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Plan for today's lecture 

  In the first part we discuss program slicing as another 
example of an application of data flow analysis. 

  In the second part we discuss abstract interpretation, a 
general framework for expressing program analyses. 
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Program slicing 

sum := 0 
 
i := 0 
while i < y do 
    sum := sum + x 
 
    i := i + 1 
end 
print(sum) 
 

sum := 0 
prod := 1 
i := 0 
while i < y do 
    sum := sum + x 
    prod := prod * x 
    i := i + 1 
end 
print(sum) 
print(prod) 
 

"What program statements potentially affect the value of 
variable sum at line 8 of the program?" 
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Program slicing 

  Program slicing provides an answer to the question 

  The resulting program statements are called the 
program slice. 
  The program point l is called the slicing criterion. 
  An observer focusing on the slicing criterion (i.e. only 
observing values of the variables at program point l) 
cannot distinguish a run of the program from the run of its 
slice. 

 

"What program statements potentially affect the 
values of the variables at program point l?" 



6 

Applications of program slicing 

  Debugging: Slicing lets the programmer focus on the 
program part relevant to a certain failure, which might 
lead to quicker detection of a fault. 
  Testing: Slicing can minimize test cases, i.e. find the 
smallest set of statements that produces a certain failure 
(good for regression testing). 
  Parallelization: Slicing can determine parts of the 
program which can be computed independently of each 
other and can thus be parallelized. 
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Classification 

  Static slicing vs. dynamic slicing 
  Static: general, not considering a particular input 
  Dynamic: computed for a fixed input, therefore 

smaller slices can be obtained 
  Backward slicing vs. forward slicing 

  Backward: "Which statements affect the execution 
of a statement?" 

  Forward: "Which statements are affected by the 
execution of a certain statement?" 

   In the following we present an algorithm for static 
backward slicing. 
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Program slice 

A backward slice S of program P with respect to slicing 
criterion l is any executable program with the following 
properties: 
 
1.  S can be obtained by deleting zero or more statements 

from P. 
2.  If P halts on input I, then the values of the variables at 

program point l are the same in P and in S every time 
program point l is executed.  
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Slicing algorithm 

  We present a slicing algorithm for static backward 
slicing. 
  Many different approaches, we show one that 
constructs a program dependence graph (PDG). 
  A PDG is a directed graph with two types of edges: 

  Data dependencies: given by data-flow analysis 
  Control dependencies: program point l is control-

dependent on program point l' if  
(1)  l' labels the guard of a control structure  
(2) the execution of l depends on the outcome of 
     the evaluation of the guard at l' 
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Control flow graph of the example program 

[print(sum)]8 

[print(prod)]9 

[i<y]4 

[sum := sum + x]5 

[prod := prod * x]6 

[sum:=0]1 

[i := i + 1]7 

[prod:=1]2 

[i:=0]3 



11 

Example: Program dependence graph 

[i<y]4 

[sum := sum + x]5 

[sum:=0]1 

[i := i + 1]7 

[prod:=1]2 [i:=0]3 

[prod := prod * x]6 

[print(sum)]8 [print(prod)]9 

{(l, l') | l ∈ ∪ UD(x, l') where l' labels a block} 
x used 

in block l' 

1. Data dependence subgraph  

(self-loops are omitted) 



12 

Example: Program dependence graph 

[i<y]4 

[sum := sum + x]5 

[sum:=0]1 

[i := i + 1]7 

[prod:=1]2 [i:=0]3 

[prod := prod * x]6 

ENTRY 

[print(sum)]8 [print(prod)]9 

2. Control dependence subgraph  

(1) Edge from special node ENTRY to any node not within 
     any control structure (such as while, if-then-else) 

(2) Edge from any guard of a control structure to any  
     statement within the control structure  
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Example: Computing the program slice 

[i<y]4 

[sum := sum + x]5 

[sum:=0]1 

[i := i + 1]7 

[prod:=1]2 [i:=0]3 

[prod := prod * x]6 

ENTRY 

[print(sum)]8 [print(prod)]9 

Slicing using the PDG: 
(1) Take as initial node the one given by the slicing criterion 

(2) Include all nodes which the initial node transitively  
     depends upon (use both data- and control-dependencies) 

Data dependencies 
Control dependencies 
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One framework to rule them all 

  In the past lecture we have introduced a particular style 
of program analysis: data flow analysis. 

  For these types of analyses, and others, a main concern 
is correctness: how do we know that a particular analysis 
produces sound results (does not forget possible errors)? 

  In the following we discuss abstract interpretation, a 
general framework for describing program analyses and 
reasoning about their correctness. 
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Main ideas: Concrete computations 

  An ordinary program describes computations in some 
concrete domain of values. 

  Example: program states that record the integer 
value of every program variable.  

