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Abstract 
 
Metrics (quantitative estimates of product and project properties) can, if defined from sound 
engineering principles, be a precious tool for both project management and software 
development. We have recently developed an extensive set of metrics facilities for the 
EiffelStudio development environment. We will describe the principles on which it is based, 
the facilities it provides, and how to use them. The metrics workbench is closely integrated 
with the rest of the environment. Among other capabilities, it allows users to: apply 
predefined metrics to components of a system at various levels (feature, class, cluster, entire 
system); define new metrics, through mathematical formulae or boolean selection, and apply 
them to projects; store  measurement results, as well as metric definitions, into an XML 
archive that can be stored locally or made available on the Web for future reference; compare 
the measurements on a system to those on record locally or on a Web site. ISE has released 
on its own site an archive recording the metric properties of its basic libraries, available to 
any other project for comparison. 
 
1. Introduction 
Although one should resist the tendency to believe numbers just because they are numbers 
(“lies, damn lies, and metrics”), there is no reason why software engineering shouldn’t be 
able to reap at least some of the benefits that precise quantification has brought to other 
engineering fields. Software metrics, which we may define as quantitative estimates of 
product and project properties, can indeed help both managers and developers. 

Object-oriented development, with the rich software structures that it induces, is a 
particularly amenable to metric analysis. Even when some of the measures do not seem to 
bring much by themselves, comparing them to those of other projects may point to important 
properties of the software. 

One of the innovations of the EiffelStudio, the development workbench of the new ISE 
Eiffel 5 environment, is a set of metric facilities enabling developers and managers to obtain 
quantitative information about software systems. Particularly important is the possibility of 
comparing any measure to some in record locally or through the Web; ISE is releasing results 
for its libraries and other products for public access at http://metrics.eiffel.com. 

This article describes the principles behind the metric tool as well as its practical use. 
 
2. Principles 
 
2.1 General approach 

We started out with a skeptical attitude towards software metrics, and a determination to 
avoid producing numbers that might impress a manager or customer but would lack a proper 
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scientific justification. We felt that if we had to err it should be on the side of intellectual 
prudence in the face of ever-present temptation to throw numbers at problems and people. 
Since we were building a practical tool, not a new metric theory, we resolved: 

•  Never to implement a metric facility unless we could convince ourselves that it was 
directly and undeniably related to some relevant attribute of a software product or 
process. 

•  Never to succumb to arguments of the style “maybe we don’t see a need for this, but 
it’s simple to add to what we have already implemented, and someone might make 
sense of it”. 

Instead the general attitude has been “if it turns out to be necessary we can always add it 
later”. This is made easier, of course, by the flexibility of O-O architectures as supported by 
Eiffel (the environment is written in Eiffel and bootstrapped).  

A metric framework should satisfy the following properties: 
•  Coverage: include a definition of what is being measured, sufficient to enable 

repetition of the measurements. 
•  Trustworthiness: include an estimate of how much the results can be believed, in 

particular of their precision (expected variations in case of repetition). 
•  Relevance: specify interesting properties of software products or processes on which 

the measurement may provide insight. 
•  Theory: include arguments backing the statement of relevance. 

The first step was to define precisely the domain of discourse. 
 
2.2 Metrics, measures, and metric theories 

One shouldn’t confuse metrics with measures. A metric is a quantitative property of software 
products (product metrics) or processes (process metrics) whose values are numbers — either 
integer or real in our current framework). A measure is the value of a metric for a certain 
product or process. 

For example, we can evaluate the metric “number of classes in the system”, called just 
Classes, by counting the classes in our system.  This yields a measure. 

In software we may distinguish between product metrics, which measure properties of the 
elements being turned out (code, designs, documentation, bug reports…) and process metrics, 
which measure properties of the process whereby they are being turned out (salaries, 
expenses, time spent, delays…). The current metric facilities of EiffelStudio are primarily 
product-oriented, although; a few metrics, such as “number of compilations”, are process 
metrics. To add product metrics requires interfacing with project management tool; this is a 
desirable development for the future. 

Any metric should be relevant related to some interesting property of the processes or 
products being measured: cost, estimated number of bugs, ease of maintenance… A metric 
theory is a set of metric definitions accompanied with a set of convincing arguments to show 
that the metrics are relevant. Neither EiffelStudio nor this article provides a metric theory; our 
purpose is simply to provide the basic tools that enable the development and application of 
good metric theories.  
 
