/void-safe-eiffel.pdf
https://www.eiffel.org/doc-file/eiffel/void-safe-eiffel.pdf
http://bertrandmeyer.com/2010/03/29/verification-as-a-matter-of-course/
http://se.ethz.ch/~meyer/publications/aliasing/alias-revised.pdf
http://www.eiffel.org/doc/solutions/Concurrent%20programming%20with%20SCOOP
http: //se.ethz.ch/~meyer/publications/proofs/agents.pdf
http://se.ethz.ch/~meyer/publications/methodology/strong_specifications_icse.pdf
http://se.ethz.ch/~meyer/publications/proofs/flexible_invariants.pdf
http://se.ethz.ch/people/polikarpova/thesis.pdf

CLASS INVARIANTS: CONCEPTS, PROBLEMS AND SOLUTIONS §1342
Meyer and Martin Nordio, Lecture Notes in Computer Science 7682, Springer, December 2012.
Other papers on AutoProof are listed in [1].

[43] Wikipedia, “class invariant” entry, last consulted July 2016.

[44] Akinori Yonezawa, Jean-Pierre Briot and Etsuya Shibyama: Object-Oriented Concurrent
Programming in ABCL/1, in Proc. OOPSLA '86, Object-Oriented Programming Systems,
Languages and Applications. ACM SIGPLAN Notices, vol. 21, no. 11, November 1986.

	1 Overview and main results
	2 Methodological guidelines
	3 Class invariants: history and tutorial
	3.1 Origin
	3.2 The class invariant concept
	3.3 Assumptions
	3.4 A simple example

	4 Representative examples of invariant-related trouble
	4.1 Unregistered observers
	4.2 Observer pattern
	4.3 Cloning
	4.4 Monogamy
	4.5 Linked lists and linkables
	4.6 Merging lists

	5 Misconceptions
	6 Towards a proof rule for object-oriented programming
	6.1 First attempts
	6.2 The verification process
	6.3 The ideal rule
	6.4 Qualified callbacks
	6.5 The strongest rule

	7 The O-rule
	7.1 About furtive access
	7.2 About selective exports
	7.3 Slicing an invariant according to privilege
	7.4 Invariants on entry and exit
	7.5 Addressing furtive access examples
	7.6 The no-callback O’-rule
	7.7 Dynamic checking policy
	7.8 Selective exports and invariants

	8 The Export Consistency rule
	9 Reference leak and the inhibition rule
	9.1 Reference leak examples: a quick reminder
	9.2 Reference leak conditions
	9.3 External sanity
	9.4 Internal sanity
	9.5 Non-leaking banking records
	9.6 Non-leaking unregistered observers
	9.7 Non-leaking observers
	9.8 Non-leaking spouses
	9.9 Linked lists and linkables
	9.10 Merging lists

	10 Object tribes
	11 Limitations
	12 Acknowledgments
	13 References

