
Generating Fixes from Object Behavior Anomalies

Valentin Dallmeier · Andreas Zeller
Dept. of Computer Science

Saarland University, Germany
{dallmeier, zeller}@cs.uni-saarland.de

Bertrand Meyer
Chair of Software Engineering

ETH Zürich Switzerland
bertrand.meyer@inf.ethz.ch

Abstract—Advances in recent years have made it possible in
some cases to locate bugs automatically. But debugging is also
about correcting bugs. Can tools do this automatically? The
results reported in this paper, from the new PACHIKA tool,
suggest that such a goal may be reachable.

PACHIKA leverages differences in program behavior to
generate program fixes directly. It automatically infers object
behavior models from executions, determines differences be-
tween passing and failing runs, generates possible fixes, and
assesses them via the regression test suite. Evaluated on the
ASPECTJ bug history, PACHIKA generates a valid fix for
3 out of 18 crashing bugs; every fix pinpoints the bug location
and passes the ASPECTJ test suite.

Keywords-debugging; fixing; object usage patterns

I. I

When a program fails, debugging starts—the process of
locating and fixing the bug that causes the failure. Recent
years have seen considerable advances in automated debug-
ging. Even with automated bug localization, the programmer
must still assess these locations to choose where and how
to fix the program. The goal of this work is to automate
this final step, effectively automating the entire debugging
process for a significiant subset of programming errors.

The following example illustrates the approach. The
APACHE MINA project provides a framework for building
network applications. The project’s bug database contains an
entry for bug 293, complaining that test VmPipeBindTest
crashes with an assertion error. To debug the failure, we
first want to know how the failing run differs from passing
runs; we are searching for anomalies that correlate with
the failure. In earlier work [3], we have shown how to
extract object behavior models from executions—models
that characterize behavior as finite state machines over object
states and method calls. Figure 1 shows such a model
for the MINA BaseIoAcceptor class; the solid transitions
occur in the passing runs. We can see individual states of
the object, characterized by the properties of its attributes.
In the passing run, clients call setLocalAddress(), then
setHandler() to set up the attributes; a sequence of
alternating bind() and unbind() calls then alters the state.

The failing run follows different transitions, shown by
dashed lines in the figure. Besides a different method call
order when setting up the object, the client now calls

¬bound
handler ≠ null

localAddress ≠ null

¬bound
handler = null

localAddress ≠ null

¬bound
handler = null

localAddress = null

bound
handler ≠ null

localAddress ≠ null

setHandler()

bind() unbind()

<init>()

setLocalAddress()

¬bound
handler ≠ null

localAddress = null

setHandler()

setLocalAddress()

unbind(),
getLocalAddress()
setLocalAddress()

bind()

setLocalAddress()

Object state

Transition in
passing runs
Transition in
failing run

Figure 1. A combined model of passing and failing runs for the MINA
BaseIoAcceptor class.

unbind() multiple times in a row—even when the bound
attribute is already true. This behavior occurs only in the
failing run. But is it also the cause of the failure? To
investigate this, we systematically generate patches that alter
the failing run to match the behavior from the passing runs.
If a patch fixes the failure and does not break the regression
test suite, we consider it valid.

In the example, there are several ways to change the
behavior from failing to passing: we can (a) make the call to
unbind() conditional such that it only occurs when bound
is true (as in the passing run), or (b) insert a bind() call
to reach the correct state in which unbind() can be called.
All of these fix candidates would be valid at the abstraction
level—but would they also work for the concrete program?

We have built a tool called PACHIKA that extracts
the above models from passing and failing runs of pro-
grams (currently in Java), compares the models to deter-
mine anomalies, and automatically generates possible fixes.
PACHIKA validates the fixes against the original failing run,

(a) Java Program (b) Failing and Passing Runs (c) Models

✔

✘

(d) Model Differences

X X

(e) Fix Candidates (f) Validated Fix

> bind()

In Socket.java,
line 356:> bind()

In Socket.java,
line 356:

< unbind()

In Dir.java,
line 356:

> bind()

In Socket.java,
line 356:

Figure 2. PACHIKA takes a Java program (a) and out of its passing and failing runs (b), it mines object behavior models (c). From differences (d)
between the models, it derives fix candidates (e), which it then validates against the regression test suite. Only validated fixes remain (f).

ensuring that the fix indeed solves the problem at hand; it
also runs the program’s regression test suite to minimize the
risk of introducing new problems. Only fixes that pass this
validation will eventually be presented to the programmer.

