Freefinement

Stephan van Staden
ETH Zurich
Stephan.vanStaden@inf.ethz.ch

Cristiano Calcagno
ETH Zurich, Imperial College London and Monoidics Ltd
c.calcagno@imperial.ac.uk

Bertrand Meyer
ETH Zurich
Bertrand.Meyer@inf.ethz.ch

Abstract

Freefinement is an algorithm that constructs a sound refinement calculus from a verification system under certain conditions. In this paper, a verification system is any formal system for establishing whether an inductively defined term, typically a program, satisfies a specification. Examples of verification systems include Hoare logics and type systems. Freefinement first extends the term language to include specification terms, and builds a verification system for the extended language that is a sound and conservative extension of the original system. The extended system is then transformed into a sound refinement calculus. The resulting refinement calculus can interoperate closely with the verification system - it is even possible to reuse and translate proofs between them. Freefinement gives a semantics to refinement at an abstract level: it associates each term of the extended language with a set of terms from the original language, and refinement simply reduces this set. The paper applies freefinement to a simple type system for the lambda calculus and also to a Hoare logic.

Categories and Subject Descriptors D.2.4 [Software Engineering]: Software/Program Verification; D.3.1 [Programming Languages]: Formal Definitions and Theory; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs

General Terms Languages, Theory, Verification

Keywords Formal Systems, Proof Theory, Refinement

1. Introduction

Many theories in computer science are presented, or approximated, by compositional verification systems. In this paper, a verification system is any formal system for establishing whether an inductively defined term, typically a program, satisfies a specification. For example, Hoare logics and type systems can be viewed as verification systems. In the case of Hoare logics, the system proves that a statement satisfies certain specifications given as preconditions and postconditions. In the case of type systems, the system proves that a term has a certain type in a type context.

Refinement systems play a similar role to verification systems, the main difference being that they relate terms to other terms, instead of terms and specifications. Another difference is that they

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
POPL'12, January 25-27, 2012, Philadelphia, PA, USA.
Copyright © 2012 ACM 978-1-4503-1083-3/12/01... $\$ 10.00$
typically include so-called specification terms. Intuitively, a term refines another if it is 'better', i.e. if it satisfies more specifications. Refinement calculi are formal systems for establishing refinements. For example, the calculus of Morgan [9] derives refinements between statements based on total correctness specifications. Starting from an appropriate specification statement, one can derive a correct algorithm for computing the factorial of a number by applying Morgan's refinement rules.

This paper originates from the observation that a Hoare logic and a refinement calculus for a command language do not have to be independent entities: once the Hoare logic is extended with specification statements, the two systems can be accommodated in a single theory. Moreover, there is a strong relation between the two systems. The paper explains that this relation is not a coincidence: it is possible to analyze the structure of the inference rules defining a verification system, and automatically generate a related refinement calculus. Freefinement is an algorithm that implements this transformation. Surprisingly, freefinement is not limited to Hoare logics, but can be applied to any verification system whose inference rules satisfy certain conditions. Several refinement rules proposed in the literature in different contexts arise in this way.

The freefinement algorithm works as follows. Given a term language and an accompanying verification system V_{1} that satisfies certain conditions, freefinement extends the term language with specification terms and builds a verification system V_{2} for extended terms. The conditions on V_{1} ensure that it is possible to extend the terms without breaking the inference rules; V_{2} is consequently a sound and conservative extension of V_{1}. Moreover, freefinement proposes a sound refinement system R that is in harmony with V_{2}. Harmony means that the two formal systems can interoperate smoothly. It entails, for example, that a term satisfies a specification according to V_{2} if and only if it is possible to refine the specification into the term with R. In fact, proof translation between V_{2} and R becomes possible because harmony is demonstrated constructively. Freefinement internally constructs the refinement calculus by 'linearizing' V_{2} in a series of steps. The conditions on V_{1} ensure that successful linearization is possible. According to the presentation below, at most six steps are needed for this 'refinement of refinement systems'. The situation is summarized as follows:

Sound \& Conservative Extension

Freefinement requires no human intervention. The conditions it imposes are fulfilled by many program logics and type systems: examples include Hoare logic, separation logic, the simply-typed
lambda calculus and System F. Freefinement defines the semantics of refinement at an abstract level: it associates each term of the extended language with a set of terms from the original language, and refinement simply reduces this set.

With freefinement, tools that are based on verification systems can readily include refinement as a complementary or alternative development style. Freefinement provides correctness by construction for free.

Outline. Section 2 describes the freefinement algorithm, which is applied in Section 3 to a simple type system for the lambda calculus and also to Hoare logic. Section 4 concludes with related work.

2. Freefinement

2.1 The Inputs

Freefinement requires four things as input:

1. A set of constructors \mathbb{K}. The constructors give rise to a term language T , where an arbitrary term t of T is defined by the grammar:

$$
\mathrm{t}::=\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)
$$

where $\mathrm{C} \in \mathbb{K}$.
2. A set of specifications \mathbb{S}.
3. A binary relation $\models v_{1}$ - Sat t_{-}between terms and specifications. Intuitively, $\models \mathrm{v}_{1} \mathrm{t}$ Sat S denotes that term $\mathrm{t} \in \mathrm{T}$ satisfies specification $\mathrm{S} \in \mathbb{S}$.
4. A formal system $\bigvee_{1}\left(\mathbb{K}, \mathbb{S}, \models{ }^{1}-\right.$ Sat -$)$, which consists of a set of inference rules for proving sentences of the form t Sat S . Each rule of V_{1} must have the form A_{1} or B_{1} :

$$
\begin{aligned}
& \mathrm{A}_{1} \frac{\mathrm{t}_{1} \operatorname{Sat} \mathrm{~S}_{1} \quad \ldots}{\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right) \text { Sat } \mathrm{S}} \quad \mathrm{t}_{n} \text { Sat } \mathrm{S}_{n} \\
& \operatorname{provided} \operatorname{Pred}\left(\mathrm{C}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{n}, \mathrm{~S}\right) \\
& \mathrm{B}_{1} \frac{\mathrm{t} \text { Sat } \mathrm{S}_{1} \quad \ldots}{} \quad \mathrm{t} \text { Sat } \mathrm{S} \\
& \operatorname{provided} \operatorname{Pred}\left(\mathrm{~S}_{1}, \ldots, \mathrm{~S}_{m}, \mathrm{~S}\right)
\end{aligned}
$$

The t's, S's and C in the rule forms indicate where the rules of V_{1} must use metavariables. Thus a rule of form A_{1} has only the freedom to choose a concrete n and a definition for its proviso predicate Pred; the proviso predicate implements the side condition of the rule based on the arguments $\mathrm{C}, \mathrm{S}_{1}, \ldots$, S_{n} and S. A rule of form B_{1} is also a pair: a concrete m and a definition of a predicate with arguments S_{1}, \ldots, S_{m} and S. Freefinement requires that the rules must be sound with respect to the following semantics:
Definition 1 (Semantics of the Inference Rules).
1.1 For rules of the form A_{1} :
$\operatorname{Pred}\left(\mathrm{C}, \mathrm{S}_{1}, \ldots, \mathrm{~S}_{n}, \mathrm{~S}\right) \Rightarrow\left[\forall \mathrm{t}_{1}, \ldots, \mathrm{t}_{n} \in \mathrm{~T} \cdot \models \mathrm{v}_{1} \mathrm{t}_{1}\right.$ Sat S_{1} $\wedge \ldots \wedge \models \mathrm{v}_{1} \mathrm{t}_{n}$ Sat $\mathrm{S}_{n} \Rightarrow \models \mathrm{v}_{1} \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)$ Sat S$]$
1.2 For rules of the form B_{1} :
$\operatorname{Pred}\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{m}, \mathrm{~S}\right) \Rightarrow\left[\forall \mathrm{t} \in \mathrm{T} \cdot \mid=\mathrm{v}_{1} \mathrm{t}\right.$ Sat $\mathrm{S}_{1} \wedge \ldots \wedge$ $\models v_{1} \mathrm{t}$ Sat $\mathrm{S}_{m} \Rightarrow \models \mathrm{v}_{1} \mathrm{t}$ Sat S$]$

The rule forms stipulate that the rules of V_{1} must be highly compositional - a requirement that freefinement will exploit. For example, rules cannot inspect or constrain the t's that appear in premises. This will allow freefinement to reuse the rules after specification terms are added to the term language.

Consider the following three rules over $\mathbb{K}=\{0$, succ, pred $\}$ and $\mathbb{S}=\{\mathbb{N}\}$, where n is a metavariable:

$$
1 \frac{\mathrm{n}: \mathbb{N}}{\operatorname{succ}(\mathrm{n}): \mathbb{N}} \quad 2 \frac{\operatorname{succ}(\mathrm{n}): \mathbb{N}}{\operatorname{pred}(\operatorname{succ}(\mathrm{n})): \mathbb{N}} \quad \begin{aligned}
& 3 \frac{\mathrm{n}: \mathbb{N}}{\operatorname{pred}(\mathrm{n}): \mathbb{N}} \\
& \operatorname{provided} \operatorname{positive}(\mathrm{n})
\end{aligned}
$$

Rule 1 can be written in form A_{1} with $n=1$ by defining the proviso $\operatorname{Pred}\left(\mathrm{C}, \mathrm{S}_{1}, \mathrm{~S}\right)$ as $\mathrm{C}=\operatorname{succ} \wedge \mathrm{S}_{1}=\mathrm{S}=\mathbb{N}$. Rule 2 is unacceptable, because its premise inspects the term and requires it to match $\operatorname{succ}(\mathrm{n})$. Rule 3 is also unacceptable, because it constrains the term in its proviso.

It will become clear later that the 'structural' rules of Hoare logic, such as the rule of consequence, are examples of rules of form B_{1}. Other rules of Hoare logic, such as the assignment axiom and rule for sequential composition, have the form A_{1}.

Let $\vdash_{V_{1}}$ Sat S denote that t Sat S is derivable with V_{1}. The soundness of the rules with respect to the semantics of Definition 1 implies the soundness of V_{1} :

Proof. By induction on the derivation of t Sat S :

- A rule of the form A_{1} was last applied. Assume $\operatorname{Pred}\left(\mathrm{C}, \mathrm{S}_{1}\right.$, $\left.\ldots, \mathrm{S}_{n}, \mathrm{~S}\right)$ and the induction hypothesis $\models \mathrm{V}_{1} \mathrm{t}_{1}$ Sat $\mathrm{S}_{1} \wedge \ldots \wedge$ $\models v_{1} \mathrm{t}_{n}$ Sat S_{n}. Then $\equiv \mathrm{v}_{1} \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)$ Sat S by Definition 1.1.
- A rule of the form B_{1} was last applied. Assume $\operatorname{Pred}\left(S_{1}, \ldots\right.$, $\left.S_{m}, S\right)$ and also the induction hypothesis $=_{v_{1}} t$ Sat $S_{1} \wedge \ldots \wedge$ $\models v_{1} \mathrm{t}$ Sat S_{m}. From Definition 1.2 follows $\models \mathrm{v}_{1} \mathrm{t}$ Sat S .

Freefinement does not assume the completeness of V_{1}, i.e. it never assumes $\models_{\mathrm{v}_{1}} \mathrm{t}$ Sat $\mathrm{S} \Rightarrow \vdash_{\mathrm{v}_{1}} \mathrm{t}$ Sat S .

2.2 The Extended Language and Formal System

This section extends the language T with specification terms that are useful for refinement. It gives a semantics to the resulting language U , and extends V_{1} in a sound and conservative way to prove sentences of the form u Sat S where $\mathrm{u} \in \mathrm{U}$.

2.2.1 The Extended Language U

Suppose \mathbb{K} and \mathbb{S} are disjoint (if they are not, then they can always be decorated to become disjoint) and do not contain a symbol \square. The extended set of constructors

$$
\mathbb{K}^{\prime}=\mathbb{K} \cup \mathbb{S} \cup\{\sqcup \text { with arity } n \mid n \in \mathbb{N}\}
$$

gives rise to an extended language U, which can also be written as:

$$
\mathrm{u}::=\mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{n}\right)|\mathrm{S}| \bigsqcup\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{n}\right)
$$

A term of the form S is called a spec term, and a term of the form $\bigsqcup\left(u_{1}, \ldots, u_{n}\right)$ is called the join of u_{1}, \ldots, u_{n}. Intuitively, S is a generic term that satisfies S, and $\bigsqcup\left(u_{1}, \ldots, u_{n}\right)$ is a generic term that satisfies any S that any of the $\mathrm{u}_{1}, \ldots, \mathrm{u}_{n}$ satisfy. Although the details will become clear later, the reasons for adding these terms are simple: the refinement system should be able to refine spec terms into other terms for top-down development, and join terms will be important for simplifying rules of the form B_{1} where $m>1$. If there are no rules of the form B_{1} where $m>1$, then join terms and their consequent treatment can be omitted.

A couple of constructs are used for giving a semantics to U. Let X denote a subset of T , and let Y denote a subset of \mathbb{S}. $\operatorname{Specs}(\mathrm{X})$ is the set of all specifications that all the terms in X satisfy, and Terms (Y) is the set of terms of T that satisfy all the specifications in Y :

Definition 2 (Specs and Terms).

