
Science of Computer Programming 5 (1985) 107-109
North-Holland

107

BOOKS

Books should be sent to the editor-in-chief. Selected books, which are within the scope of SCP and are not

proceedings, will be reviewed. Others may be mentioned.

Programming System Methodologies. By Carol A. Ziegler. Prentice-Hall, Englewood
Cliffs, NJ, 1983; ISBN 0-13-729905-2.

The strong feature of C. A. Ziegler's book is its breadth of coverage. The topics
discussed go from system design to implementation issues; as such, the book is a
good survey of current ideas on software methodology. This is one of the few works
to include material on both 'industrial' methods (e.g. Warnier-Orr, Jackson, bubble
diagrams)and more formal approaches (in particular abstract data types and formal
program verification). Usually, the two schools listen (let alone talk) very little to
each other; thus any attempt, such as Ziegler's to bridge the gap, is to be commended.

Nevertheless, the book suffers from several deficiencies.
First, depth seems to have been to often sacrificed for breadth. It may be a good

idea to introduce topics such as cryptographic encryptlon into a book on system
design (as part of the discussion on system security); one may doubt very much,
however, whether the one and a half pages devoted by Ziegler to this topic will be
very useful to the reader.

Second, the overall balance of topics is less than adequate. In the preface, the
author laments that "'standardization and design are rarely emphasized in program-
ming classes" and that "the design of larger and more complex programs is usually
neglected"; but the book suffers from exactly the same imbalance: only one fifth
of the text (Chapters 2 and 3) really deals with high-level design; the rest is mostly
concerned with detailed design and implementation. No requirements or specifica-
tion method, formal or informal, is discussed. Another example of a missing topic
is static program analysis, a practical and usable technique, which should have been
introduced in the chapter on "program validation".

Third, there is a certain lack of perspective which sometimes makes the book
look like a catalog. For example, Halstead's controversial 'software metrics' theory
is discussed in some detail, but the author does not say how these techniques can
fit, if at all, in a general method for software development.

Next, a number of imprecisions and slight misunderstandings are embarrassing.
For example, the discussion on loop invariants (p. 213) is misleading. It is not true
than an invariant "indicates the relationship of the values of the variables at one
iteration to those of the preceding iteration so that induction can be used in the

0167-6423/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

108 Books

proof". Quite to the contrary, an invariant is a kind of 'absolute' property of the
program variables which holds whenever control reaches a certain point; the beauty
of this notion is that you don't have to explicitly relate the 'current' value to the
'previous' ones. In the book's only example using a loop invariant (a program which
computes the gcd of two integers), the assertions refer to a variable's current value
n, its previous value n', and its next-to-previous value n". This, in my opinion,
obscures the all-important notions of assertion and invariant (of course, there are
theories in which assertions may involve both the current and initial states, e.g. [2],
but Ziegler does not attempt to present such a theory in a clean way).

Next, the book follows a pattern, set by Kernighan and Plauger in their unpreten-
tious but excellent little book [3] and also used by Ledgard [4] and more recently
by Gries [1], of providing the reader with 'maxims' or 'proverbs' (e.g. here USE
GOTOS SPARINGLY, etc.). This device may be useful if the maxims have been designed
with great care (as e.g. in [3]), but easily turns into the motherhood and apple pie
preaching otherwise. I very much doubt the relevance of a precept such as

D O N O T N E E D L E S S L Y T A M P E R W I T H A W O R K I N G P R O G R A M .

Such a piece of advice is probably harmless, but it is also useless: who in the world
would advocate 'tampering' needlessly with a program (working or not)? What we
want to know is when (if ever) one may consider modifying a working program!
So here is a maxim for all maxim authors:

G I V E US P R A C T I C A L R U L E S , N O T P I O U S A D V I C E ; F O R E A C H R U L E ,

S A Y P R E C I S E L Y W H E N IT A P P L I E S A N D W H E N I T D O E S N O T .

My last criticism is less important and probably more subjective. It applies to the
style of the book, which seems to have been rewritten by a technical editor according
to the rules taught in some 'basic technical writing' courses offered in the USA.
Thus most sentences are short and few depart from the 'subject-verb-complement'
structure. When trying to pin down the reasons for my uneasiness with the style, I
suddenly realized that I could not find any colon or semicolon! Why one should
dispense altogether with these faithful servants of sentence articulation and reader's
comfort is beyond my comprehension. Not being a native speaker of English, I had
some qualms about including these comments in this review; my reason for not
suppressing them is that such exaggerated terseness seems to reflect a fairly general
trend in recent American textbooks. Some publishers may have gone overboard in
trying to achieve simplicity in style. There should be some middle ground for
technical style between Proust and BASIC.

Coming back to the book's technical contents, I do not agree that Ziegler's work
is "primarily for computer science students rather than business students or the
general programming public" (except from the Preface). I would not use it in a
software engineering course because of its imprecision and lack of depth. It may,

Books 109

however, be useful to practicing programmers as a broad and readable tutorial on

some of the current ideas on programming methodology.
Bertrand MEYER

University of California
Santa Barbara, U.S.A.

References

[1] D. Gries, The Science of Programming (Springer, Berlin, 1981).
[2] C.B. Jones, Software Development: A Rigorous Approach (Prentice-Hall, Englewood Cliffs, N J, 1980).
[3] B.W. Kernighan and P.J. Plauger, The Elements of Programming Style (Addison-Wesley, Reading,

MA, 1974).
[4] H.F. Ledgard, Programming Proverbs (Hayden, Rochelle Park, NJ, 1975).