In the MINA example, PACHIKA finds that the fix can-
didate (a) introduces an alternate failure in the failing run,
while candidate (b)—inserting an additional bind() call—
passes all the tests; this candidate is the fix PACHIKA
suggests to the programmer. This is also how the real MINA
bug was eventually fixed as indicated by the project’s history.

The rest of this paper presents the details of the above
approach, and we evaluate its performance on real-life
programs with real-life bugs. We make the following con-
tributions:
• A technique to automatically derive fix candidates from

anomalies in program executions. To our knowledge,
this is the first time that fixes are directly generated
from mined specifications.

• A method for validating these fix candidates using the
failing run and automated quality assurance, eventually
suggesting the best fix.

• An evaluation of the effectiveness and the efficiency of
the approach on the iBUGS collection of real-life bugs.

II. MM

To obtain information about passing and failing runs,
PACHIKA must trace the executions—that is, collect all
information required to mine models. For this purpose,
PACHIKA uses the ASM framework to inject additional
statements into the program. The injected instructions trace
events like access to fields and method calls.

The next step reads the trace file and generates an object
behavior model for each object. In essence, the model miner
builds and maintains a representation of the heap and updates
models whenever a method changes the state of an object.

Unfortunately, using concrete values for primitive fields
generates models that are too fine-grained. To deal with this
issue, PACHIKA uses abstract values rather than concrete
values. The problem is to choose the right level of abstrac-
tion. If the abstraction is too strong, information vital for
detecting violations may be lost. If the abstraction is too
weak, though, we might still end up with models that are
too fine-grained and thus discover too many anomalies.

Table I
A .

Type Categories

Complex x = null, x , null
Numerical x < 0, x = 0, x > 0
Boolean x, ¬x

Our method for abstraction is inspired by Liblit et al. [8],
who have successfully applied abstraction in the context of
statistical bug localization. Table I summarizes how concrete
values are mapped to abstract values. The successful appli-
cation of this approach in the context of bug localization
by Liblit et al. gives us reason to believe that it provides
a suitable level of abstraction when mining anomalies.
However, we did not investigate other abstraction methods
and therefore do not claim that our approach is the best.

III. F V

Our approach for detecting anomalies compares models of
passing and failing runs. From the passing models, PACHIKA
learns preconditions for a method invocation and checks the
failing model for violations of these preconditions.

Even a very short run of an object oriented program
creates a large number of objects. In MINA, for example,
the failing run lasts only 0.3 seconds but generates over
18,000 objects. Analyzing all these models, while possible
in principle, would take too much time in practice. We need
to find a heuristic that reduces the search space by only
considering a subset of all objects. A good heuristic selects
all objects whose behavior is relevant for the failure, and
only few objects that are irrelevant.

In its current state, PACHIKA requires the failing run to
abort with an exception and extracts models for all objects
that are reachable through the parameters of the methods on
the stack. This approach was inspired by work of Artzi et
al. [1], who use a similar technique to reproduce crashes.

The final step for detecting violations is to check all
method invocations from the failing model to see whether
they violate any of the preconditions mined from the passing
model. If an invocation violates at least one precondition,
PACHIKA remembers the violated preconditions, and the
state before the invocation.

Table II
S .

Program Crashing Size Number of
Bugs (LOC) Tests

ASPECTJ 18 75,123 1,178
RHINO 8 37,902 1,499

IV. G F

For each invocation of a method m that violates at least
one precondition, PACHIKA generates fix candidates based
on the passing and failing models. In general, there are two
possibilities to fix a violation based on models. The first is
to satisfy the preconditions of m by inserting calls that make
the necessary changes to the state. The second strategy is to
avoid the violation by deleting the violating call to m.