- $\operatorname{Specs}(\mathrm{X}) \stackrel{\text { def }}{=}\left\{\mathrm{S} \mid \forall \mathrm{t} \in \mathrm{X} \cdot \neq \mathrm{v}_{1} \mathrm{t}\right.$ Sat S$\}$
- $\operatorname{Terms}(\mathrm{Y}) \stackrel{\text { def }}{=}\left\{\mathrm{t} \mid \forall \mathrm{S} \in \mathrm{Y} \cdot \models \mathrm{v}_{1} \mathrm{t}\right.$ Sat S$\}$

An antitone Galois connection ${ }^{1}$ exists between Specs and Terms:

Lemma 1. $\mathrm{X} \subseteq \operatorname{Terms}(\mathrm{Y}) \Leftrightarrow \mathrm{Y} \subseteq \operatorname{Specs}(\mathrm{X})$

```
Proof. \(\quad \mathrm{X} \subseteq\) Terms \((\mathrm{Y})\)
    \(\Leftrightarrow \quad\{\) definition of Terms and \(\subseteq\}\)
        \(\forall \mathrm{t} \in \mathrm{X} \cdot \forall \mathrm{S} \in \mathrm{Y} \cdot \models \mathrm{v}_{1} \mathrm{t}\) Sat S
    \(\Leftrightarrow \quad\{\) predicate calculus \(\}\)
        \(\forall \mathrm{S} \in \mathrm{Y} \cdot \forall \mathrm{t} \in \mathrm{X} \cdot \mid=\mathrm{v}_{1} \mathrm{t}\) Sat S
    \(\Leftrightarrow \quad\{\) definition of Specs and \(\subseteq\}\)
        \(\mathrm{Y} \subseteq \operatorname{Specs}(\mathrm{X})\)
```

Antitone Galois connections have several well-known properties. For instance, (Terms \circ Specs) and (Specs \circ Terms) are extensive, increasing and idempotent and therefore closure operators. Freefinement relies on the following properties (their proofs appear in the Appendix):

Corollary 1.

```
1.1 X\subseteq Terms(Specs(X))
1.2 Terms(Specs(Terms(Y))) = Terms(Y)
1.3 Specs(X)\subseteq Specs(X')
    \LeftrightarrowTerms(Specs(X)) \supseteq Terms(Specs(\mp@subsup{X}{}{\prime}))
1.4 Terms(Y \cup Y')}=\operatorname{Terms}(\textrm{Y})\cap\operatorname{Terms}(\mp@subsup{\textrm{Y}}{}{\prime}
```

The following auxiliary definition provides a shorthand for the set of all terms of the form $C\left(t_{1}, \ldots, t_{n}\right)$ where $t_{1} \in X_{1}, \ldots$, $\mathrm{t}_{n} \in \mathrm{X}_{n}$:

$$
\mathrm{C}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right) \stackrel{\text { def }}{=}\left\{\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right) \mid \bigwedge_{i \in 1 \ldots n} \mathrm{t}_{i} \in \mathrm{X}_{i}\right\}
$$

For example, it yields a singleton set for nullary constructors:

$$
\left\{\mathrm{C}() \mid \bigwedge_{i \in 1 . .0} \mathrm{t}_{i} \in \mathrm{X}_{i}\right\}=\{\mathrm{C}() \mid \text { True }\}=\{\mathrm{C}()\}
$$

The semantics of U is given by the function $\llbracket \rrbracket$ of type $\mathrm{U} \rightarrow$ $\mathcal{P}(\mathrm{T})$, i.e. every term in U denotes a set of terms from T :
Definition 3 (Semantics of U).

$$
\begin{array}{rll}
\llbracket \mathrm{C}\left(\mathbf{u}_{1}, \ldots, \mathrm{u}_{n}\right) \rrbracket & \stackrel{\text { def }}{=} & \operatorname{Terms}\left(\operatorname{Specs}\left(\mathrm{C}\left(\llbracket \mathrm{u}_{1} \rrbracket, \ldots, \llbracket \mathrm{u}_{n} \rrbracket\right)\right)\right. \\
\llbracket \mathrm{S} \rrbracket & \stackrel{\text { def }}{=} & \operatorname{Terms}(\{\mathrm{S}\}) \\
\llbracket \sqcup\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{n}\right) \rrbracket & \stackrel{\text { def }}{=} & \bigcap_{i \in 1 . . n} \llbracket \mathbf{u}_{i} \rrbracket
\end{array}
$$

If the relation $\models v_{1}$ - Sat _ is well-behaved in a sense that will be made precise later, then $\llbracket u \rrbracket$ has a simple intuitive explanation: it denotes the set of all primitive terms, i.e. terms from T, that refine u. For a term $\mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathbf{u}_{n}\right)$, first consider $\mathrm{C}\left(\llbracket \mathrm{u}_{1} \rrbracket, \ldots, \llbracket \mathrm{u}_{n} \rrbracket\right)$ - the set of terms of the form $\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)$ where $\mathrm{t}_{1} \in \llbracket \mathrm{u}_{1} \rrbracket$ (i.e. t_{1} refines u_{1}) and \ldots and $\mathrm{t}_{n} \in \llbracket \mathrm{u}_{n} \rrbracket$. All the specifications that all these terms implement are then collected, and any primitive term that satisfies all such specifications refines $\mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{n}\right)$. The primitive terms that refine S are exactly those that satisfy S. Finally, $\bigsqcup\left(u_{1}, \ldots, u_{n}\right)$ is refined by any primitive term that refines all $\mathrm{u}_{1}, \ldots, \mathrm{u}_{n}$.

For all u , the set $\llbracket \mathrm{u} \rrbracket$ is a fixpoint of Terms o Specs and hence a closed element:
Lemma 2. $\operatorname{Terms}(\operatorname{Specs}(\llbracket u \rrbracket))=\llbracket u \rrbracket$
Proof. By induction on the structure of u :

- If \mathbf{u} has the form $\mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{n}\right)$ or S , then $\llbracket \mathrm{u} \rrbracket=\operatorname{Terms}(\mathrm{Y})$ for some Y and the result follows by Corollary 1.2.
- If \mathbf{u} has the form $\bigsqcup\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right)$, assume $\llbracket \mathbf{u}_{i} \rrbracket=\operatorname{Terms}\left(\operatorname{Specs}\left(\llbracket \mathbf{u}_{i} \rrbracket\right)\right)$ for all $i \in 1$..n. So $\llbracket \downarrow\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right) \rrbracket=\bigcap_{i \in 1 . . n} \operatorname{Terms}\left(\operatorname{Specs}\left(\llbracket \mathbf{u}_{i} \rrbracket\right)\right)$ $=\operatorname{Terms}\left(\bigcup_{i \in 1 . . n} \operatorname{Specs}\left(\llbracket \mathbf{u}_{i} \rrbracket\right)\right)$ by Corollary 1.4, and Corollary 1.2 concludes the proof.

[^0]The rest of the paper introduces further properties of the semantics as needed.

2.2.2 Extending V_{1} : Preliminaries

The next section will extend V_{1} to obtain a formal system V_{2} for proving sentences of the form u Sat S . The aim is to construct a sound and conservative extension of V_{1}. Informally, a sound extension of V_{1} must have equal or more power:
Definition 4 (Sound Extension). $V_{2}\left(\mathbb{K}^{\prime}, \mathbb{S}^{\prime}, \models_{\mathrm{V}_{2}-}\right.$ Sat $t_{\text {- }}$) is a sound extension of $\bigvee_{1}\left(\mathbb{K}, \mathbb{S}, \models_{\vee_{1-}}\right.$ Sat $)$ if and only if

1. V_{2} uses richer terms and specifications:
$\mathbb{K} \subseteq \mathbb{K}^{\prime}$ and $\mathbb{S} \subseteq \mathbb{S}^{\prime}$
2. V_{2} can prove everything that V_{1} can prove:
$\forall \mathrm{t} \in \mathrm{T}, \mathrm{S} \in \mathbb{S} \cdot \vdash_{\mathrm{V}_{1}} \mathrm{t}$ Sat $\mathrm{S} \Rightarrow \vdash_{\mathrm{V}_{2}}$ Sat S
3. V_{2} uses a richer semantics:
$\forall \mathrm{t} \in \mathrm{T}, \mathrm{S} \in \mathbb{S} \cdot \models \mathrm{v}_{2} \mathrm{t}$ Sat $\mathrm{S} \Rightarrow \models \mathrm{v}_{1} \mathrm{t}$ Sat S
4. V_{2} is sound:
$\forall \mathrm{u} \in \mathrm{U}, \mathrm{S}^{\prime} \in \mathbb{S}^{\prime} \cdot \vdash_{\mathrm{v}_{2}} \mathrm{u}$ Sat $\mathrm{S}^{\prime} \Rightarrow{ }^{\prime} \mathrm{v}_{2} \mathrm{u}$ Sat S^{\prime}
As a consequence, $\forall \mathrm{t} \in \mathrm{T}, \mathrm{S} \in \mathbb{S} \cdot \vdash \mathrm{v}_{2} \mathrm{t}$ Sat $\mathrm{S} \Rightarrow \models \mathrm{v}_{1} \mathrm{t}$ Sat S , which intuitively means that V_{2} restricted to \mathbb{K} and \mathbb{S} is sound with respect to the semantics of V_{1}.

In a sound and conservative extension, the converse of requirement 2 also holds:
Definition 5 (Sound and Conservative Extension). A formal system $V_{2}\left(\mathbb{K}^{\prime}, \mathbb{S}^{\prime}, \models V_{2}\right.$ Sat $)$ is a sound and conservative extension of $\mathrm{V}_{1}\left(\mathbb{K}, \mathbb{S}, \mid=\mathrm{V}_{1}\right.$ - Sat _) if and only if

1. V_{2} is a sound extension of V_{1}.
2. V_{1} and V_{2} restricted to \mathbb{K} and \mathbb{S} have equal derivability:
$\forall \mathrm{t} \in \mathrm{T}, \mathrm{S} \in \mathbb{S} \cdot \vdash_{\mathrm{V}_{1}} \mathrm{t}$ Sat $\mathrm{S} \Leftrightarrow \vdash_{\mathrm{V}_{2}} \mathrm{t}$ Sat S
Although a sound and conservative extension cannot prove more sentences of the form t Sat S , it is still useful for extending the term language and installing a richer semantics. It can also extend the specifications, but the V_{2} of the next section will simply use \mathbb{S}.

2.2.3 The Extended Formal System V_{2}

The construction of V_{2} starts with the empty set of rules and proceeds in two steps:

1. For each rule of \bigvee_{1}, replace t 's by u 's and add the resulting rule. This change of metavariables yields the rule forms A_{2} and B_{2} in V_{2} :

$$
\begin{aligned}
& \mathrm{A}_{2} \frac{\mathrm{u}_{1} \operatorname{Sat} \mathrm{~S}_{1} \quad \ldots}{\mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{n}\right) \text { Sat } \mathrm{S}} \quad \mathrm{u}_{n} \text { Sat } \mathrm{S}_{n} \\
& \text { provided } \operatorname{Pred}\left(\mathrm{C}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{n}, \mathrm{~S}\right) . \\
& \mathrm{B}_{2} \frac{\mathrm{u} \text { Sat } \mathrm{S}_{1} \quad \ldots}{\mathrm{u} \text { Sat } \mathrm{S}} \quad \mathrm{u} \text { Sat } \mathrm{S}_{m} \\
& \text { provided } \operatorname{Pred}\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{m}, \mathrm{~S}\right) .
\end{aligned}
$$

2. Add the following rules for spec terms and joins:

$$
\begin{aligned}
& \text { Spec } \overline{\text { S Sat } \mathrm{S}} \\
& \text { Join } \frac{\mathrm{u} \mathrm{Sat} \mathrm{~S}}{\bigsqcup(\ldots, \mathrm{u}, \ldots) \text { Sat } \mathrm{S}}
\end{aligned}
$$

By induction on the derivation, V_{1} and V_{2} are equivalent with respect to derivability on T, i.e. $\vdash_{V_{1}}$ Sat $S \Leftrightarrow \vdash_{V_{2}} t$ Sat S. So for V_{2} to be a sound and conservative extension of V_{1}, it will suffice to equip V_{2} with a richer semantics and to prove it sound.

The Sat relation between U and \mathbb{S} is defined as follows:

Definition 6 (Extended Satisfaction).
$\mid=\mathrm{v}_{2} \mathrm{u}$ Sat $\mathrm{S} \stackrel{\text { def }}{=} \forall \mathrm{t} \in \llbracket \mathrm{u} \rrbracket \cdot \mid=\mathrm{v}_{1} \mathrm{t}$ Sat S
Furthermore, the U -semantics of t contains t as an element:

Lemma 3 (Term Embedding). $\forall \mathrm{t} \in \mathrm{T} \cdot \mathrm{t} \in \llbracket \mathrm{t} \rrbracket$

Proof. By induction on the structure of t . Suppose $\mathrm{t}=\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)$ and assume $\mathrm{t}_{1} \in \llbracket \mathrm{t}_{1} \rrbracket, \ldots, \mathrm{t}_{n} \in \llbracket \mathrm{t}_{n} \rrbracket$. So $\mathrm{t} \in \mathrm{C}\left(\llbracket \mathrm{t}_{1} \rrbracket, \ldots, \llbracket \mathrm{t}_{n} \rrbracket\right)$, which is a subset of $\operatorname{Terms}\left(\operatorname{Specs}\left(\mathrm{C}\left(\llbracket \mathrm{t}_{1} \rrbracket, \ldots, \llbracket \mathrm{t}_{n} \rrbracket\right)\right)\right)$ by Corollary 1.1.

Therefore $\models v_{2}$ t Sat $S \Rightarrow \models v_{1}$ t Sat S holds, and the soundness proof of V_{2} establishes that V_{2} is a sound and conservative extension of V_{1} :
Theorem 2 (Soundness of V_{2}). $\vdash \mathrm{v}_{2} \mathrm{u}$ Sat $\mathrm{S} \Rightarrow \models \mathrm{v}_{2} \mathrm{u}$ Sat S
Proof. By induction on the structure of the derivation:

- For each rule of the form A_{2}, assume $\operatorname{Pred}\left(\mathrm{C}, \mathrm{S}_{1}, \ldots, \mathrm{~S}_{n}, \mathrm{~S}\right)$ and assume

$$
\begin{aligned}
& \forall \mathrm{t}_{1} \in \llbracket \mathrm{u}_{1} \rrbracket \cdot=\mathrm{v}_{1} \mathrm{t}_{1} \text { Sat } \mathrm{S}_{1} \\
& \vdots \\
& \forall \mathrm{t}_{n} \in \llbracket \mathrm{u}_{n} \rrbracket \cdot \models \mathrm{v}_{1} \mathrm{t}_{n} \text { Sat } \mathrm{S}_{n}
\end{aligned}
$$

So $\forall \mathrm{t}_{1} \in \llbracket \mathrm{u}_{1} \rrbracket, \ldots, \mathrm{t}_{n} \in \llbracket \mathrm{u}_{n} \rrbracket \cdot \models \mathrm{v}_{1} \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)$ Sat S because the corresponding rule of the form A_{1} in V_{1} is sound with respect to Definition 1.1. So $S \in \operatorname{Specs}\left(C\left(\llbracket u_{1} \rrbracket, \ldots, \llbracket u_{n} \rrbracket\right)\right)$ and hence $\forall \mathrm{t} \in \operatorname{Terms}\left(\operatorname{Specs}\left(\mathrm{C}\left(\llbracket \mathrm{u}_{1} \rrbracket, \ldots, \llbracket \mathrm{u}_{n} \rrbracket\right)\right)\right) \cdot \vDash \mathrm{v}_{1} \mathrm{t}$ Sat S .

- For each rule of the form B_{2}, assume $\operatorname{Pred}\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{m}, \mathrm{~S}\right)$ and assume $\forall \mathrm{t} \in \llbracket \mathrm{u} \rrbracket \cdot \models \mathrm{v}_{1} \mathrm{t}$ Sat $\mathrm{S}_{1} \wedge \ldots \wedge \vDash \mathrm{v}_{1} \mathrm{t}$ Sat S_{m}.
Now $\forall \mathrm{t} \in \llbracket \mathrm{u} \rrbracket . \models \mathrm{v}_{1} \mathrm{t}$ Sat S because the corresponding rule of the form B_{1} in V_{1} is sound with respect to Definition 1.2.
- SpEC: $\forall \mathrm{t} \in \operatorname{Terms}(\{\mathrm{S}\}) \cdot{ }_{\mathrm{v}_{1}} \mathrm{t}$ Sat S by definition.
- JOIN: Assume $\forall \mathrm{t} \in \llbracket \mathrm{u} \rrbracket \cdot \mid=\mathrm{v}_{1} \mathrm{t}$ Sat S . If $\mathrm{t} \in \llbracket \sqcup(\ldots, \mathrm{u}, \ldots) \rrbracket$ then $\mathrm{t} \in \llbracket \mathrm{u} \rrbracket$ and hence $\models \mathrm{v}_{1} \mathrm{t}$ Sat S .