2.3 Units 

The numbers yielded by measures are meaningless unless we describe what they refer to. 
Every metric is relative to a certain unit, specified as part of its definition. For example the 
unit for a metric that counts classes, such as Classes, is called CLASS. 

The environment provides a set of predefined units. Some simply serve to count 
occurrences of certain construct specimens in the software; examples include CLASS, 



CLUSTER, FEATURE, LINE, ... The metric RATIO is used to describe metrics whose 
values are division, for example “average number of classes per cluster”, obtained by dividing 
the number of classes by the number of classes. 

We considered the possibility of developing a full calculus of units, similar to what exists 
in some of the natural sciences, with units such as cm/h and g/cm2, and rules stating for 
example that the produce of the last two is g/(cm × h). We rejected this idea because it 
seemed like overkill; in particular we couldn’t immediately see the need for multiplications, 
or for divisions of divisions. This is why we stop at a single division and have just one unit, 
RATIO, for this case; it’s a consequence of the concern for simplicity and intellectual 
prudence cited above. If future experience shows that this policy was too restrictive, we may 
reconsider the decision and introduce a unit calculus. 
 
2.4 Scope types and scopes 
 

Any metric applies over one or more scope types. A scope type is a type of product or process 
over which the metric is measured; for product metric, examples include “feature” (meaning 
that we will compute a metric over a single feature), “class”, “cluster”, “system” , “set of 
systems”. These obey an order relation corresponding to the containment order of the 
corresponding software elements: a feature belongs to a class, a class to a cluster and so on. 
All except the last one are currently available. 

A scope is a particular instance of a scope type. For example a given cluster is an instance 
of the scope type “cluster”. 

To compute a measure is to apply a certain metric over a certain scope of an applicable 
scope type. For example we may compute the value of the metric Classes over a certain 
system. 
 
3. Metric classification  
The EiffelStudio metric framework provides a number of predefined metrics but also enables 
users to define their own metrics in terms of the predefined ones. Figure 1 shows the overall 
taxonomy, 
 

 
Figure1. Metric hierarchy 

 
 



3.1 Composite and elementary metrics 

Metrics are divided into elementary and composite. 
An elementary metric measures the number of occurrences of a certain pattern in the 

product or process. An example is the number of precondition clauses in a class. 
A composite metric, defined by a user of the environment, applies a mathematical or 

logical formula involving other metrics (elementary or previously defined metrics). 
Composite metrics are discussed below.  
 
3.2 Raw and derived metrics; selection criteria 

Among elementary metrics, we make a further distinction between raw and derived: 
•  Raw metrics are simple counts, built-in into the environment, of occurrences of 

certain basic elements. For example Classes, the number of classes, is raw. 
•  It is often useful to define a new metric by subjecting a raw metric to one or more 

selection criteria. For example a class may be either deferred (abstract) or effective 
(concrete, i.e. fully implemented). This is a selection criterion. Separately, a class 
may have an invariant, or not; this is another selection criterion, Invariant_equipped. 
You might want to know the number of classes that are deferred and have no 
invariant clause; if so, you may define a derived metric by submitting the raw metric 
Classes to both of these criteria, connected by an “and” combinatory. 

The precise definition of selection criterion for a raw metric is: a property with a fixed set 
of possible values (two or more) characterizing the patterns being counted by the metric. 

The reason for considering selection criteria and derived metrics is clear: without these 
notions, the environment would need to have predefined (raw) metrics including all possible 
combinations, such as “deferred and no invariant”. This would quickly grow out of hand. 
  

 
 

Figure 2. Interface for defining derived metrics 



Figure 2 shows an example, which should be self-explanatory, of the interface for defining a 
new derived metric. Note the large number of selection criteria applicable to the raw metric 
Features (number of features), reflecting the many angles under which features may be 
classified. 
 
3.3 Composite metrics 

A composite metrics applies one or more mathematical operators to a set of metrics, 
themselves either elementary (raw or derived) or already composite. 

Although we considered allowing arbitrary mathematical combinations, we settled — 
again in application of the Principle of Prudence — to limit the possibilities to exclude 
multiplication of metrics and other combinations for which we could find no clear arguments 
of relevance, and to include the following three kinds only: 

•  Linear metrics: metrics of the form ∑ ki . mi , where the ki are real values and the 
mi  existing metrics (either elementary or basic) with the same unit, other than 
RATIO. (It would be improper to add two RATIO since they might be ratios of 
incompatible things.) Figure 3 shows the interface for defining a new linear 
metric. 