   σ ∈ State = Var -> Z 

  Possible computations can be described by the concrete 
semantics of the programming language used. 
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Main ideas: Abstract computations 

  Abstract interpretation of a program describes 
computation in a different, abstract domain. 

  Example: program states that only record a specific 
property of integers, instead of their value: their 
sign, whether they are even/odd, or contained in 
[-32768, 32767] etc. 

   σ ∈ AbstractState = Var -> {even, odd} 
 

  In order to obtain abstract computations, an abstract 
semantics for the programming language has to be defined. 
  Abstract interpretation provides a framework for 
proving that the abstract semantics is sound with respect 
to the concrete semantics. 
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The collecting semantics 

We assume the state of a program to be modeled as: 
 

 σ ∈ State = Var -> Z 
 
We will use the following notation for function update:  
 

 σ[x ↦ k](y) =  
 
We construct the collecting semantics as a function which 
gives for every program label the set of all possible states. 

 C : Labels -> ℘(State) 
 

! 

" 

# 
$ 

% 
$ 

k  if x = y 
σ(y)  otherwise 
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Rules of the collecting semantics 
 
Cl' = {σ[x ↦ n] | σ ∈ Cl and C[e]σ = n} 
 
 
 
Cltrue = {σ | σ ∈ Cl and C[b]σ = true} 
Clfalse = {σ | σ ∈ Cl and C[b]σ = false} 
 
 
 
Cl = Cl1 ∪ Cl2 

[x := e] 

[b] 

l1 l2 

l 

lfalse 

ltrue 

l' 

l 

l 

Note: In difference to the lecture on program analysis, 
labels are not on blocks, but on edges. 
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Example: Collecting semantics 

[y:=1] 

[x ≠ 0] 

[y:=x*y] 

[x:=x-1] 

1 

3 

2 
5 

4 

C1 = {σ | σ(x) > 0} 

C2 = {σ[y ↦ 1] | σ ∈ C1} ∪ 
       {σ[x ↦ σ(x) - 1] | σ ∈ C4} 

 C3 = C2∩{σ | σ(x) ≠ 0} 

C4 = {σ[y ↦ σ(x)·σ(y)] | σ ∈ C3} 

C5 = C2∩{σ | σ(x) = 0} 

Assume x > 0.  
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Solving the equations 

  The equation system we obtain has variables C1, ..., C5 
which are interpreted over the complete lattice ℘(State). 
  We can express the equation system as a monotone 
function F : ℘(State)5 -> ℘(State)5  

 F(C1, ..., C5) = ({σ | σ(x) > 0}, ..., C2∩{σ | σ(x) = 0}) 
  Using Tarski's Fixed Point Theorem, we know that a least 
fixed point exists. 
  We have seen: The least fixed point can be computed by 
repeatedly applying F, starting with the bottom element ⊥ = 
(∅,∅,∅,∅,∅) of the complete lattice until stabilization. 

   F(⊥) ⊑ F(F(⊥)) ⊑ ... ⊑ Fn(⊥) = Fn+1(⊥) 
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Example: Fixed Point Computation 

[y:=1] 

[x ≠ 0] 

[y:=x*y] 

[x:=x-1] 

1 

3 

2 
5 

4 

∅ 

∅ 
∅ 

∅ 

∅ 

{[x↦m,y↦n] | m > 0} 

{[x↦m,y↦1] | m > 0} 

{[x↦0,y↦m] | m > 0} 
{[x↦m,y↦1] | m > 0} 

{[x↦m,y↦m] | m > 0} 

C1 = {σ | σ(x) > 0} 
C2 = {σ[y ↦ 1] | σ ∈ C1} ∪ 
       {σ[x ↦ σ(x) - 1] | σ ∈ C4} 
C3 = C2∩{σ | σ(x) ≠ 0} 
C4 = {σ[y ↦ σ(x)·σ(y)] | σ ∈ C3} 
C5 = C2∩{σ | σ(x) = 0} 

∪ {[x↦m-1,y↦m] | m > 0} 

...  etc. 
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Domain for Sign Analysis 

We want to focus on the sign of integers, using the domain 
 

 σ ∈ AbstractState = Var -> Signs 
 
where Signs is the following structure: 
 
 
 
 
 
 
How is such a structure called?  