Extended satisfaction has an alternative characterization that freefinement will also use:
Lemma 4. $\models v_{2}$ u Sat $S \Leftrightarrow S \in \operatorname{Specs}(\llbracket u \rrbracket)$
Proof. $\quad \neq \mathrm{v}_{2}$ u Sat S
$\Leftrightarrow \quad\{$ definition $\}$
$\forall \mathrm{t} \in \llbracket \mathrm{u} \rrbracket \cdot \mid=\mathrm{v}_{1} \mathrm{t}$ Sat S
$\Leftrightarrow \quad\{$ definition of Specs $\}$
$S \in \operatorname{Specs}(\llbracket u \rrbracket)$

2.3 System V_{2} and Refinement

The next section will construct several refinement systems, or calculi, that are based on V_{2}. These refinement systems are formal systems for proving sentences of the form $u \sqsubseteq \mathrm{u}^{\prime}$. The definition of the refinement relation makes the semantics of refinement precise:
Definition 7 (Refinement). $\vDash \mathrm{u} \sqsubseteq \mathrm{u}^{\prime} \stackrel{\text { def }}{=} \llbracket u \rrbracket \supseteq \llbracket \mathrm{u}^{\prime} \rrbracket$
This definition leads to simple proofs, and is equivalent to several other formulations. The following theorem states one such alternative, and its proof mentions others:

Lemma 5 (Equivalent Characterization of Refinement).
$\models \mathrm{u} \sqsubseteq \mathrm{u}^{\prime} \Leftrightarrow \forall \mathrm{S} \cdot \models \mathrm{v}_{2} \mathrm{u}$ Sat $\mathrm{S} \Rightarrow \models \mathrm{v}_{2} \mathrm{u}^{\prime}$ Sat S
Proof. $\quad \llbracket \mathrm{u} \rrbracket \supseteq \llbracket \mathrm{u}^{\prime} \rrbracket$
$\Leftrightarrow \quad\{$ Lemma 2$\}$
$\operatorname{Terms}(\operatorname{Specs}(\llbracket \mathbf{u} \rrbracket)) \supseteq \operatorname{Terms}\left(\operatorname{Specs}\left(\llbracket \mathbf{u}^{\prime} \rrbracket\right)\right)$
$\Leftrightarrow \quad\{$ Corollary 1.3 $\}$
$\operatorname{Specs}(\llbracket \mathrm{u} \rrbracket) \subseteq \operatorname{Specs}\left(\llbracket \mathrm{u}^{\prime} \rrbracket\right)$
$\Leftrightarrow \quad\{$ definition of $\subseteq\}$

```
        \(\forall S \cdot S \in \operatorname{Specs}(\llbracket u \rrbracket) \Rightarrow S \in \operatorname{Specs}\left(\llbracket \mathbf{u}^{\prime} \rrbracket\right)\)
\(\Leftrightarrow \quad\{\) Lemma 4\(\}\)
    \(\forall \mathrm{S} \cdot \mid=\mathrm{v}_{2} \mathrm{u}\) Sat \(\mathrm{S} \Rightarrow \mid=\mathrm{v}_{2} \mathrm{u}^{\prime}\) Sat S
```

If $\neq \mathrm{v}_{1}$ - Sat _ is well-behaved, then there is also another explanation for defining $\mid=\mathrm{u} \sqsubseteq \mathrm{u}^{\prime}$ as $\llbracket \mathrm{u} \rrbracket \supseteq \llbracket \mathrm{u}^{\prime} \rrbracket$: u^{\prime} refines u iff every primitive term that refines u^{\prime} also refines u. Put differently, u^{\prime} refines u iff u^{\prime} constrains the set of eventual primitive terms that refinement can produce to the same or higher degree compared to u. So u can be seen as a placeholder for any of the primitive terms in $\llbracket u \rrbracket$, and the role of refinement is to reduce the uncertainty.

Many examples of refinements will follow later, so here is a small one: a join term implements the least upper bound (join) of its immediate subterms with respect to \sqsubseteq, hence the name. In particular:

$$
\begin{aligned}
& \text { 1. } \forall i \in 1 . . n \cdot \models \mathrm{u}_{i} \sqsubseteq \bigsqcup\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{n}\right) \\
& \text { 2. If }\left(\forall i \in 1 . . n \cdot \models \mathrm{u}_{i} \sqsubseteq \mathrm{u}\right) \text {, then } \models \bigsqcup\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{n}\right) \sqsubseteq \mathrm{u} .
\end{aligned}
$$

The notation $\mathrm{u} \equiv \mathrm{u}^{\prime}$ is a shorthand for $\llbracket \mathrm{u} \rrbracket=\llbracket \mathrm{u}^{\prime} \rrbracket$, which is equivalent to $\vDash \mathrm{u} \sqsubseteq \mathrm{u}^{\prime} \wedge \vDash \mathrm{u}^{\prime} \sqsubseteq \mathrm{u}$.

A refinement system R will be sound if and only if $\vdash_{\mathrm{R}} \mathrm{u} \sqsubseteq \mathrm{u}^{\prime}$ implies $\models \mathrm{u} \sqsubseteq \mathrm{u}^{\prime}$. In the next section, freefinement will construct several sound refinement systems where each system R is related to V_{2} by the properties Harmony 1 and 2 below.
Harmony 1. If $\vdash_{v_{2}} \mathrm{u}$ Sat S and $\vdash_{\mathrm{R}} \mathrm{u} \sqsubseteq \mathrm{u}^{\prime}$, then $\vdash_{\mathrm{v}_{2}} \mathrm{u}^{\prime}$ Sat S .
Intuitively, Harmony 1 says that V_{2} contains sufficient machinery to prove the same properties about u^{\prime} that it could prove about u . In other words, R is not too powerful for V_{2}.
Harmony 2. If $\vdash_{V_{2}}$ u Sat S , then $\vdash_{\mathrm{R}} \mathrm{S} \sqsubseteq \mathrm{u}$.
Intuitively, Harmony 2 means that the refinement system R contains sufficient machinery to refine a specification into any term that satisfies it according to V_{2}. In other words, V_{2} is embedded in R and hence R is not too weak.

Harmony 1 is stronger than the converse of Harmony 2:
Theorem 3. If V_{2} and a refinement system R are related by Harmony 1, then $\vdash_{\mathrm{R}} \mathrm{S} \sqsubseteq \mathrm{u} \Rightarrow \vdash_{\mathrm{v}_{2}} \mathrm{u}$ Sat S .

Proof. Assume $\vdash_{\mathrm{R}} \mathrm{S} \sqsubseteq \mathrm{u}$. Since $\vdash_{\mathrm{v}_{2}} \mathrm{~S}$ Sat S by SPEC, it follows from Harmony 1 that $\vdash_{v_{2}}$ u Sat S .

A refinement system R is called harmonic iff it satisfies Harmony 1 and 2. Harmonic refinement systems interoperate nicely with V_{2}. In fact, the proofs of Harmony 1 and 2 in the next section are constructive in the sense that they enable proof translation. Given a V_{2}-proof of u Sat S and an R-proof of $u \sqsubseteq u^{\prime}$, they describe a \bigvee_{2}-proof of u^{\prime} Sat S . Based on a V_{2}-proof of $\bar{u} S a t \mathrm{~S}$, they show how to build an R-proof for $S \sqsubseteq \mathrm{u}$. Since Harmony 1 is established constructively, given an R-proof of $S \sqsubseteq \mathrm{u}$, the proof of Theorem 3 shows how to build a V_{2}-proof for u Sat S .

The final refinement system that freefinement produces will also have a specific desired form. This form guarantees that refinement proofs are 'linear' developments where terms can be refined inplace. Formally, a refinement system has the desired form if the rules with premises describe either the transitivity or the monotonicity of refinement. All the other rules must be axioms, i.e. without any premise.

2.4 The Refinement of Refinement Systems

V_{2} can be linearized in a series of steps to obtain a sound and harmonic refinement system of the desired form. At most six steps are necessary according to this presentation - the exact number depends on V_{1}. The steps make it easy to prove and maintain
soundness and harmony, which would otherwise be more complex to establish for the final refinement calculus.

Many of the steps take a previously constructed refinement system and add or remove rules to obtain a new system. If a sound and harmonic refinement system is extended with a rule that is sound and respects Harmony 1, then the resulting system will be sound and harmonic. There is no need to prove Harmony 2 again, because the new refinement system can still derive all sentences that the old one could derive. If a rule is removed from a sound and harmonic refinement system, then the resulting system remains sound and will also be harmonic if it satisfies Harmony 2. A simple way of showing that Harmony 2 still holds is to show that any application of the old rule can be achieved by a combination of rules that remain in the system.

2.4.1 Getting Started: R_{1}

The first refinement system R_{1} is obtained from V_{2} by a simple syntactic transformation: each sentence u Sat S becomes $\mathrm{S} \sqsubseteq \mathrm{u}$. R_{1} has rules of the form A_{3} and B_{3}, a SPEC rule and also a Join rule if join terms were needed:

$$
\begin{aligned}
& \mathrm{A}_{3} \frac{\mathrm{~S}_{1} \sqsubseteq \mathrm{u}_{1} \quad \ldots \quad \mathrm{~S}_{n} \sqsubseteq \mathrm{u}_{n}}{\mathrm{~S} \sqsubseteq \mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{n}\right)} \\
& \operatorname{provided} \operatorname{Pred}\left(\mathrm{C}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{n}, \mathrm{~S}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{B}_{3} \frac{\mathrm{~S}_{1} \sqsubseteq \mathrm{u}}{} \quad \ldots \quad \mathrm{~S}_{m} \sqsubseteq \mathrm{u} \\
& \mathrm{~S} \sqsubseteq \mathrm{u} \\
& \text { provided } \operatorname{Pred}\left(\mathrm{S}_{1} \ldots, \mathrm{~S}_{m}, \mathrm{~S}\right) .
\end{aligned}
$$

$$
\operatorname{provided} \operatorname{Pred}\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{m}, \mathrm{~S}\right)
$$

$$
\operatorname{SPEC} \overline{\mathrm{S} \sqsubseteq \mathrm{~S}}
$$

$$
\text { Join } \frac{\mathrm{S} \sqsubseteq \mathrm{u}}{\mathrm{~S} \sqsubseteq \bigsqcup(\ldots, \mathrm{u}, \ldots)}
$$

V_{2} and R_{1} are isomorphic: a proof of u Sat S in V_{2} corresponds to a proof of $\mathrm{S} \sqsubseteq \mathrm{u}$ in R_{1} and vice versa, so $\vdash_{\mathrm{v}_{2}} \mathrm{u}$ Sat $\mathrm{S} \Leftrightarrow \vdash_{\mathrm{R}_{1}} \mathrm{~S} \sqsubseteq \mathrm{u}$. The soundness proof of R_{1} relies on the following equivalence:
Lemma 6. $\models v_{2} \mathrm{u}$ Sat $\mathrm{S} \Leftrightarrow \models \mathrm{S} \sqsubseteq \mathrm{u}$
Proof. $\quad \models \mathrm{v}_{2} \mathrm{u}$ Sat S
$\Leftrightarrow\{$ Lemma 4$\}$
$\{S\} \subseteq \operatorname{Specs}(\llbracket u \rrbracket)$
$\Leftrightarrow\{$ Lemma 1$\}$
$\llbracket \mathrm{u} \rrbracket \subseteq \operatorname{Terms}(\{\mathrm{S}\})$
Theorem 4 (Soundness of R_{1}). $\vdash_{\mathrm{R}_{1}} \mathrm{u} \sqsubseteq \mathrm{u}^{\prime} \Rightarrow \models \mathrm{u} \sqsubseteq \mathrm{u}^{\prime}$
Proof. If $\vdash_{\mathrm{R}_{1}} \mathrm{u} \sqsubseteq \mathrm{u}^{\prime}$, then u has the form S and $\vdash_{\mathrm{V}_{2}} \mathrm{u}^{\prime}$ Sat S . The soundness of V_{2} implies $\models \mathrm{V}_{2} \mathrm{u}^{\prime}$ Sat S , and Lemma 6 in turn implies $\equiv \mathrm{S} \sqsubseteq \mathrm{u}^{\prime}$.
Theorem 5. R_{1} is harmonic.
Proof. Harmony 2 holds by construction. For Harmony 1, assume $\vdash_{\mathrm{R}_{1}} \mathrm{u} \sqsubseteq \mathrm{u}^{\prime}$. Then u has the form $\mathrm{S}^{\prime \prime}$ and $\vdash \mathrm{v}_{2} \mathrm{u}^{\prime}$ Sat $\mathrm{S}^{\prime \prime}$ by construction. That $\vdash \mathrm{v}_{2} \mathrm{u}$ Sat S^{\prime} (i.e. $\vdash \vdash_{2} \mathrm{~S}^{\prime \prime}$ Sat S^{\prime}) implies $\vdash \vdash_{v_{2}} \mathrm{u}^{\prime}$ Sat S^{\prime} for all S^{\prime} follows by induction on the derivation of $\mathrm{S}^{\prime \prime}$ Sat S^{\prime} :

- Spec: S^{\prime} and $\mathrm{S}^{\prime \prime}$ are the same. Since $\vdash \mathrm{v}_{2} \mathrm{u}^{\prime}$ Sat $\mathrm{S}^{\prime \prime}$, it holds that $\vdash_{\mathrm{V}_{2}} \mathrm{u}^{\prime}$ Sat S^{\prime}.
- For each rule of the form $\mathrm{B}_{2}: \mathrm{S}$ and S^{\prime} are the same. Assume $\operatorname{Pred}\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{m}, \mathrm{~S}\right), \vdash_{\mathrm{v}_{2}} \mathbf{u}$ Sat $\mathrm{S}_{1}, \ldots, \vdash_{v_{2}} \mathbf{u}$ Sat S_{m}, and by the induction hypothesis also $\vdash_{v_{2}} \mathrm{u}^{\prime}$ Sat $\mathrm{S}_{1}, \ldots, \vdash_{\mathrm{v}_{2}} \mathrm{u}^{\prime}$ Sat S_{m}. So the rule being considered is applicable and $\vdash \mathrm{v}_{2} \mathrm{u}^{\prime}$ Sat S . Hence $\vdash_{V_{2}} \mathrm{u}^{\prime}$ Sat S^{\prime}.

Note: if V_{2} has only rules of the form A_{2} where $n=0$ and/or rules of the form B_{2} where $m=0$, then R_{1} is a refinement system of the desired form and freefinement stops.

2.4.2 Adding Transitivity: R_{2}

The refinement system R_{2} extends R_{1} with the rule Trans which states that refinement is transitive:

$$
\text { TRANS } \frac{\mathrm{u}_{1} \sqsubseteq \mathrm{u}_{2} \quad \mathrm{u}_{2} \sqsubseteq \mathrm{u}_{3}}{\mathrm{u}_{1} \sqsubseteq \mathrm{u}_{3}}
$$

TRANS is sound because \supseteq is transitive, and it maintains Harmony 1 since implication is transitive. So R_{2} is sound and harmonic.