We refer to the non-validated fixes generated by PACHIKA
as the set of fix candidates. Each fix candidate is applied in
isolation and evaluated in two steps. First, we execute the
failing test. If the fix changes the outcome to passing, we
call it a potential fix. For each potential fix, we subject it to
the program’s automated quality assurance—in our case, all
tests of the program’s regression test suite. If the fix does
not alter the outcome of any one test, we refer to it as a
validated fix. Only validated fixes will be presented to the
programmer as proposed fixes for the failure.

V. E E

To evaluate the effectiveness of our approach, we ran
PACHIKA on the two subjects provided by the iBUGS
repository [4]. iBUGS contains programs together with test
runs and bugs as they actually occurred in the history of
the project. For a subset of the bugs, iBUGS also provides
test cases that reproduce the problem, which we refer to
as failing tests. In our experiments, we use the projects’
regression test suites as passing runs.

A. Subjects

Table II summarizes information about the subjects used
in the iBUGS study. The column “Crashing Bugs” gives
the number of bugs that caused the program to crash. We
included all these bugs in our study. For each bug in the
repository, iBUGS contains a snapshot of the project right
before and right after the bug was fixed. Thus, the size of
the project and the number of tests varies from bug to bug.
Columns “Size” and “Number of Tests” therefore list only
the values for the latest bug included in the study.

B. Running the Experiments

We performed experiments with all crashing bugs of
ASPECTJ (18) and RHINO (8). For each bug we mine models
from the failing run and compare them against the models of
a randomly chosen subset of all passing runs. All candidate
fixes generated by PACHIKA are verified against the whole
regression test suite.

Table III
T .

Tracing Trace File Model
Overhead Size Mining
(factor) (MB) (s)

ASPECTJ 9 223 110
RHINO 26 11 8

As is to be expected, tracing incurs a huge amount of
runtime overhead. Since both ASPECTJ and RHINO contain
over 1,000 tests, tracing and mining the test suite was the
most time-consuming part in our experiments. For example,
tracing and mining all 1,038 runs in the test suite of
bug 87376 takes a little less than two days. Unfortunately
this needs to be done for each investigated bug, since each
bug is fixed in a different version of the code base.

In practice, however, tracing and mining the test suite only
takes place once for each released version of a program. As
soon as a new version is released to the public, we can trace
the test suite, mine models for all objects in the traces, and
store them for reuse. For every bug report filed for the new
version, we can reuse the cached models.

C. Results

For RHINO, PACHIKA generates fix candidates for three
out of eight bugs. None of these fixes turns the failing test
into a passing one. We examined the results in detail and
found two causes:
• RHINO is considerably smaller than ASPECTJ and con-

tains only a very small number of classes that have
complex models. Thus, PACHIKA finds only a small
number of violations per bug.

• In many cases where a violation is found, technical
restrictions such as the limitation to methods without
parameters prevent PACHIKA from generating a fix.
We hope to remove some of these restrictions in the
near future and thus be able to generate more fixes for
RHINO.

The results for ASPECTJ are summarized in Table IV.
PACHIKA generates fix candidates for 14 out of 18 bugs. For
6 bugs, PACHIKA finds at least one fix that causes the failing
run to pass. For 3 out of those 6 bugs, there is at least one
validated fix. The fixes for bugs 173602 and 121616 turned
out to be semantically equivalent to the fix applied by the
developers. Due to space restrictions, we will only discuss
bug 51322 in detail.

The failing run for bug 51322 crashes ASPECTJ by
causing a NullPointerException in method build()
of class InterType MethodDeclaration. Figure 3 shows
the relevant parts of this method, together with the fix
as applied by the developers, and the fix generated by
PACHIKA. The failing run contains two invocations of
method build(), of which only the last one fails. For

public EclipseTypeMunger build(ClassScope classScope) {
...
if(ignoreFurtherInvestigation) { return null;
} else {
binding = classScope.referenceContext.

binding.resolveTypesFor(binding);
> // Fix generated by PACHIKA
> binding.constantPoolDeclaringClass().
> addDefaultAbstractMethods();
> binding.constantPoolDeclaringClass().methods();
> // Fix from source repository
> if (binding == null) {
> throw new AbortCompilation();
> }

ResolvedMember sig = new ResolvedMember(...);
...

}
}

Figure 3. The proposed fix for bug 51322 invokes methods that initialize
values, avoiding the illegal access in a subsequent invocation of build().