⊤ 

⊥ 

+ 0 - 

A complete lattice 

⊤  represents all integers 
+  the positive integers 
-  the negative integers 
0 the set {0} 
⊥ the empty set 
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Example: Sign Analysis 

[y:=1] 

[x ≠ 0] 

[y:=x*y] 

[x:=x-1] 

1 

3 

2 
5 

4 

A1 = [x ↦ +, y ↦ T] 

A2 = A1[y ↦ +] ⊔  
       A4[x ↦ A4(x) ⊖ +]  

A3 = A2 

A4 = A3[y ↦ A3(x) ⊗ A3(y)] 

A5 = A2 ⊓ [x ↦ 0, y ↦ T] 

Assume x > 0. Use the abstract domain for sign analysis.  
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Introductory example: Expressions 

A little language of expressions 
 
Syntax 
e ::= n | e * e 
 
Concrete semantics 
C[n] = n 
C[e * e] = C[e] · C[e] 
 
Example 
C[-3 * 2 * -5] = C[-3 * 2] · C[-5] = C[-3 * 2] · (-5) = ... = 30 
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Introductory example: Abstraction 

Assume that we are not interested in the value of an 
expression but only in its sign:  

  Negative:  – 
  Zero:   0 
  Positive:  + 

Abstract semantics 
A[n] = sign(n) 

A[e * e] = A[e] ⊗ A[e] 
 
Example 
A[-3 * 2 * -5] = A[-3 * 2] ⊗ A[-5] = A[-3 * 2] ⊗ (-) = ... = 
= (-) ⊗ (+) ⊗ (-) = (+) 
 
 
 
 
 

⊗ - 0 + 

- 
0 
+ 

+ 
0 
- 

+ 
0 
0 



28 

Introductory example: Soundness 

  We want to express that the abstract semantics 
correctly describes the sign of a corresponding concrete 
computation. 
  For this we first link each concrete value to an abstract 
value: 

Representation function    
β : Z -> {-, 0, +}    

β(n) =      
 

! 

" 

# 
$ 

% 
$ 

-  if n < 0 
0      if n = 0 
+      if n > 0 
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Introductory example: Soundness 

  Conversely, we can also link abstract values to the set of 
concrete values they describe: 

Concretization function  

γ : {-, 0, +} -> ℘(Z) 

γ(s) =  
 
 

  Soundness then describes intuitively that the concrete 
value of an expression is described by its abstract value: 

 ∀e. C[e] ∈ γ(A[e]) 
! 

" 

# 
$ 

% 
$ 

{n | n < 0}  if s = - 
{0}              if s = 0 
{n | n > 0}   if s = + 
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Extending the language 

Syntax 
e ::= n | e * e | e + e | -e 
 
Abstract semantics 
A[n] = sign(n) 
A[-e] = ⊝A[e] 

A[e + e] = A[e] ⊕ A[e] 
 
 
 
Observation: The abstract domain {-,0,+} is not closed 
under the interpretation of addition. 
 

⊕ - 0 + 

- 
0 
+ 

- 0 + 

⊝ + 0 - 

+ 0 
- 

+ 

? - 
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Extending the abstract domain 

We have to introduce an additional abstract value: 

  ⊤  "top" – (any value) 
 

⊕ - 0 + ⊤ 
- - - ⊤ ⊤ 
0 0 + ⊤ 
+ + ⊤ 
⊤ ⊤ 
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The new abstract domain 

We can extend the concretization function to the new 
abstract domain {-,0,+, ⊤, ⊥} (add ⊥ for completeness): 

     γ(⊤) = Z       γ(⊥) = ∅ 
We obtain the following structure when drawing the 
partial order induced by  

  a ≤ b iff γ(a) ⊆ γ(b) 
 
 
 
 
 
How is such a structure called?  

⊤ 

⊥ 

+ 0 - 

A complete lattice 
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Construction of complete lattices 

  If we know some complete lattices, we can construct 
new ones by combining them 
  Such constructions become important when designing 
new analyses with complex analysis domains 
 
 
Example: Total function space 
 
Let (D1, ⊑1) be a partially ordered set and let S be a set. 
Then (D, ⊑), defined as follows, is a complete lattice: 
  D = S -> D1       ("space of total functions") 
  f ⊑ f'  iff ∀ s ∈ S : f(s) ⊑1 f'(s)  ("point-wise ordering") 
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The framework of abstract interpretation 

  Starting from a concrete domain C, define an abstract 
domain (A, ⊑), which must be a complete lattice 
  Define a representation function β that maps a concrete 
value to its best abstract value 

  β : C -> A 
  From this we can derive the concretization function γ 

 γ : A -> ℘(C) 
  γ(a) = {c ∈ C | β(c) ⊑ a} 

and abstraction function α for sets of concrete values 

 α : ℘(C) -> A 

 α(C) = ⨆ {β(c) | c ∈ C} 
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Galois connections 

  The following properties of α and γ hold: 
 
Monotonicity 

 (1)  α and γ are monotone functions 
Galois connection 

 (3)  c ⊆ γ(α(c))   for all c ∈ ℘(C) 
 (2)  a  ⊒  α(γ(a))   for all a ∈ A 

 
  Galois connection: This property means intuitively that 
the functions α and γ are "almost inverses" of each other.  
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Figure: Galois connection 

c 

γ(a) 