2.4.3 Simplification: R_{3}

The presence of SPEC and Trans in R_{2} allows the simplification of rules of the form B_{3} with $m=1$:

$$
\begin{aligned}
& \mathrm{B}_{3} \frac{\mathrm{~S}_{1} \sqsubseteq \mathrm{u}}{\mathrm{~S} \sqsubseteq \mathrm{u}} \\
& \text { provided Pred }\left(\mathrm{S}_{1}, \mathrm{~S}\right) .
\end{aligned}
$$

For an arbitrary rule of this form, consider the derivation

$$
\begin{aligned}
\operatorname{SPEC} & \frac{\mathrm{S}_{1} \sqsubseteq \mathrm{~S}_{1}}{\mathrm{~B}_{3}} \frac{\mathrm{~S} \sqsubseteq \mathrm{~S}_{1}}{}
\end{aligned}
$$

$$
\text { provided } \overline{\operatorname{Pr} e d}\left(\mathrm{~S}_{1}, \mathrm{~S}\right)
$$

By virtue of having been derived, the new rule

$$
\begin{aligned}
& \mathrm{B}_{3} \overline{\mathrm{~S} \sqsubseteq \mathrm{~S}_{1}} \\
& \text { provided } \operatorname{Pred}\left(\mathrm{S}_{1}, \mathrm{~S}\right) .
\end{aligned}
$$

is sound and maintains Harmony 1, and can therefore be added to R_{2} to obtain a sound and harmonic refinement system. In fact, it can replace the old version without breaking Harmony 2, since removing the old version will not decrease the derivable set of sentences: every application of the old B_{3} can be changed into:

$$
\mathrm{B}_{3} \stackrel{\mathrm{~S} \sqsubseteq \mathrm{~S}_{1}}{\mathrm{TRANS}} \frac{\mathrm{~S}_{1} \sqsubseteq \mathrm{u}}{\mathrm{~S} \sqsubseteq \mathrm{u}}
$$

since $\operatorname{Pred}\left(S_{1}, S\right)$ is guaranteed.
The refinement system R_{3} is the same as R_{2}, except that the rules of the form B_{3} with $m=1$ are replaced by their simplified versions. R_{3} is sound and harmonic.

Note: if V_{2} has only rules of the form A_{2} where $n=0$ and rules of the form B_{2} where $m \leq 1$, then R_{3} is a refinement system of the desired form and freefinement stops.

2.4.4 Adding Monotonicity: R_{4}

All the constructors of U are monotone with respect to \sqsubseteq, i.e. the following rules are sound:

$$
\begin{aligned}
& \mathrm{C}-i \frac{\mathrm{u}_{i} \sqsubseteq \mathrm{u}_{i}^{\prime}}{\mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}, \ldots, \mathrm{u}_{n}\right) \sqsubseteq \mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}^{\prime}, \ldots, \mathrm{u}_{n}\right)} \\
& \text { Join- } i \frac{\mathrm{u}_{i} \sqsubseteq \mathrm{u}_{i}^{\prime}}{\bigsqcup\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}, \ldots, \mathrm{u}_{n}\right) \sqsubseteq \bigsqcup\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}^{\prime}, \ldots, \mathrm{u}_{n}\right)}
\end{aligned}
$$

Moreover, these rules maintain harmony:
Lemma 7. C-i maintains Harmony 1.
Proof. Assume $\forall \mathrm{S}^{\prime} \cdot \vdash_{\mathrm{v}_{2}} \mathrm{u}_{i}$ Sat $\mathrm{S}^{\prime} \Rightarrow \vdash_{\mathrm{v}_{2}} \mathrm{u}_{i}^{\prime}$ Sat S^{\prime}. That $\forall \mathrm{S}$. $\vdash_{\mathrm{v}_{2}} \mathrm{C}^{\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}, \ldots, \mathrm{u}_{n}\right) \text { Sat } \mathrm{S} \Rightarrow \vdash_{\mathrm{v}_{2}} \mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}^{\prime}, \ldots, \mathrm{u}_{n}\right) \text { Sat }}$ S follows by induction on the derivation of $\mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}, \ldots, \mathrm{u}_{n}\right)$ Sat S:

- A_{2} : Suppose $\vdash_{V_{2}} \mathrm{u}_{j}$ Sat S_{j} for $j \in 1 . . n$, and also suppose $\operatorname{Pred}\left(C, S_{1}, \ldots, S_{n}, S\right)$ holds. Since $\vdash_{v_{2}} u_{i}^{\prime}$ Sat S_{i}, the same rule A_{2} can be applied to derive $\mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}^{\prime}, \ldots, \mathrm{u}_{n}\right)$ Sat S .
- B_{2} : Suppose $\vdash_{\mathrm{V}_{2}} \mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}, \ldots, \mathrm{u}_{n}\right)$ Sat S_{j} for $j \in 1 . . m$, and suppose $\operatorname{Pred}\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{m}, \mathrm{~S}\right)$. The induction hypothesis is the assumption $\vdash_{V_{2}} \mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}^{\prime}, \ldots, \mathrm{u}_{n}\right)$ Sat S_{j} for $j \in 1$..m. Since $\operatorname{Pred}\left(S_{1}, \ldots, S_{m}, S\right)$, the same rule B_{2} is applicable and hence $\vdash_{\mathrm{V}_{2}} \mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}^{\prime}, \ldots, \mathrm{u}_{n}\right)$ Sat S .

Lemma 8. Join- i maintains Harmony 1.
Proof. Assume $\forall \mathrm{S}^{\prime} \cdot \vdash^{2} \mathrm{u}_{i}$ Sat $\mathrm{S}^{\prime} \Rightarrow \vdash^{2} \mathrm{u}_{i}^{\prime}$ Sat S^{\prime}. That $\forall \mathrm{S}$. $\vdash \mathrm{v}_{2} \bigsqcup\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}, \ldots, \mathrm{u}_{n}\right)$ Sat $\mathrm{S} \Rightarrow \vdash \mathrm{v}_{2} \sqcup\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}^{\prime}, \ldots, \mathrm{u}_{n}\right)$ Sat S follows by induction on the derivation of $\bigsqcup\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}, \ldots, \mathrm{u}_{n}\right)$ Sat S:

- Join: Suppose \mathbf{u}_{j} Sat \mathbf{S} was the premise for some $j \in 1 . . n$. If $j \neq i$, then apply Join to the premise u_{j} Sat S to derive the required $\bigsqcup\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}^{\prime}, \ldots, \mathrm{u}_{n}\right)$ Sat S . If $j=i$, then by assumption $\vdash \mathrm{v}_{2} \mathrm{u}_{i}^{\prime}$ Sat S holds, and the result follows by Join.
- B_{2} : Suppose $\vdash^{\mathrm{V}_{2}} \sqcup\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}, \ldots, \mathrm{u}_{n}\right)$ Sat S_{j} for $j \in 1 . . m$, and suppose $\operatorname{Pred}\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{m}, \mathrm{~S}\right)$. The induction hypothesis is the assumption $\vdash_{v_{2}} \bigsqcup\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}^{\prime}, \ldots, \mathrm{u}_{n}\right)$ Sat S_{j} for $j \in 1$..m. Since $\operatorname{Pred}\left(S_{1}, \ldots, S_{m}, S\right)$, the same rule B_{2} is applicable and hence $\vdash_{v_{2}} \sqcup\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}^{\prime}, \ldots, \mathrm{u}_{n}\right)$ Sat S .
Let the notation $\mathrm{v}[\mathrm{u}]$ denote a term in U whose parse tree is factored into two parts: a core tree v with a 'hole' where the subtree for u fits. The rule Mono packages $\mathrm{C}-i$ and Join- i in a single convenient form:

$$
\text { Mono } \frac{\mathrm{u} \sqsubseteq \mathrm{u}^{\prime}}{\mathrm{v}[\mathrm{u}] \sqsubseteq \mathrm{v}\left[\mathrm{u}^{\prime}\right]}
$$

Informally, the rule MONO allows in-place refinement: if u_{0} can be factored as $v[u]$, and u^{\prime} refines u, then $v\left[u^{\prime}\right]$ refines u_{0}.

Mono is sound and maintains harmony because $\mathrm{C}-i$ and Join- i are sound and maintain harmony. The refinement system R_{4} extends R_{3} with Mono. It is sound and harmonic.

2.4.5 Simplification: R_{5}

The rule Mono makes it possible to simplify:

- The Join rule:

$$
\text { Join } \frac{\mathrm{S} \sqsubseteq \mathrm{u}}{\mathrm{~S} \sqsubseteq \sqcup(\ldots, \mathrm{u}, \ldots)}
$$

- Rules of the form A_{3} with $n \geq 1$:

$$
\begin{aligned}
& \mathrm{A}_{3} \frac{\mathrm{~S}_{1} \sqsubseteq \mathrm{u}_{1} \quad \ldots \quad \mathrm{~S}_{n} \sqsubseteq \mathrm{u}_{n}}{\mathrm{~S} \sqsubseteq \mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{n}\right)} \\
& \text { provided } \operatorname{Pred}\left(\mathrm{C}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{n}, \mathrm{~S}\right) .
\end{aligned}
$$

Consider the derivation:

$$
\text { Join } \frac{\text { Spec } \overline{\mathrm{S} \sqsubseteq \mathrm{~S}}}{\mathrm{~S} \sqsubseteq \bigsqcup(\ldots, \mathrm{~S}, \ldots)}
$$

By virtue of having been derived, the simplified rule

$$
\text { Join } \overline{\mathrm{S} \sqsubseteq \bigsqcup(\ldots, \mathrm{~S}, \ldots)}
$$

is sound and respects Harmony 1. It can replace the old version of JoIn without decreasing derivability, because any application of the old version can be achieved by:

Likewise, for each rule of the form A_{3}, the derived rule

$$
\begin{aligned}
& \mathrm{A}_{3} \xlongequal[\mathrm{~S} \sqsubseteq \mathrm{C}\left(\mathrm{~S}_{1}, \ldots, \mathrm{~S}_{n}\right)]{ } \\
& \text { provided } \operatorname{Pred}\left(\mathrm{C}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{n}, \mathrm{~S}\right) .
\end{aligned}
$$

is sound and respects harmony. It makes the old version redundant, since any application of the old rule can be replaced by:

where E_{i} is given by:

$$
\frac{\mathrm{S} \sqsubseteq \mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i-1}, \mathrm{~S}_{i}, \ldots, \mathrm{~S}_{n}\right)}{\mathrm{TRANS}} \frac{\mathrm{P}_{i}}{\mathrm{~S} \sqsubseteq \mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}, \mathrm{~S}_{i+1}, \ldots, \mathrm{~S}_{n}\right)}
$$

and P_{i} is the proof tree:

$$
\text { Mono } \frac{\mathrm{S}_{i} \sqsubseteq \mathrm{u}_{i}}{\mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i-1}, \mathrm{~S}_{i}, \ldots, \mathrm{~S}_{n}\right) \sqsubseteq \mathrm{C}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i}, \mathrm{~S}_{i+1}, \ldots, \mathrm{~S}_{n}\right)}
$$

Apart from these simplifications, the refinement system R_{5} is the same as R_{4}. It is sound and harmonic.

Note: if V_{2} does not include rules of the form B_{2} where $m>1$, then R_{5} has the desired form and freefinement stops.

2.4.6 Wrapping Up: R_{6}

It remains to simplify rules of the form B_{3} with $m>1$:

$$
\begin{aligned}
& \mathrm{B}_{3} \frac{\mathrm{~S}_{1} \sqsubseteq \mathrm{u} \quad \ldots}{\mathrm{~S} \sqsubseteq \mathrm{u}} \quad \mathrm{~S}_{m} \sqsubseteq \mathrm{u} \\
& \text { provided } \operatorname{Pred}\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{m}, \mathrm{~S}\right) .
\end{aligned}
$$

If $\operatorname{Pred}\left(S_{1}, \ldots, S_{m}, S\right)$, then R_{5} can derive:

$$
\begin{array}{r}
\text { Join } \\
\mathrm{B}_{3} \\
\frac{\mathrm{~S}_{1} \sqsubseteq \bigsqcup\left(\mathrm{~S}_{1}, \ldots, \mathrm{~S}_{m}\right)}{} \quad \ldots \quad \text { Join } \frac{\mathrm{S}_{m} \sqsubseteq \bigsqcup\left(\mathrm{~S}_{1}, \ldots, \mathrm{~S}_{m}\right)}{} \\
\mathrm{S} \sqsubseteq \bigsqcup\left(\mathrm{~S}_{1}, \ldots, \mathrm{~S}_{m}\right)
\end{array}
$$

The derived rule

$$
\begin{aligned}
& \mathrm{B}_{3} \xlongequal[\mathrm{~S} \sqsubseteq \sqcup\left(\mathrm{~S}_{1}, \ldots, \mathrm{~S}_{m}\right)]{=} \\
& \text { provided } \operatorname{Pred}\left(\mathrm{S}_{1}, \ldots, \mathrm{~S}_{m}, \mathrm{~S}\right) .
\end{aligned}
$$

is therefore sound and respects Harmony 1. Together with the rule:

$$
\text { Unjoin } \overline{\bigsqcup(u, \ldots, u) \sqsubseteq u}
$$

which is trivially sound and respects Harmony 1, it can replace the old B_{3} because any application of the old rule can be rewritten as:

where G is Unjoin, F_{i} is given by:

$$
\frac{\mathrm{S} \sqsubseteq \bigsqcup(\overbrace{\mathrm{u}, \ldots, \mathrm{u}}^{\mathrm{i}-1}, \mathrm{~S}_{i}, \ldots, \mathrm{~S}_{m}) \sqrt{\mathrm{TRANS}} \frac{\mathrm{Q}_{i}}{\mathrm{~S} \sqsubseteq \bigsqcup\left(\mathrm{u}, \ldots, \mathrm{u}, \mathrm{~S}_{i+1}, \ldots, \mathrm{~S}_{m}\right)}}{\square}
$$

and Q_{i} is the proof tree:

$$
\text { Mono } \frac{\mathrm{S}_{i} \sqsubseteq \mathrm{u}}{\bigsqcup\left(\mathrm{u}, \ldots, \mathrm{u}, \mathrm{~S}_{i}, \ldots, \mathrm{~S}_{m}\right) \sqsubseteq \bigsqcup(\underbrace{\mathrm{u}, \ldots, \mathrm{u}}_{i}, \mathrm{~S}_{i+1}, \ldots, \mathrm{~S}_{m})}
$$

R_{6} is the same as R_{5}, except that it includes Unjoin and replaces rules of the form B_{3} where $m>1$ with their simplified versions. R_{6} is sound, harmonic and of the desired form.

2.5 Discussion

R_{6} can be made more powerful in several ways. For example, the following generalization of Join is sound and preserves Harmony 1 :

$$
\mathrm{JOIN}^{\prime} \overline{\mathrm{u} \sqsubseteq \bigsqcup(\ldots, \mathrm{u}, \ldots)}
$$

The same holds for the reflexivity of refinement, which generalizes Spec, and other rules such as UnNest:

UNNEST $\quad \bigsqcup\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{n}\right) \sqsubseteq \bigsqcup\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{i-1}, \mathrm{u}_{1}^{\prime}, \ldots, \mathrm{u}_{m}^{\prime}, \mathrm{u}_{i+1}, \ldots, \mathrm{u}_{n}\right)$ provided $1 \leq i \leq n$ and $\mathrm{u}_{i}=\bigsqcup\left(\mathrm{u}_{1}^{\prime}, \ldots, \mathrm{u}_{m}^{\prime}\right)$.

In specific applications of freefinement, it might also be useful to add derived rules to R_{6}. Examples of this will follow later.