Table IV
R ASPECTJ.

Fix Candidates Potential Validated

Bug Insert Delete Fixes Fixes

34858 420 50 0 0
43033 219 65 0 0
51322 112 190 56 1
67774 0 72 0 0
70619 6 1 0 0
75129 0 0 0 0
87376 20 218 0 0
107858 405 235 1 0
109614 0 0 0 0
120474 0 0 0 0
121616 123 0 38 1
125475 72 122 7 0
128237 283 4 123 0
131933 0 50 0 0
152631 0 783 0 0
158412 2895 310 0 0
158624 0 0 0 0
173602 17 13 7 1

the first invocation, PACHIKA detects a precondition vio-
lation for the declaringClass attribute in the binding
variable. The model from the passing run contains a
path that repairs this violation, which consists of invoking
addDefaultAbstractMethods() and methods(). When
this fix is applied to ASPECTJ, the state of binding is altered
such that the second invocation of build() no longer occurs
and the failing run passes. The fixed version also passes all
the other tests.

The developer’s fix for this problem is simply to abort
the execution of build(), which is very different from
PACHIKA’s fix. However, both fixes comply with the speci-
fication as given by the program’s test suite.

D. Discussion

Our results show that PACHIKA works much better on
ASPECTJ (validated fixes for 3 out of 18 bugs) than on
RHINO (no validated fixes). A closer examination of the
log files revealed that there are much fewer violations of
preconditions than in ASPECTJ, the reason being that there

is only a small number of classes that have models with
preconditions.

The validated fix for bug 51322 highlights a problem
for approaches that validate fixes using the test suite: The
quality of validated fixes is highly dependent on the quality
of the test suite. A bad test suite will cause many fixes to be
validated successfully and thus a lot of false positives to be
presented to the user. However, in the absence of a formal
specification, a test suite is still the best way to automatically
assess the impact of a change on the program.

E. Threats to Validity

The scope of our study is limited, as it only investigates
26 bugs in two programs. Therefore, the results of our
experiments are hardly generalizable. However, it is difficult
to conduct a controlled experiment with realistic data since
there is only little such data available.

PACHIKA is a complex system that consists of almost
30,000 lines of code. We verified the correctness of model
mining and fix generation for several small artificial test
cases. However, the huge amount of data and the complexity
of the system make it impossible to check every step for
realistic examples.

There also is a risk that PACHIKA generates fixes that
only apply to the symptom at hand, rather than the problem
root cause (“The method crashes when p is null, so let’s
insert a check for it”). This risk is best countered by quality
assurance; in particular, any increased level of automated
validation (such as contracts or widespread program proofs)
will automatically filter out more bad fix candidates as
generated by PACHIKA.

VI. RW

The most frequent work in automated debugging deals
with the problem of bug localization—that is, relating a
failure to possible bug locations. Milestones in that direction
include the TARANTULA approach by Jones et al. [6] as well
as statistical debugging [8] by Liblit et al., who allow the
programmer to focus on a small percentage of the code.

Most related to PACHIKA is the recent work by Weimer
et al. [11] on automatic patch generation. Weimer et al. use
adaptive random search to systematically mutate a failing
C program by inserting, swapping, and deleting statements.
Rather than using adaptive random search, PACHIKA relies
on behavioral differences between passing and failing runs,
which keeps the search space focused. Such a focus is
very much needed: It is unknown whether the approach of
Weimer et al. scales up to a program like ASPECTJ, with
more than 75,000 lines of code and a test suite where one
single run already takes a minute.

PACHIKA is an instance of specification mining tools.
The behavior models as mined by PACHIKA were first
implemented in the ADABU tool [3]. The concept was
later adapted by Ghezzi et al. [5]. Their ADIHEU tool uses

models generated by ADABU to support recovering algebraic
specifications from program runs. This approach could also
be used in PACHIKA to capture object behavior and find
anomalies.

Our work on generating fixes was heavily inspired by
recent work on generating tests. Ciupa et al. [2] generate
random sequences of method calls, leveraging existing con-
tracts to retain only valid sequences. When a test case fails,
the approach of Leitner et al. [7] automatically extracts a
test case that reproduces the failure. Both generation and
extraction of call sequences to characterize passing and
failing runs are key concepts of PACHIKA.