 

 
 

Figure 3. Interface for defining linear metrics 
 

•  Ratio metrics: metrics of the form m1 / m2 where the mi are two previously 
defined metrics, not necessarily with the same unit, neither of which a RATIO 
(again because RATIO is a catch-all category for all divisions, so we can’t divide 
further without courting incoherence). The resulting unit is RATIO. Figure 4 
shows the interface for defining a new ratio unit.

 



 

Figure 4. Interface for defining ratio metrics 

•  Scope comparison metrics: metrics that measure the ratio of the value of a given 
non-ratio metric over two different scope types. For example by choosing the 
metric Classes and the scope types “cluster” and “system” we can measure the 
proportion of classes in a system that belong to the current cluster. Figure 5 
shows the interface for defining a new scope comparison metric.

Figure 5. Interface for defining scope comparison metrics 



4. Measurement 

Not all metrics may be applied to all scopes. For example it doesn’t make sense to compute 
the number of attributes in a feature, since the smallest construct in which attributes appear is 
a class, bigger than a feature. 

To formalize this notion we say that each raw metric has one or more basic scope types, 
the type of scopes on which the environment has built-in mechanisms to compute it. The list 
of basic scope types is part of the metric’s definition. Then the rule to compute the metric on 
any scope of scope type st is as follows: 

•  1. If st is one of the metric’s basic scope types, apply the environment’s built-in 
mechanism to determine the result. 

•  2. If st is smaller than the smallest of the metric’s basic scope type, the result is zero 
by convention. 

•  3. Otherwise, the computation will add the measures made on the constituent scopes, 
applying the rule recursively. 

This rule applies to raw metrics; it immediately generalizes to derived and composite 
metrics. 

There is a small subtlety in the rule, explaining also why we introduced the possibility of 
several basic scope types rather than just one. The following example justifies this convention 
and the rule. Consider the metric “number of source lines”. The scope type just above 
“feature” is “class”; in other words, a class includes features. Each feature has a certain 
number of lines; each class also has a certain number of lines. But we can’t obtain the number 
of lines of a class by adding the number of lines of its features per clause 3 of the rule, 
because a class may also contain lines that are not in features, for example invariant lines. For 
that reason the definition of the metric includes both “feature” and “class” as basic scope 
types, so that the environment has built-in rules to compute the number of lines in these two 
cases. For other cases, such as requesting the number of lines in a cluster, it will just add the 
results for all immediate constituents — the cluster’s classes — as per clause 3. 
 
5. Performing measures 
Once you have defined metrics, you will want to compute corresponding measures on parts of 
your software. Figure 6 shows the interface for performing a measure over a certain scope. 
 

 
Figure 6: Evaluation of a metric over a scope. 



 
 
5. Storing and importing measures and metrics 

Figure 7 shows a project with a number of measures previously performed. The last column is 
a comparison to a reference archive and is explained in the next section. 

By clicking on the  button, you may save both the current metrics definition and the 
measures for later use. The storage uses an XML format.  You may also import metric 
definitions from another project into your current project through the  button. 
 

 
Figure 7: Saved measures. 

 
 
6. Measurement archives 
What does a measure mean? You don’t necessarily know in the absolute, but you might want 
to compare your results to those of other projects. For example, if you have measured the 
average number of invariant or other contract clauses in your system, you might be curious to 
know how this compares to ISE’s EiffelBase library. 

The notion of metric archive addresses this need. We expect it to be one of the most 
attractive uses of the tools. You may: 

•  As noted above, archive all current measures into a file, called a measurement 
archive. 

•  Make this measurement archive available in a shared directory, or as a URL on the 
Internet. 

•  At any time in a project, select any measurement archive, local or URL, as the 
reference archive; in that case all measures that you perform will be compared to 
those of the reference archive. You may select various comparison formats: 
percentage (the default, used in figure 7), difference percentage, plain value. 

ISE has established a new Web site, http://metrics.eiffel.com, as a publicly available 
reference for metric collections on ISE’s own libraries (EiffelBase, EiffelVision, …) and 
products. This provides an invaluable source of comparisons for other projects within and 
without ISE. 
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6. Conclusion 
The metric workbench of ISE Eiffel 5 provides a set of basic measurement facilities. It does 
not suggest a particular metric theory, but we hope it has the tools through which its users, by 
following a particular theory and implementing it through the metric definition facilities, can 
gain a deeper understanding of their software products and processes, and as a result improve 
them. 
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