Freefinement assumes as little as possible about ${=v_{1} \text { Sat }}$ and is consequently very generic. As one might expect, additional assumptions can help to construct more powerful refinement systems. For example, suppose 'plus' is a constructor that is commutative in the sense that

$$
\forall \mathrm{t}_{1}, \mathrm{t}_{2} \in \mathrm{~T}, \mathrm{~S} \in \mathbb{S} \cdot \models_{1} \operatorname{plus}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \text { Sat } \mathrm{S} \Leftrightarrow \models \mathrm{v}_{1} \operatorname{plus}\left(\mathrm{t}_{2}, \mathrm{t}_{1}\right) \text { Sat } \mathrm{S}
$$

Then $\operatorname{Specs}\left(\operatorname{plus}\left(\llbracket \mathbf{u}_{1} \rrbracket, \llbracket \mathrm{u}_{2} \rrbracket\right)\right)=\operatorname{Specs}\left(\operatorname{plus}\left(\llbracket \mathrm{u}_{2} \rrbracket, \llbracket \mathrm{u}_{1} \rrbracket\right)\right)$ because

$$
\begin{array}{ll}
& \mathrm{S} \in \operatorname{Specs}\left(\operatorname{plus}\left(\llbracket \mathbf{u}_{1} \rrbracket, \llbracket \mathbf{u}_{2} \rrbracket\right)\right) \\
\Leftrightarrow & \forall \mathrm{t}_{1} \in \llbracket \mathbf{u}_{1} \rrbracket, \mathrm{t}_{2} \in \llbracket \mathbf{u}_{2} \rrbracket \cdot \models v_{1} \text { plus }\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \text { Sat } \mathrm{S} \\
\Leftrightarrow & \forall \mathrm{t}_{1} \in \llbracket \mathbf{u}_{1} \rrbracket, \mathrm{t}_{2} \in \llbracket\left[\mathbf{u}_{2} \rrbracket \cdot \models v_{1} \text { plus }\left(\mathrm{t}_{2}, \mathrm{t}_{1}\right) \text { Sat } \mathrm{S}\right. \\
\Leftrightarrow & \mathrm{S} \in \operatorname{Specs}\left(\operatorname{plus}\left(\llbracket \mathbf{u}_{2} \rrbracket, \llbracket \mathbf{u}_{1} \rrbracket\right)\right)
\end{array}
$$

So $\llbracket p l u s\left(u_{1}, u_{2}\right) \rrbracket=\llbracket \operatorname{plus}\left(\mathrm{u}_{2}, \mathrm{u}_{1}\right) \rrbracket$ and therefore the refinement rule $\operatorname{plus}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) \equiv \operatorname{plus}\left(\mathrm{u}_{2}, \mathrm{u}_{1}\right)$ is sound. Depending on the rules of V_{1}, it might also preserve harmony.

As mentioned before, the semantic function $\llbracket-\rrbracket$ and the refinement order \sqsubseteq have nice interpretations when $\models v_{1}$. Sat _ is wellbehaved. Here is the definition:
Definition 8 (Well-behavedness). $\models{ }_{v_{1}-}$ Sat ${ }_{-}$is well-behaved iff $\forall \mathrm{C} \in \mathbb{K}, \mathrm{t}_{1}, \ldots, \mathrm{t}_{n} \in \mathrm{~T}, \mathrm{~S} \in \mathbb{S} \cdot \models_{\mathrm{v}_{1}} \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)$ Sat $\mathrm{S} \Rightarrow$
$\forall \mathrm{t} \in \mathrm{C}\left(\operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{1}\right\}\right)\right), \ldots, \operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{n}\right\}\right)\right)\right) \cdot \models \mathrm{v}_{1} \mathrm{t} \operatorname{Sat} \mathrm{S}$
There is also an alternative characterization of well-behavedness:
Lemma 9. $\models v_{1}$ Sat _ is well-behaved iff
$\forall \mathrm{C} \in \mathbb{K}, \mathrm{t}_{1}, \ldots, \mathrm{t}_{n} \in \mathrm{~T} \cdot \operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)\right\}\right)\right)=$
$\operatorname{Terms}\left(\operatorname{Specs}\left(\mathbf{C}\left(\operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{1}\right\}\right)\right), \ldots, \operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{n}\right\}\right)\right)\right)\right)\right)$
Proof. $\mathrm{t}_{i} \in \operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{i}\right\}\right)\right)$ for $i \in 1 . . n$ by Corollary 1.1, so
$\left\{\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)\right\} \subseteq \mathrm{C}\left(\operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{1}\right\}\right)\right), \ldots, \operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{n}\right\}\right)\right)\right)$.
Hence by Corollary 2.3 in the Appendix, $\operatorname{Specs}\left(\left\{\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)\right\}\right) \supseteq$
$\operatorname{Specs}\left(\mathrm{C}\left(\operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{1}\right\}\right)\right), \ldots, \operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{n}\right\}\right)\right)\right)\right)$. Therefore:
$\models \mathrm{v}_{1}$ - Sat - is well-behaved
\Leftrightarrow
$\forall \mathrm{C} \in \mathbb{K}, \mathrm{t}_{1}, \ldots, \mathrm{t}_{n} \in \mathrm{~T}, \mathrm{~S} \in \mathbb{S} \cdot \models_{\mathrm{V}_{1}} \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)$ Sat $\mathrm{S} \Rightarrow$
$\forall \mathrm{t} \in \mathrm{C}\left(\operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{1}\right\}\right)\right), \ldots, \operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{n}\right\}\right)\right)\right) \cdot \models_{\mathrm{v}_{1}} \mathrm{t} \operatorname{Sat} \mathrm{S}$ \Leftrightarrow
$\forall \mathrm{C} \in \mathbb{K}, \mathrm{t}_{1}, \ldots, \mathrm{t}_{n} \in \mathrm{~T}, \mathrm{~S} \in \mathbb{S} \cdot \mathrm{~S} \in \operatorname{Specs}\left(\left\{\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)\right\}\right) \Rightarrow$
$S \in \operatorname{Specs}\left(C\left(\operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{1}\right\}\right)\right), \ldots, \operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{n}\right\}\right)\right)\right)\right)$ \Leftrightarrow
$\forall \mathrm{C} \in \mathbb{K}, \mathrm{t}_{1}, \ldots, \mathrm{t}_{n} \in \mathrm{~T} \cdot \operatorname{Specs}\left(\left\{\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)\right\}\right) \subseteq$
$\operatorname{Specs}\left(\mathbf{C}\left(\operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{1}\right\}\right)\right), \ldots, \operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{n}\right\}\right)\right)\right)\right)$
$\Leftrightarrow \quad$ \{by the reasoning above $\}$
$\forall \mathrm{C} \in \mathbb{K}, \mathrm{t}_{1}, \ldots, \mathrm{t}_{n} \in \mathrm{~T} \cdot \operatorname{Specs}\left(\left\{\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)\right\}\right)=$
$\operatorname{Specs}\left(C\left(\operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{1}\right\}\right)\right), \ldots, \operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{n}\right\}\right)\right)\right)\right)$
The result then follows by Corollary 1.3.
Freefinement does not require well-behavedness of $\models{ }_{v_{1}-} S a t_{-}$, but the next theorem shows that the intuitions behind the definitions
are simple when $\models v_{1-}$ Sat ${ }_{-}$is well-behaved. For example, Theorem 6.3 says that $\llbracket u \rrbracket$ is the set of all primitive terms that refine u.
Theorem 6. If $\models_{v_{1}-}$ Sat ${ }_{-}$is well-behaved, then
6.1 $\forall \mathrm{t} \in \mathrm{T} \cdot \llbracket \mathrm{t} \rrbracket=\operatorname{Terms}(\operatorname{Specs}(\{\mathrm{t}\}))$
6.2 $\forall \mathrm{t} \in \mathrm{T}, \mathrm{S} \in \mathbb{S} \cdot \models \mathrm{v}_{1} \mathrm{t}$ Sat $\mathrm{S} \Leftrightarrow \neq \mathrm{v}_{2} \mathrm{t}$ Sat S
6.3 $\forall \mathrm{t} \in \mathrm{T}, \mathrm{u} \in \mathrm{U} \cdot \mathrm{t} \in \llbracket \mathrm{u} \rrbracket \Leftrightarrow \mid=\mathrm{u} \sqsubseteq \mathrm{t}$

Proof.
6.1 By induction on the structure of t . Suppose $\mathrm{t}=\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)$ and assume $\llbracket \mathrm{t}_{i} \rrbracket=\operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{i}\right\}\right)\right)$ for $i \in 1 . . n$. Then:
$\llbracket t \rrbracket=\operatorname{Terms}\left(\operatorname{Specs}\left(C\left(\llbracket \mathrm{t}_{1} \rrbracket, \ldots, \llbracket \mathrm{t}_{n} \rrbracket\right)\right)\right)$
$=\quad\{$ induction hypothesis $\}$
$\operatorname{Terms}\left(\operatorname{Specs}\left(\mathrm{C}\left(\operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{1}\right\}\right)\right), \ldots, \operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{n}\right\}\right)\right)\right)\right)\right)$
$=\quad\{$ Lemma 9$\}$
$\operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)\right\}\right)\right)=\operatorname{Terms}(\operatorname{Specs}(\{\mathrm{t}\}))$.
$6.2 \quad \models \mathrm{v}_{1} \mathrm{tSat}$ S
$\Leftrightarrow \quad\{$ definition of Specs $\}$
$S \in \operatorname{Specs}(\{t\})$
$\Leftrightarrow \quad$ \{Corollary 2.7 in the Appendix $\}$ $S \in \operatorname{Specs}(\operatorname{Terms}(\operatorname{Specs}(\{t\})))$
$\Leftrightarrow \quad\{$ Theorem 6.1\} $S \in \operatorname{Specs}(\llbracket \downarrow \rrbracket)$
$\Leftrightarrow\{$ Lemma 4$\}$
$1=\mathrm{v}_{2} \mathrm{t}$ Sat S
6.3 The \Leftarrow proof is trivial since $t \in \llbracket t \rrbracket$. For \Rightarrow, assume $\{t\} \subseteq$ $\llbracket u \rrbracket$. Then $\operatorname{Terms}(\operatorname{Specs}(\{t\})) \subseteq \operatorname{Terms}(\operatorname{Specs}(\llbracket u \rrbracket))$ by Corollary 2.5 in the Appendix, and $\llbracket t \rrbracket \subseteq \llbracket u \rrbracket$ by Theorem 6.1 and Lemma 2.

Whether $\models \mathrm{v}_{1}$ - Sat - is well-behaved depends partly on the expressivity of specifications. For example, suppose

$$
\mathbb{K}=\{\mathrm{x}:=\mathrm{e} \mid \mathrm{e} \text { is an arithmetic expression }\} \cup\{-\nmid-\}
$$

i.e. there is a nullary constructor $\mathrm{x}:=\mathrm{e}$ for all arithmetic expressions e, and a binary constructor for sequential composition. Suppose $\mathbb{S}=\{$ Even_x $\}$, and $\models_{v_{1}} \mathrm{t}$ Sat Even_x holds iff, if t is executed in any state where x is even, then x is even in every resulting state. So $=v_{1} \mathrm{x}:=\mathrm{x}+1 \rho \mathrm{x}:=\mathrm{x}+1$ Sat Even_x, but it is not the case that $\models v_{1} \mathrm{x}:=\mathrm{x}+1$ Sat Even_x. In fact, $\mathrm{x}:=\mathrm{x}+1$ does not satisfy any specification. This implies that $\operatorname{Terms}(\operatorname{Specs}(\{x:=x+1\}))=T$, so $\mathrm{x}:=1 \stackrel{\mathrm{x}}{\mathrm{x}}:=1 \in \operatorname{Terms}(\operatorname{Specs}(\{\mathrm{x}:=\mathrm{x}+1\})) \stackrel{\operatorname{Terms}(\operatorname{Specs}(\{\mathrm{x}:=}{ }$ $\mathrm{x}+1\})$). But $\models_{\mathrm{v}_{1} \mathrm{x}}:=1 \stackrel{\mathrm{x}}{\mathrm{x}}:=1$ Sat Even_x does not hold, hence $\models v_{1}$ Sat ${ }_{-}$is not well-behaved.

Even though $\models \mathrm{v}_{1}$ Sat _ is not well-behaved, it is still possible to have inference rules that are amenable to freefinement, for example:

$$
\begin{aligned}
& 1 \overline{\mathrm{x}:=\mathrm{e} \text { Sat } \text { Even_x }} \\
& \text { provided } \mathrm{e} \in\{\ldots,-2,0,2, \ldots\} .
\end{aligned} \quad 2 \frac{\mathrm{t} \text { Sat } \text { Even_x } \quad \mathrm{t}^{\prime} \text { Sat Even_x }}{\mathrm{t} \stackrel{\mathrm{t}}{\mathrm{t}} \mathrm{t}^{\prime} \text { Sat Even_x }}
$$

If \mathbb{S} is instead a set of specifications of the form $[P, Q]$, where P is a precondition and Q a postcondition, and
$\models \mathrm{v}_{1} \mathrm{t}$ g $\mathrm{t}^{\prime} \operatorname{Sat}[P, Q] \Leftrightarrow \exists R \cdot \models_{\mathrm{v}_{1}} \mathrm{t}$ Sat $[P, R] \wedge \models{ }_{\mathrm{v}_{1}} \mathrm{t}^{\prime} \operatorname{Sat}[R, Q]$
then it is easy to show that this $\models v_{1-}$ Sat t_{-}is well-behaved.
The completeness of V_{1} is a sufficient condition for the wellbehavedness of $\models v_{1_{-}}$Sat -:
Theorem 7. If \bigvee_{1} is complete, then $\models_{V_{1}}$ Sat t_{-}is well-behaved.
Proof. If V_{1} is complete, then $\models \mathrm{V}_{1} \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)$ Sat $\mathrm{S} \Leftrightarrow$ $\vdash \mathrm{v}_{1} \mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)$ Sat S . The well-behavedness of $\models \mathrm{v}_{1}$ Sat - follows by induction on the derivation of $\mathrm{C}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)$ Sat S :

- For each rule of the form A_{1}, assume $\operatorname{Pred}\left(\mathrm{C}, \mathrm{S}_{1}, \ldots, \mathrm{~S}_{n}, \mathrm{~S}\right)$ and $\mathrm{S}_{i} \in \operatorname{Specs}\left(\left\{\mathrm{t}_{i}\right\}\right)$ for all $i \in 1 . . n$. So $\forall \mathrm{t}_{i}^{\prime} \in \operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{i}\right\}\right)\right)$. $\models \mathrm{v}_{1} \mathrm{t}_{i}^{\prime}$ Sat S_{i} for all $i \in 1 . . n$. The rule is sound with respect to Definition 1.1, hence
$\forall \mathrm{t} \in \mathrm{C}\left(\operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{1}\right\}\right)\right), \ldots, \operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{n}\right\}\right)\right)\right) \cdot \mid=\mathrm{V}_{1} \mathrm{t}$ Sat S .
- For each rule of the form B_{1}, assume $\operatorname{Pred}\left(S_{1}, \ldots, S_{m}, S\right)$ and $\forall \mathrm{t} \in \mathrm{C}\left(\operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{1}\right\}\right)\right), \ldots, \operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{n}\right\}\right)\right)\right) \cdot \mid=\mathrm{v}_{1} \mathrm{t}$ Sat S_{i} for all $i \in 1$..m. The rule is sound w.r.t. Definition 1.2, so $\forall \mathrm{t} \in \mathrm{C}\left(\operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{1}\right\}\right)\right), \ldots, \operatorname{Terms}\left(\operatorname{Specs}\left(\left\{\mathrm{t}_{n}\right\}\right)\right)\right) \cdot=_{\mathrm{V}_{1}} \mathrm{t}$ Sat S .