VII. C C

The future of automated debugging lies in the automatic
generation of fixes. Applied to real-life Java programs,
our PACHIKA tool can generate fixes for 3 out of the 18
post-release bugs that crash ASPECTJ. By leveraging the
difference between normal and abnormal behavior, we suc-
cessfully constrain the search space to quickly generate
potential fixes that not only remove the problem at hand,
but also have a high diagnostic quality. Starting with be-
havioral differences, coupled with strict filtering via the test
suite ensures a zero rate of false positives, ensuring that
PACHIKA increases productivity. The approach can easily
be extended to quality assurance beyond testing: As soon
as a specification can be automatically validated, PACHIKA
can leverage it to filter fix candidates—such that only true
corrections remain.

Our future work will focus on the following topics:

Adaptive fix generation. With a larger set of possible
fixes, one could consider adaptive techniques to system-
atically explore the search space, as in the approach of
Weimer et al. [11]. One interesting possibility could be
to use fixes from behavioral differences as a basis for
further mutations.
Assessing the impact of fixes. What happens if there
are multiple fix candidates that all pass the test suite? In
this case, we also would like to minimize the impact on
passing executions—impact as measured using dynamic
invariants [10] or object behavior models.
Leveraging contracts. A key aspect of the approach is
the need to ascertain, before calling a method, whether
its precondition is satisfied. In the present work, as
noted, preconditions have to be inferred from a model.
Although assertion inference has made considerable
advances, it still falls short of inferring all assertions
that programmers would write, as indicated in particular
in a recent study by some of the authors [9]. One of the
next steps in our work is to apply the ideas to the Eiffel
language, where programmer-written contracts not only
filter out invalid fixes, but can also serve as boilerplates
for generating alternative fixes.

The PACHIKA tool is available for download as an open
source Java system. The package also includes all the nec-
essary data to replicate and extend the above experiments.
For more information on PACHIKA, visit its Web site:

http://www.st.cs.uni-saarland.de/models/

Acknowledgments. This work is funded by Deutsche
Forschungsgemeinschaft, Ze509/4-1 and Hasler-Stiftung,
Grant no. 2327. The concept of generating fixes from
differences in passing and failing runs was conceived with
Andreas Leitner. We thank Andrzej Wasylkowski, David
Schuler, and the anonymous reviewers for their helpful
comments on earlier revisions of this paper.

R

[1] S. Artzi, S. Kim, and M. D. Ernst. Recrash: Making software
failures reproducible by preserving object states. In ECOOP
2008, pages 542–565, Paphos, Cyprus, July 9–11, 2008.

[2] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Experimental
assessment of random testing for object-oriented software. In
ISSTA ’07, pages 84–94, New York, NY, USA, 2007. ACM.

[3] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller.
Mining object behavior with ADABU. In WODA ’06, May
2006.

[4] V. Dallmeier and T. Zimmermann. Extraction of bug localiza-
tion benchmarks from history. In ASE ’07, November 2007.

[5] C. Ghezzi, A. Mocci, and M. Monga. Efficient recovery of
algebraic specifications for stateful components. In IWPSE
’07, pages 98–105, New York, NY, USA, 2007. ACM.

[6] J. A. Jones and M. J. Harrold. Empirical evaluation of the
Tarantula automatic fault-localization technique. In ASE ’05,
pages 273–282, 2005.

[7] A. Leitner, I. Ciupa, M. Oriol, B. Meyer, and A. Fiva.
Contract driven development = test driven development −
writing test cases. In ESEC-FSE ’07, pages 425–434, New
York, NY, USA, 2007. ACM.

[8] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. In PLDI ’05, pages 15–26,
June 2005.

[9] N. Polikarpova, I. Ciupa, and B. Meyer. A comparative study
of programmer-written and automatically inferred contracts.
In ISSTA ’09, June 2009.

[10] D. Schuler, V. Dallmeier, and A. Zeller. Efficient mutation
testing by checking invariant violations. In ISSTA ’09, June
2009.

[11] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest. Au-
tomatically finding patches using genetic programming. In
ICSE ’09, Vancouver, Canada, May 2009.