3. Applications

3.1 Lambda Calculus

The top left corner of Figure 1 contains a type system λ_{1} for the lambda calculus. By considering pairs of the form (typing context, type) as specifications, it is possible to apply freefinement and obtain a refinement calculus for (extended) lambda terms in the spirit of Denney [4]. The inputs to freefinement are as follows:

1. $\mathbb{K}=\operatorname{Var} \cup\{\lambda \mathrm{x} .-\mid \mathrm{x} \in \operatorname{Var}\} \cup\left\{Z_{-}\right\}$

Note that \mathbb{K} defines the language T of lambda terms:

$$
\mathrm{e}::=\mathrm{x}|\lambda \mathrm{x} . \mathrm{e}| \mathrm{e} \mathrm{e}^{\prime}
$$

Here and in the following, x ranges over the set of variables Var, and e ranges over T .
2. $\mathbb{S}=\{[\Gamma ; \tau] \mid \Gamma \in$ Context $\wedge \tau \in$ Type $\}$, where Context is the set of typing contexts and Type is the set of types that contains the type constructor $\rightarrow_{\text {. }}$. The intended representation of a typing context Γ is a list of variable names paired with types. Variables may appear more than once in Γ, and variable lookup uses the rightmost occurrence. In the following, σ and τ range over Type, and Γ ranges over Context.
3. $\models v_{1}$-Sat ${ }_{-}$is defined by:

- $\models_{1} \mathrm{x} \operatorname{Sat}[\Gamma ; \tau] \Leftrightarrow \mathrm{x}: \tau \in \Gamma$
$\bullet \models v_{1} \lambda \mathrm{x}$. e Sat $[\Gamma ; \tau], \Leftrightarrow$ $\exists \sigma, \tau^{\prime} \cdot \tau=\sigma \rightarrow \tau^{\prime} \wedge \models{ }_{\mathrm{v}_{1}} \mathrm{e}$ Sat $\left[\Gamma, \mathrm{x}: \sigma ; \tau^{\prime}\right]$
- $\models \mathrm{v}_{1} \mathrm{e} \mathrm{e}^{\prime} \operatorname{Sat}[\Gamma ; \tau] \Leftrightarrow$

$$
\exists \sigma \cdot \models_{1} \mathrm{e} \operatorname{Sat}[\Gamma ; \sigma \rightarrow \tau] \wedge \models \mathrm{v}_{1} \mathrm{e}^{\prime} \operatorname{Sat}[\Gamma ; \sigma]
$$

4. V_{1}, shown in the top right corner of Figure 1, is obtained from λ_{1} by replacing $\Gamma \vdash \mathrm{e}: \tau$ with e Sat $[\Gamma ; \tau]$. The rules VAR, Abs and APP are all of the form A_{1} with $n=0,1$ and 2 respectively. For example, in the case of $\operatorname{ABS}, \operatorname{Pred}\left(\mathrm{C}, \mathrm{S}_{1}, \mathrm{~S}\right)$ is defined as $\exists \mathrm{x}, \Gamma, \sigma, \tau \cdot \mathrm{C}=\lambda \mathrm{x} . \wedge^{\wedge} \wedge \mathrm{S}_{1}=[\Gamma, \mathrm{x}: \sigma ; \tau] \wedge \mathrm{S}=[\Gamma ; \sigma \rightarrow \tau]$.

Since V_{1} does not contain rules of the form B_{1} where $m>1$, freefinement does not add join terms to the lambda calculus. The system λ_{2} in Figure 1 is V_{2} where f Sat $[\Gamma ; \tau]$ is written instead as $\Gamma \vdash \mathrm{f}: \tau$. The system R_{5}, shown in the bottom right of Figure 1, is the final harmonic refinement calculus that freefinement produces.

Here is an example top-down typing derivation with R_{5} :

$$
\begin{aligned}
& {[\Gamma ;(\sigma \rightarrow \tau) \rightarrow(\sigma \rightarrow \tau)]} \\
& \text { "Abs" } \\
& \lambda \mathrm{x} \text {. }[\Gamma, \mathrm{x}: \sigma \rightarrow \tau ; \sigma \rightarrow \tau] \\
& \sqsubseteq \text { "Mono with Abs" } \\
& \lambda \mathrm{x} . \lambda \mathrm{y} .[\Gamma, \mathrm{x}: \sigma \rightarrow \tau, \mathrm{y}: \sigma ; \tau] \\
& \text { "Mono with App" } \\
& \lambda \mathrm{x} \text {. } \lambda \mathrm{y} .([\Gamma, \mathrm{x}: \sigma \rightarrow \tau, \mathrm{y}: \sigma ; \sigma \rightarrow \tau][\Gamma, \mathrm{x}: \sigma \rightarrow \tau, \mathrm{y}: \sigma ; \sigma]) \\
& \text { "Twice Mono with Var" } \\
& \lambda x . \lambda y \text {. (x y) }
\end{aligned}
$$

Figure 1. Freefinement and a typed lambda calculus

Since R_{5} is harmonic and V_{2} is a sound and conservative extension of V_{1}, it holds that $\vdash_{\lambda_{1}} \Gamma \vdash \lambda \mathrm{x}$. $\lambda \mathrm{y}$. (x y) : $(\sigma \rightarrow \tau) \rightarrow(\sigma \rightarrow \tau)$.

One might wish to extend R_{5} using knowledge particular to lambda calculus typing. It is simple to show that V_{1} is complete, so

$$
\vdash_{\lambda_{1}} \Gamma \vdash \mathrm{e}: \tau \Leftrightarrow \vdash \vdash_{v_{1}} \mathrm{e} \operatorname{Sat}[\Gamma ; \tau] \Leftrightarrow \models \mathrm{v}_{1} \mathrm{e} \operatorname{Sat}[\Gamma ; \tau]
$$

Furthermore, by Theorems 7 and 6.2,

$$
\models_{\mathrm{v}_{1}} \mathrm{e} \text { Sat }[\Gamma ; \tau] \Leftrightarrow \models_{\mathrm{v}_{2}} \mathrm{e} \operatorname{Sat}[\Gamma ; \tau]
$$

and because V_{2} is a sound and conservative extension of V_{1},

$$
\vdash_{\mathrm{V}_{1}} \mathrm{e} \operatorname{Sat}[\Gamma ; \tau] \Leftrightarrow \vdash_{\mathrm{V}_{2}} \mathrm{e} \operatorname{Sat}[\Gamma ; \tau]
$$

Consider the property of preservation:
Definition 9. A relation $\rightsquigarrow \subseteq T \times T$ satisfies preservation $\xlongequal{\text { def }}$ $\forall \Gamma, \tau, \mathrm{e}, \mathrm{e}^{\prime} \cdot$ if $\vdash_{\lambda_{1}} \Gamma \vdash \mathrm{e}: \tau$ and $\mathrm{e} \rightsquigarrow \mathrm{e}^{\prime}$, then $\vdash{ }_{\lambda_{1}} \Gamma \vdash \mathrm{e}^{\prime}: \tau$.
Theorem 8. If \rightsquigarrow satisfies preservation, then:

```
8.1 If e \(\rightsquigarrow \mathrm{e}^{\prime}\), then \(\models \mathrm{e} \sqsubseteq \mathrm{e}^{\prime}\).
8.2 If \(\vdash \vdash_{2} \mathrm{e}\) Sat \([\Gamma ; \tau]\) and \(\mathrm{e} \rightsquigarrow \mathrm{e}^{\prime}\), then \(\vdash_{\mathrm{V}_{2}} \mathrm{e}^{\prime}\) Sat \([\Gamma ; \tau]\).
```

Proof. The proof of 8.2 is trivial. For 8.1:
$\forall \Gamma, \tau, \mathrm{e}, \mathrm{e}^{\prime} \cdot \vdash_{\lambda_{1}} \Gamma \vdash \mathrm{e}: \tau \wedge \mathrm{e} \rightsquigarrow \mathrm{e}^{\prime} \Rightarrow \vdash_{\lambda_{1}} \Gamma \vdash \mathrm{e}^{\prime}: \tau$ $\Leftrightarrow \quad$ \{predicate logic\}
$\forall \mathrm{e}, \mathrm{e}^{\prime} \cdot \mathrm{e} \rightsquigarrow \mathrm{e}^{\prime} \Rightarrow\left(\forall \Gamma, \tau \cdot \vdash_{\lambda_{1}} \Gamma \vdash \mathrm{e}: \tau \Rightarrow \vdash_{\lambda_{1}} \Gamma \vdash \mathrm{e}^{\prime}: \tau\right)$
\Leftrightarrow
$\forall \mathrm{e}, \stackrel{\mathrm{e}^{\prime}}{\mathrm{e}^{\prime}} \cdot \mathrm{e} \rightsquigarrow \mathrm{e}^{\prime} \Rightarrow\left(\forall \mathrm{S} \in \mathbb{S} \cdot \models \mathrm{v}_{2} \mathrm{e}\right.$ Sat $\left.\mathrm{S} \Rightarrow \models \mathrm{v}_{2} \mathrm{e}^{\prime} \operatorname{Sat} \mathrm{S}\right)$
$\Leftrightarrow \quad\{$ Lemma 5\}
$\forall \mathrm{e}, \mathrm{e}^{\prime} \cdot \mathrm{e} \rightsquigarrow \mathrm{e}^{\prime} \Rightarrow \models \mathrm{e} \sqsubseteq \mathrm{e}^{\prime}$

So any relation that satisfies preservation contains only sound refinements that satisfy Harmony 1 , and can augment R_{5} to yield a sound and harmonic refinement system. Examples of relations that satisfy preservation include:

- The α-conversion relation.
- The β-reduction relation.
- The η-contraction relation. So $\lambda \mathrm{x}$. (e x$) \sqsubseteq \mathrm{e}$, provided x does not appear free in e.
- The relation \leq on closed terms, where $\mathrm{e} \leq \mathrm{e}^{\prime}$ exactly when e has fewer types than e^{\prime}.

Here is a small example that uses the η-contraction extension:

$$
\begin{array}{cc}
& \lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \lambda \mathrm{z} \cdot((\mathrm{x} \quad \mathrm{y}) \mathrm{z}) \\
\sqsubseteq & \{\text { MonO with } \eta \text {-contraction }\} \\
& \lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot(\mathrm{x} \text { y) } \\
\sqsubseteq & \left\{\begin{array}{l}
\text { MonO with } \eta \text {-contraction }\} \\
\\
\\
\end{array} \mathrm{x} . \mathrm{x}\right.
\end{array}
$$

3.2 Hoare Logic

The top left corner of Figure 2 contains system H, a Hoare logic for simple imperative programs. P is a precondition, Q a postcondition, and ca command in the Hoare triple $\{P\} c\{Q\}$, and $\models_{\mathrm{H}}\{\mathrm{P}\} \mathrm{c}\{\mathrm{Q}\}$ is the usual partial correctness interpretation of $\{\mathrm{P}\} \mathrm{c}\{\mathrm{Q}\}$. By interpreting a specification as a pre-post pair, the rules of H do not fit the rule forms A_{1} and B_{1}, since the proviso of AUXVARELIM inspects the command c to determine the variables that it writes and reads. However, if specifications also keep track of written and read variables, then it becomes possible to apply freefinement to obtain a refinement calculus in the spirit of Morgan [9]. Here are the inputs:

1. There are constructors for assignments, sequential composition, conditionals and loops:

$$
\begin{aligned}
\mathbb{K}= & \{\mathrm{x}:=\mathrm{e} \mid \mathrm{x} \in \text { Var } \wedge \mathrm{e} \in \operatorname{IntExp}\} \\
& \cup\left\{-\mathrm{g}_{-}\right\} \\
& \cup\{\text { if } \mathrm{b} \text { then_else } \mid \mathrm{b} \in \text { BoolExp }\} \\
& \cup\{\text { while } \mathrm{b} \text { do }-\mid \mathrm{b} \in \text { BoolExp }\}
\end{aligned}
$$

2. A specification consists of two sets of variables and two assertions, written in a notation resembling Morgan's specification statement [8]:

$$
\mathbb{S}=\{\overline{\mathrm{x}} ; \overline{\mathrm{y}}:\{\mathrm{P}, \mathrm{Q}\} \mid \overline{\mathrm{x}}, \overline{\mathrm{y}} \in \mathcal{P}(\text { Var }) \wedge \mathrm{P}, \mathrm{Q} \in \text { Assertion }\}
$$

3. In the specification $\bar{x} ; \bar{y}:\{P, Q\}$, the \bar{x} and \bar{y} are upper bounds on the sets of variables written and read by the command respectively, the P is a precondition and the Q a postcondition:

$$
\begin{aligned}
\models_{\mathrm{v}_{1}} \mathrm{c} \operatorname{Sat} \overline{\mathrm{x}} ; \overline{\mathrm{y}}:\{\mathrm{P}, \mathrm{Q}\} \stackrel{\text { def }}{=} & \operatorname{writes}(\mathrm{c}) \subseteq \overline{\mathrm{x}} \wedge \operatorname{reads}(\mathrm{c}) \subseteq \overline{\mathrm{y}} \wedge \\
& \models_{\mathrm{H}}\{\mathrm{P}\} \mathrm{c}\{\mathrm{Q}\}
\end{aligned}
$$

4. V_{1}, shown in the top right corner of Figure 2, has the following relationship with H :

$$
\begin{aligned}
\vdash \mathrm{v}_{1} \mathrm{c} \operatorname{Sat} \overline{\mathrm{x}} ; \overline{\mathrm{y}}:\{\mathrm{P}, \mathrm{Q}\} \Leftrightarrow & \text { writes }(\mathrm{c}) \subseteq \overline{\mathrm{x}} \wedge \operatorname{reads}(\mathrm{c}) \subseteq \overline{\mathrm{y}} \wedge \\
& \vdash_{H}\{\mathrm{P}\} \mathrm{c}\{\mathrm{Q}\}
\end{aligned}
$$

Note that:

- The non-structural rules of H have counterparts in V_{1} that embody the definitions of writes and reads. For example, the conclusion of COND reflects that
writes $\left(\mathbf{i f} \mathrm{b}\right.$ then c else $\left.\mathrm{c}^{\prime}\right) \stackrel{\text { def }}{=}$ writes $(\mathrm{c}) \cup$ writes $\left(\mathrm{c}^{\prime}\right)$ and $\operatorname{reads}\left(\mathbf{i f} \mathrm{b}\right.$ then c else $\left.\mathrm{c}^{\prime}\right) \stackrel{\text { def }}{=} \operatorname{reads}(\mathrm{c}) \cup \operatorname{reads}\left(\mathrm{c}^{\prime}\right) \cup F V(\mathrm{~b})$.
- The structural rules of H that inspect c for its write and/or read sets have counterparts in V_{1} that consult the specification instead. See for example the proviso of AuxVarElim.
- Consequence in V_{1} allows the enlargement of write and read sets. This loosening of the bounds is useful in refinement developments, because then the resulting code is not forced to write and read all the variables that were originally available for writing and reading.

The V_{1}-counterparts of the structural rules of H are all of the form B_{1}. For example, $m=1$ in the case of Constancy, and $m=2$ for DisJ. The other rules are of the form A_{1}. For example, $n=2$ in the case of COND, and $n=1$ for Loop.

The systems V_{2} and R_{6} that freefinement produces appear at the bottom of Figure 2. R_{6} yields several derived rules that may be useful in practical refinement developments. For example, the rule:

$$
\begin{aligned}
& \text { DerivedVarAssign } \overline{\overline{\mathrm{x}} ; \overline{\mathrm{y}}:\{\mathrm{P}, \mathrm{Q}\} \sqsubseteq \mathrm{z}:=\mathrm{e}} \\
& \text { provided } \mathrm{z} \in \overline{\mathrm{x}} \text { and } F V(\mathrm{e}) \subseteq \overline{\mathrm{y}} \text { and } \mathrm{P} \Rightarrow \mathrm{Q}[\mathrm{e} / \mathrm{z}]
\end{aligned}
$$

can replace VArAssign, and is similar to the assignment law of Morgan (Law 1.3 on p. 8 of [9]). Likewise, the derived rule:

$$
\text { FollowingVARAssign } \overline{\overline{\mathrm{x}} ; \overline{\mathrm{y}}:\{\mathrm{P}, \mathrm{Q}\} \sqsubseteq \overline{\mathrm{x}} ; \overline{\mathrm{y}}:\{\mathrm{P}, \mathrm{Q}[\mathrm{e} / \mathrm{z}]\} ; \mathrm{z}:=\mathrm{e}}
$$

provided $\mathrm{z} \in \overline{\mathrm{x}}$ and $F V(\mathrm{e}) \subseteq \overline{\mathrm{y}}$.
is similar to the following assignment law of Morgan (Law 3.5 on p. 32 of [9]).

Here is an example showing that R_{6} can derive a correct factorial algorithm starting with its specification:

$$
\begin{aligned}
& \quad \mathrm{y}, \mathrm{z} ; \mathrm{x}, \mathrm{y}, \mathrm{z}:\{\text { true, } \mathrm{y}=\mathrm{x}!\} \\
& \sqsubseteq \quad \text { "SEQCOMP" } \\
& \mathrm{y}, \mathrm{z} ; \emptyset:\{\text { true, } \mathrm{y}=1 \wedge \mathrm{z}=0\} ; \mathrm{y}, \mathrm{z} ; \mathrm{x}, \mathrm{y}, \mathrm{z}:\{\mathrm{y}=1 \wedge \mathrm{z}=0, \mathrm{y}=\mathrm{x}!\}
\end{aligned}
$$

The first spec statement is refined as follows:

$$
\begin{aligned}
& \quad \mathrm{y}, \mathrm{z} ; \emptyset:\{\text { true, } \mathrm{y}=1 \wedge \mathrm{z}=0\} \\
& \sqsubseteq \quad \text { "SEQCOMP" } \\
& \quad \mathrm{y} ; \emptyset:\{\text { true, } \mathrm{y}=1\} ; \mathrm{z} ; \emptyset:\{\mathrm{y}=1, \mathrm{y}=1 \wedge \mathrm{z}=0\} \\
& \sqsubseteq \quad \text { "Twice MONO with CONSEQUENCE" } \\
& \\
& \quad \mathrm{y} ; \emptyset:\{1=1, \mathrm{y}=1\} ; \mathrm{z} ; \emptyset:\{\mathrm{y}=1 \wedge 0=0, \mathrm{y}=1 \wedge \mathrm{z}=0\} \\
& \sqsubseteq \quad \text { "Twice MONO with VARASSIGN" } \\
& \quad \mathrm{y}:=1 \circ \mathrm{z}:=0
\end{aligned}
$$

And for the second spec statement:

$$
\begin{aligned}
& \quad \mathrm{y}, \mathrm{z} ; \mathrm{x}, \mathrm{y}, \mathrm{z}:\{\mathrm{y}=1 \wedge \mathrm{z}=0, \mathrm{y}=\mathrm{x}!\} \\
& \sqsubseteq \quad \text { "ConSEQUENCE" } \\
& \quad \mathrm{y}, \mathrm{z} ; \mathrm{x}, \mathrm{y}, \mathrm{z}:\{\mathrm{y}=\mathrm{z}!, \mathrm{y}=\mathrm{z}!\wedge \neg \mathrm{z} \neq \mathrm{x}\} \\
& \sqsubseteq \quad \text { "LoOP" } \\
& \\
& \quad \text { while } \mathrm{z} \neq \mathrm{x} \text { do } \mathrm{y}, \mathrm{z} ; \mathrm{y}, \mathrm{z}:\{\mathrm{y}=\mathrm{z}!\wedge \mathrm{z} \neq \mathrm{x}, \mathrm{y}=\mathrm{z}!\} \\
& \sqsubseteq \quad \text { "MonO with } \operatorname{SEQCOMP} " \\
& \quad \text { while } \mathrm{z} \neq \mathrm{x} \text { do } \mathrm{z} ; \mathrm{z}:\{\mathrm{y}=\mathrm{z}!\wedge \mathrm{z} \neq \mathrm{x}, \mathrm{y} \cdot \mathrm{z}=\mathrm{z}!\} ; \mathrm{y} ; \mathrm{y}, \mathrm{z}:\{\mathrm{y} \cdot \mathrm{z}=\mathrm{z}!, \mathrm{y}=\mathrm{z}!\}
\end{aligned}
$$

Figure 2. Freefinement and Hoare logic

```
\(\sqsubseteq \quad\) "Mono with VARASSIGN"
    while \(\mathrm{z} \neq \mathrm{x}\) do \(\mathrm{z} ; \mathrm{z}:\{\mathrm{y}=\mathrm{z}!\wedge \mathrm{z} \neq \mathrm{x}, \mathrm{y} \cdot \mathrm{z}=\mathrm{z}!\} ; \mathrm{y}:=\mathrm{y} \cdot \mathrm{z}\)
\(\sqsubseteq \quad " M O N O\) with Consequence"
    while \(\mathrm{z} \neq \mathrm{x}\) do \(\mathrm{z} ; \mathrm{z}:\{\mathrm{y} \cdot(\mathrm{z}+1)=(\mathrm{z}+1)!, \mathrm{y} \cdot \mathrm{z}=\mathrm{z}!\} ; \mathrm{y}:=\mathrm{y} \cdot \mathrm{z}\)
        "MONO with VARASSIGN"
    while \(\mathrm{z} \neq \mathrm{x}\) do \(\mathrm{z}:=\mathrm{z}+1 ; \mathrm{y}:=\mathrm{y} \cdot \mathrm{z}\)
```

Since $\vdash_{\mathrm{R}_{6}} \mathrm{y}, \mathrm{z} ; \mathrm{x}, \mathrm{y}, \mathrm{z}:\{$ true, $\mathrm{y}=\mathrm{x}!\} \sqsubseteq \mathrm{y}:=1 \% \mathrm{z}:=0 \%$ while $\mathrm{z} \neq \mathrm{x}$ do $\mathrm{z}:=\mathrm{z}+1 \circ \mathrm{y}:=\mathrm{y} \cdot \mathrm{z}$, it is the case that $\vdash_{\mathrm{V}_{1}} \mathrm{y}:=19 \mathrm{z}:=0 \%$ while $\mathrm{z} \neq \mathrm{x}$ do $\mathrm{z}:=\mathrm{z}+1 ; \mathrm{y}:=\mathrm{y} \cdot \mathrm{z}$ Sat $\mathrm{y}, \mathrm{z} ; \mathrm{x}, \mathrm{y}, \mathrm{z}:\{$ true, $\mathrm{y}=\mathrm{x}!\}$ and hence also $\vdash_{\mathrm{H}}\{$ true $\} \mathrm{y}:=1 ; \mathrm{z}:=0$; while $\mathrm{z} \neq \mathrm{x}$ do $\mathrm{z}:=\mathrm{z}+1 ; \mathrm{y}:=\mathrm{y} \cdot \mathrm{z}\{\mathrm{y}=\mathrm{x}!\}$.

Here is another example of using R_{6}; it involves join statements. The statement $\bigsqcup\left(\overline{\mathrm{x}} ; \overline{\mathrm{y}}:\left\{\mathrm{P}_{1}, \mathrm{Q}_{1}\right\}, \overline{\mathrm{x}} ; \overline{\mathrm{y}}:\left\{\mathrm{P}_{2}, \mathrm{Q}_{2}\right\}\right)$ is the join of the specification statements $\overline{\mathrm{x}} ; \overline{\mathrm{y}}:\left\{\mathrm{P}_{1}, \mathrm{Q}_{1}\right\}$ and $\overline{\mathrm{x}} ; \overline{\mathrm{y}}:\left\{\mathrm{P}_{2}, \mathrm{Q}_{2}\right\}$. Expressing it as a spec statement is simple because

$$
\bigsqcup\left(\overline{\mathrm{x}} ; \overline{\mathrm{y}}:\left\{\mathrm{P}_{1}, \mathrm{Q}_{1}\right\}, \overline{\mathrm{x}} ; \overline{\mathrm{y}}:\left\{\mathrm{P}_{2}, \mathrm{Q}_{2}\right\}\right) \equiv \overline{\mathrm{x}} ; \overline{\mathrm{y}}:\left\{\mathrm{P}_{1}, \mathrm{Q}_{1}\right\} \text { also }\left\{\mathrm{P}_{2}, \mathrm{Q}_{2}\right\}
$$

where the definition of $\left\{\mathrm{P}_{1}, \mathrm{Q}_{1}\right\}$ also $\left\{\mathrm{P}_{2}, \mathrm{Q}_{2}\right\}$, taken from [11], is: $\left\{\left(\mathrm{P}_{1} \wedge \mathrm{z}=1\right) \vee\left(\mathrm{P}_{2} \wedge \mathrm{z} \neq 1\right),\left(\mathrm{Q}_{1} \wedge \mathrm{z}=1\right) \vee\left(\mathrm{Q}_{2} \wedge \mathrm{z} \neq 1\right)\right\}$ where z is fresh. R_{6} can derive both directions of refinement. Firstly:

```
    \(\bigsqcup\left(\bar{x} ; \overline{\mathrm{y}}:\left\{\mathrm{P}_{1}, \mathrm{Q}_{1}\right\}, \overline{\mathrm{x}} ; \overline{\mathrm{y}}:\left\{\mathrm{P}_{2}, \mathrm{Q}_{2}\right\}\right)\)
\(\sqsubseteq \quad\) "Twice Mono with Consequence"
    \(\bigsqcup\left(\overline{\mathrm{x}} ; \overline{\mathrm{y}}:\left\{\exists \mathrm{z} \cdot\left(\mathrm{P}_{1} \wedge \mathrm{z}=1 \vee \mathrm{P}_{2} \wedge \mathrm{z} \neq 1\right) \wedge \mathrm{z}=1, \exists \mathrm{z} \cdot\left(\mathrm{Q}_{1} \wedge \mathrm{z}=1 \vee \mathrm{Q}_{2} \wedge \mathrm{z} \neq 1\right) \wedge \mathrm{z}=1\right\}\right.\),
        \(\left.\overline{\mathrm{x}} ; \overline{\mathrm{y}}:\left\{\exists \mathrm{z} \cdot\left(\mathrm{P}_{1} \wedge \mathrm{z}=1 \vee \mathrm{P}_{2} \wedge \mathrm{z} \neq 1\right) \wedge \mathrm{z} \neq 1, \exists \mathrm{z} \cdot\left(\mathrm{Q}_{1} \wedge \mathrm{z}=1 \vee \mathrm{Q}_{2} \wedge \mathrm{z} \neq 1\right) \wedge \mathrm{z} \neq 1\right\}\right)\)
\(\sqsubseteq \quad\) "Twice Mono with AuxVarElim"
    \(\bigsqcup\left(\overline{\mathrm{x}} ; \overline{\mathrm{y}}:\left\{\left(\mathrm{P}_{1} \wedge \mathrm{z}=1 \vee \mathrm{P}_{2} \wedge \mathrm{z} \neq 1\right) \wedge \mathrm{z}=1,\left(\mathrm{Q}_{1} \wedge \mathrm{z}=1 \vee \mathrm{Q}_{2} \wedge \mathrm{z} \neq 1\right) \wedge \mathrm{z}=1\right\}\right.\),
        \(\left.\overline{\mathrm{x}} ; \overline{\mathrm{y}}:\left\{\left(\mathrm{P}_{1} \wedge \mathrm{z}=1 \vee \mathrm{P}_{2} \wedge \mathrm{z} \neq 1\right) \wedge \mathrm{z} \neq 1,\left(\mathrm{Q}_{1} \wedge \mathrm{z}=1 \vee \mathrm{Q}_{2} \wedge \mathrm{z} \neq 1\right) \wedge \mathrm{z} \neq 1\right\}\right)\)
\(\sqsubseteq \quad\) "Twice Mono with Constancy"
    \(\bigsqcup\left(\overline{\mathrm{x}} ; \overline{\mathrm{y}}:\left\{\mathrm{P}_{1} \wedge \mathrm{z}=1 \vee \mathrm{P}_{2} \wedge \mathrm{z} \neq 1, \mathrm{Q}_{1} \wedge \mathrm{z}=1 \vee \mathrm{Q}_{2} \wedge \mathrm{z} \neq 1\right\}\right.\),
        \(\left.\overline{\mathrm{x}} ; \overline{\mathrm{y}}:\left\{\mathrm{P}_{1} \wedge \mathrm{z}=1 \vee \mathrm{P}_{2} \wedge \mathrm{z} \neq 1, \mathrm{Q}_{1} \wedge \mathrm{z}=1 \vee \mathrm{Q}_{2} \wedge \mathrm{z} \neq 1\right\}\right)\)
\(\sqsubseteq \quad " U n J o I N "\)
    \(\overline{\mathrm{x}} ; \overline{\mathrm{y}}:\left\{\mathrm{P}_{1}, \mathrm{Q}_{1}\right\}\) also \(\left\{\mathrm{P}_{2}, \mathrm{Q}_{2}\right\}\)
```

Secondly:

```
    \overline{x}};\overline{\textrm{y}}:{(\mp@subsup{\textrm{P}}{1}{}\wedge\textrm{z}=1)\vee(\mp@subsup{\textrm{P}}{2}{}\wedge\textrm{z}\not=1),(\mp@subsup{\textrm{Q}}{1}{}\wedge\textrm{z}=1)\vee(\mp@subsup{\textrm{Q}}{2}{}\wedge\textrm{z}\not=1)
\sqsubseteq "DisJ"
    \(\overline{x};\overline{\textrm{y}}:{\mp@subsup{\textrm{P}}{1}{}\wedge\textrm{z}=1,\mp@subsup{\textrm{Q}}{1}{}\wedge\textrm{z}=1},\overline{\textrm{x}};\overline{\textrm{y}}:{\mp@subsup{\textrm{P}}{2}{}\wedge\textrm{z}\not=1,\mp@subsup{\textrm{Q}}{2}{}\wedge\textrm{z}\not=1})
\sqsubseteq"Twice Mono with Constancy"
    \(\overline{x};\overline{\textrm{y}}:{\mp@subsup{\textrm{P}}{1}{},\mp@subsup{\textrm{Q}}{1}{}},\overline{\textrm{x}};\overline{\textrm{y}}:{\mp@subsup{\textrm{P}}{2}{},\mp@subsup{\textrm{Q}}{2}{}})
```

Leino and Manohar [7] mention several uses of the join of speclike statements.

3.3 Discussion

The type system λ_{1} considered above is very simple. Freefinement also applies to System F and other more sophisticated type systems.

Although λ_{1} had only rules of the form A_{1}, typing rules of the form B_{1} are quite common - examples include rules for subtyping and intersection types:

$$
\begin{aligned}
& \text { SUB } \frac{\Gamma \vdash \mathrm{e}: \tau}{\Gamma \vdash \mathrm{e}: \tau^{\prime}} \\
& \text { provided } \tau<: \tau^{\prime} .
\end{aligned} \quad \text { INTER } \frac{\Gamma \vdash \mathrm{e}: \tau \quad \Gamma \vdash \mathrm{e}: \tau^{\prime}}{\Gamma \vdash \mathrm{e}: \tau \wedge \tau^{\prime}}
$$

There is no golden recipe for adapting proof systems to make them amenable to freefinement. However, enriching specifications and/or terms might help. The Hoare logic example used enriched specifications to keep track of write and read sets. Consider again the two problematic rules from before:

$$
2 \frac{\operatorname{succ}(\mathrm{n}): \mathbb{N}}{\operatorname{pred}(\operatorname{succ}(\mathrm{n})): \mathbb{N}} \quad 3 \frac{\mathrm{n}: \mathbb{N}}{\operatorname{pred}(\mathrm{n}): \mathbb{N}} \quad
$$

Rule 2 can be accommodated by choosing $\mathbb{S}=\left\{{ }^{\prime} \mathrm{z}^{\prime}, \mathrm{s} \mathrm{s}\right.$,' p ' $\} \times\{\mathbb{N}\}$. Intuitively, the specification (${ }^{\prime}$ ', \mathbb{N}) tracks the fact that the outermost constructor is 'succ'. The rule then becomes:

$$
2 \frac{\mathrm{n}:\left({ }^{\prime} \mathrm{s} \text { ', } \mathbb{N}\right)}{\operatorname{pred}(\mathrm{n}):\left({ }^{\prime} \mathrm{p} ', \mathbb{N}\right)}
$$

Rule 3 can be accommodated by choosing $\mathbb{S}=\mathbb{N} \times\{\mathbb{N}\}$. Then the sentence $\mathrm{n}:(i, \mathbb{N})$ tracks the fact that term n denotes the natural number i. The adapted rule is of the form A_{1} with $n=1$:

$$
\begin{aligned}
& 3 \frac{\mathrm{n}:(i, \mathbb{N})}{\operatorname{pred}(\mathrm{n}):(i-1, \mathbb{N})} \\
& \text { provided } i>0 .
\end{aligned}
$$

In some cases it might be useful to enrich the term language. For example, consider the rule of concurrent separation logic [3] that removes auxiliary commands (ghost assignments):

$$
\begin{aligned}
& \text { AUXILIARY } \frac{\Gamma \vdash\{\mathrm{P}\} \mathrm{c}\{\mathrm{Q}\}}{\Gamma \vdash\{\mathrm{P}\} \mathrm{c} \backslash \mathrm{a}\{\mathrm{Q}\}} \\
& \text { provided } \mathrm{a} \in \operatorname{aux}(\mathrm{c}) \text { and } \mathrm{a} \cap(F V(\mathrm{P}) \cup F V(\mathrm{Q}))=\emptyset .
\end{aligned}
$$

This rule is not of the form A_{1} or B_{1}, because it contains a metaoperation in the conclusion. However, if the meta-operation is turned into an explicit constructor (and specifications track auxiliaries), then the rule is of the form B_{1} with $m=1$ and freefinement can handle it.

To get an approximate idea of what will happen when freefinement is applied to a separation logic, consider the frame and concurrency rules:

$$
\begin{aligned}
& \text { FRAME } \frac{\{\mathrm{P}\} \mathrm{c}\{\mathrm{Q}\}}{\{\mathrm{P} * \mathrm{R}\} \mathrm{c}\{\mathrm{Q} * \mathrm{R}\}} \\
& \text { CONCURRENCY } \frac{\left\{\mathrm{P}_{1}\right\} \mathrm{c}_{1}\left\{\mathrm{Q}_{1}\right\}}{\left\{\mathrm{P}_{1} * \mathrm{P}_{2}\right\} \mathrm{c}_{1} \| \mathrm{c}_{2}\left\{\mathrm{Q}_{1} * \mathrm{Q}_{2}\right\}}
\end{aligned}
$$

A concrete setting and system will typically make syntactic restrictions on the commands in the triples. So the specification statement $\{\mathrm{P}, \mathrm{Q}\}$ might contain more components, but freefinement will yield refinement versions of the rules that look roughly as follows:

$$
\begin{aligned}
& \text { Frame } \frac{\{\mathrm{P} * \mathrm{R}, \mathrm{Q} * \mathrm{R}\} \sqsubseteq\{\mathrm{P}, \mathrm{Q}\}}{} \\
& \text { Concurrency } \frac{\left\{\mathrm{P}_{1} * \mathrm{P}_{2}, \mathrm{Q}_{1} * \mathrm{Q}_{2}\right\} \sqsubseteq\left\{\mathrm{P}_{1}, \mathrm{Q}_{1}\right\} \|\left\{\mathrm{P}_{2}, \mathrm{Q}_{2}\right\}}{}
\end{aligned}
$$

4. Related Work

In his work on refinement for the lambda calculus, Denney [4] treats types as rudimentary specifications and introduces a specification construct $?_{\tau}$ for each type τ. Conceptually, $?_{\tau}$ corresponds to $[\Gamma ; \tau]$ where the context Γ is left implicit. For example, consider the term $\lambda \mathrm{x}: \sigma . ?_{\tau}$ in the context Γ. The $?_{\tau}$ inside the term corresponds to $[\Gamma, \mathrm{x}: \sigma ; \tau]$. Denney also considers richer specifications for lambda terms in his PhD thesis [5]. This results in a more
powerful refinement calculus in which specification constructs can contain logical assumptions.

The specification statement $\bar{x}:[P, Q]$ of Morgan [8] is analogous to $\overline{\mathrm{x}} ; \operatorname{Var}:\{\mathrm{P}, \mathrm{Q}\}$, since there is no restriction on the variables that the statement may read. However, his specification statement is a total correctness specification, and the accompanying refinement calculus [9] establishes total correctness. Similar refinement calculi for total correctness were proposed by Back [1, 2], Morris [10] and Hehner [6]. The books [2, 6, 9] contain many examples of how correct algorithms can be constructed from their specifications via refinement.

Leino and Manohar [7] consider the join of Morgan's specification statements $\overline{\mathrm{x}}:\left[\mathrm{P}_{1}, \mathrm{Q}_{1}\right]$ and $\overline{\mathrm{x}}:\left[\mathrm{P}_{2}, \mathrm{Q}_{2}\right]$, and mention several of its uses. Freefinement adds explicit constructors for joins, and relies on the ability to join arbitrary terms from U in order to establish harmony.

There is a relationship between observational equivalence of terms and the function Specs, because $\models v_{1-}$ Sat _ gives rise to a notion of observability from the specification point of view. In particular, two terms t and t^{\prime} are observationally equivalent in this sense iff $t \sim t^{\prime}$, where

$$
\mathrm{t} \sim \mathrm{t}^{\prime} \stackrel{\text { def }}{=} \operatorname{Specs}(\{\mathrm{t}\})=\operatorname{Specs}\left(\left\{\mathrm{t}^{\prime}\right\}\right)
$$

It is trivial to check that \sim is an equivalence relation. If $\models_{\mathrm{v}_{1}-\text { Sat }}$. is well-behaved, then $\mathrm{t} \sim \mathrm{t}^{\prime} \Leftrightarrow \llbracket \mathrm{t} \rrbracket=\llbracket \mathrm{t}^{\prime} \rrbracket$ (i.e. $\mathrm{t} \sim \mathrm{t}^{\prime} \Leftrightarrow \mathrm{t} \equiv \mathrm{t}^{\prime}$) by Corollary 2.9 in the Appendix and Theorem 6.1.

Acknowledgments

Van Staden was supported by ETH Research Grant ETH-15 10-1. Calcagno was partially funded by EPSRC.

References

[1] R.-J. Back. Correctness preserving program refinements: Proof theory and applications. Mathematical Centre Tracts, 131, 1980.
[2] R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction. Springer-Verlag, 1998. Graduate Texts in Computer Science.
[3] S. Brookes. A semantics for concurrent separation logic. Theor. Comput. Sci., 375:227-270, April 2007.
[4] E. Denney. Simply-typed underdeterminism. Journal of Computer Science and Technology, 13:491-508, 1998.
[5] E. Denney. A theory of program refinement. Technical Report ECS-LFCS-99-412, University of Edinburgh, 1999.
[6] E. C. R. Hehner. A practical theory of programming. Springer-Verlag New York, Inc., New York, NY, USA, 1993.
[7] K. R. M. Leino and R. Manohar. Joining specification statements. Theor. Comput. Sci., 216(1-2):375-394, 1999.
[8] C. Morgan. The specification statement. ACM Trans. Program. Lang. Syst., 10:403-419, July 1988.
[9] C. Morgan. Programming from specifications (2nd ed.). Prentice Hall International (UK) Ltd., Hertfordshire, UK, 1994.
[10] J. M. Morris. A theoretical basis for stepwise refinement and the programming calculus. Sci. Comput. Program., 9:287-306, December 1987.
[11] M. J. Parkinson and G. M. Bierman. Separation logic, abstraction and inheritance. In POPL '08, pages 75-86, New York, NY, USA, 2008. ACM.

A. Antitone Galois Connections

Lemma 1 established that an antitone Galois connection exists between the functions Specs and Terms:

$$
\begin{equation*}
\mathrm{X} \subseteq \operatorname{Terms}(\mathrm{Y}) \Leftrightarrow \mathrm{Y} \subseteq \operatorname{Specs}(\mathrm{X}) \tag{*}
\end{equation*}
$$

Theorems derived from this equivalence come in pairs because of the symmetry between Specs and Terms. Here are a few wellknown ones together with their proofs:

Corollary 2.

2.1 X $\subseteq \operatorname{Terms}(\operatorname{Specs}(X))$
$2.2 \mathrm{Y} \subseteq \operatorname{Specs}(\operatorname{Terms}(\mathrm{Y}))$
2.3 X $\subseteq \mathrm{X}^{\prime} \Rightarrow \operatorname{Specs}(\mathrm{X}) \supseteq \operatorname{Specs}\left(\mathrm{X}^{\prime}\right)$
$2.4 \mathrm{Y} \subseteq \mathrm{Y}^{\prime} \Rightarrow \operatorname{Terms}(\mathrm{Y}) \supseteq \operatorname{Terms}\left(\mathrm{Y}^{\prime}\right)$
$2.5 \mathrm{X} \subseteq \mathrm{X}^{\prime} \Rightarrow \operatorname{Terms}(\operatorname{Specs}(\mathrm{X})) \subseteq \operatorname{Terms}\left(\operatorname{Specs}\left(\mathrm{X}^{\prime}\right)\right)$
$2.6 \mathrm{Y} \subseteq \mathrm{Y}^{\prime} \Rightarrow \operatorname{Specs}(\operatorname{Terms}(\mathrm{Y})) \subseteq \operatorname{Specs}\left(\operatorname{Terms}\left(\mathrm{Y}^{\prime}\right)\right)$
2.7 $\operatorname{Specs}(\operatorname{Terms}(\operatorname{Specs}(X)))=\operatorname{Specs}(X)$
2.8 $\operatorname{Terms}(\operatorname{Specs}(\operatorname{Terms}(Y)))=\operatorname{Terms}(Y)$
2.9 $\operatorname{Specs}(\mathrm{X}) \subseteq \operatorname{Specs}\left(\mathrm{X}^{\prime}\right)$ $\Leftrightarrow \operatorname{Terms}(\operatorname{Specs}(\mathrm{X})) \supseteq \operatorname{Terms}\left(\operatorname{Specs}\left(\mathrm{X}^{\prime}\right)\right)$
2.10 $\operatorname{Terms}(\mathrm{Y}) \subseteq \operatorname{Terms}\left(\mathrm{Y}^{\prime}\right)$ $\Leftrightarrow \operatorname{Specs}(\operatorname{Terms}(\mathrm{Y})) \supseteq \operatorname{Specs}\left(\operatorname{Terms}\left(\mathrm{Y}^{\prime}\right)\right)$
2.11 $\operatorname{Specs}\left(X \cup X^{\prime}\right)=\operatorname{Specs}(X) \cap \operatorname{Specs}\left(X^{\prime}\right)$
2.12 $\operatorname{Terms}\left(\mathrm{Y} \cup \mathrm{Y}^{\prime}\right)=\operatorname{Terms}(\mathrm{Y}) \cap \operatorname{Terms}\left(\mathrm{Y}^{\prime}\right)$

Proof.

2.1 In (*), instantiate Y with $\operatorname{Specs}(\mathrm{X})$.
2.3 X \subseteq "Assumption" $\mathrm{X}^{\prime} \subseteq$ " 2.1 " $\operatorname{Terms(Specs(X')).~In~}(*)$, instantiate Y with $\operatorname{Specs}\left(\mathrm{X}^{\prime}\right)$.
2.5 If $X \subseteq X^{\prime}$, then $\operatorname{Specs}(X) \supseteq \operatorname{Specs}\left(X^{\prime}\right)$ holds by 2.3. The result follows from 2.4.
2.7 From 2.1 and 2.3 follows $\operatorname{Specs}(X) \supseteq \operatorname{Specs}(\operatorname{Terms}(\operatorname{Specs}(X)))$. Instantiating Y with $\operatorname{Specs}(\mathrm{X})$ in 2.2 yields $\operatorname{Specs}(\mathrm{X}) \subseteq$ Specs(Terms(Specs(X))).
$2.9 \Rightarrow$ holds by 2.4. From $\operatorname{Terms}(\operatorname{Specs}(X)) \supseteq \operatorname{Terms}\left(\operatorname{Specs}\left(X^{\prime}\right)\right)$ and 2.3, $\operatorname{Specs}(\operatorname{Terms}(\operatorname{Specs}(X))) \subseteq \operatorname{Specs}\left(\operatorname{Terms}\left(\operatorname{Specs}\left(X^{\prime}\right)\right)\right)$. $\operatorname{Specs}(X) \subseteq \operatorname{Specs}\left(X^{\prime}\right)$ by 2.7 .
2.11 Proof by indirect equality. For arbitrary Y:

```
            Y\subseteqSpecs(X \cup X')
\Leftrightarrow {By (*)}
    X \cup X'\subseteqTerms(Y)
\Leftrightarrow {Set theory}
    X\subseteqTerms(Y) ^ X X'\subseteqTerms(Y)
\Leftrightarrow {By (*)}
    Y}\subseteq\operatorname{Specs(X) ^ Y }\subseteq\operatorname{Specs(X')
\Leftrightarrow {Set theory}
    Y\subseteqSpecs(X) \cap Specs(X')
```


[^0]: ${ }^{1}$ Also known as an order-reversing or contravariant Galois connection.