α(c) 

a 

C A 
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Galois insertions 

  For a Galois connection, there may be several elements 
of A that describe the same element in C 
  As a result, A may contain elements which are irrelevant 
for describing C 
  The concept of Galois insertion fixes this: 
 
Monotonicity 

 (1)  α and γ are monotone functions 
Galois insertion 

 (3)  c ⊆ γ(α(c))   for all c ∈ ℘(C) 
 (2)  a  =  α(γ(a))   for all a ∈ A 
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Figure: Galois insertion 

c 

γ(α(c)) 

α(c) 

C A 
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Induced Operations 

  A Galois connection can be used to induce the abstract 
operations from the concrete ones. 

  We can show that the induced operation  op = α ∘ op ∘ γ 
is the most precise abstract operation in this setting. 
  The induced operation might not be computable. In this 
case we can define an upper approximation op#, op ⊑ op#, 
and use this as abstract operation.  
 

℘(C) ℘(C) 

A A 

α γ 

op 

α ∘ op ∘ γ abstract execution 

concrete execution 
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Range analysis 

  To introduce the notion of widening, we have a look at 
range analysis, which provides for every variable an over-
approximation of its integer value range. 
  We are left with the task of choosing a suitable 
abstract domain: the interval lattice suggests itself. 

Interval = {⊥}∪ {[x,y] | x ≤ y, x ∈ Z ∪ {∞}, y ∈ Z ∪ {∞}} 

⊥ 

[0,0] [1,1] [2,2] [-1,-1] 

[-∞,+∞] 

[-1,0] [0,1] [1,2] 

[-1,1] [0,2] 
[1,+∞] 

[0,+∞] 



42 

Example 

 
 
 
 
 
 
 
 
 
  At program point 2, the following sequence of abstract 
states arises: [x↦[1,1]], [x↦[1,2]], [x↦[1,3]], ... 
Consequence: The analysis never terminates (or, if n is 
statically known, converges only very slowly). 
 
 

[x:=1] 

[x ≤ n] 

[x:=x+1] 

1 

3 

2 
4 

[x↦⊤] 

[x↦[1,1]] 

[x↦[1,1]] 

⊔ [x↦[2,2]]  = [x↦[1,2]]  

 Consider the following program: 
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The ascending chain condition 

 Using an arbitrary complete lattice as abstract domain, 
the solution is not computable in general. 
  The reason for that is the fact that the value space 
might be unbounded, containing infinite ascending chains: 

 (ln)n is such that l1 ⊑ l2 ⊑ l3 ⊑ · · ·,  
 but there exists no n such that ln = ln+1 = · · · 

  If we replace it with an abstract space that is finite (or 
does not possess infinite ascending chains), then the 
computation is guaranteed to terminate. 
  In general, we want an abstract domain to satisfy the 
ascending chain condition, i.e. each ascending chain 
eventually stabilises:  

 if (ln)n is such that l1 ⊑ l2 ⊑ l3 ⊑ · · ·,  
 then there exists n such that ln = ln+1 = · · · 
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Non-termination 

  The reason for the non-termination in the example is 
that the interval lattice contains infinite ascending chains. 
 
 
 
 
 
 
 
 
  Trick, if we cannot eliminate ascending chains: We 
redefine the join operator of the lattice to jump to the 
extremal value more quickly. 
Before: [1,1] ⊔ [2,2] = [1,2]  Now: [1,1] ∇ [2,2] = [1,+∞] 

⊥ 

[0,0] [1,1] [2,2] [-1,-1] 

[-∞,+∞] 

[-1,0] [0,1] [1,2] 

[-1,1] [0,2] 
[1,+∞] 

[0,+∞] 
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Widening 

A widening ∇ : D x D -> D on a partially ordered set (D, ⊑) 
satisfies the following properties: 
 
1.  For all x, y ∈ D.    x ⊑ x∇y    and    y ⊑ x∇y 
2.  For all ascending chains x1 ⊑ x2 ⊑ x3 ⊑ · · · the ascending 

chain y1 = x1 ⊑ y2 = y1 ∇ x2 ⊑ · · · ⊑ yn+1 = yn ∇ xn+1 
eventually stabilizes. 

 
  Widening is used to accelerate the convergence towards 
an upper approximation of the least fixed point.  
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Example (continued) 

  Assume we have a widening operator ∇ that is defined 
such that [1,1] ∇ [2,2] = [1, +∞] 

 
 
 
 
 
 
 
  The analysis converges quickly. 
 
 

[x:=1] 

[x ≤ n] 

[x:=x+1] 

1 

3 

2 
4 

[x↦⊤] 

[x↦[1,1]] 

[x↦[1,1]] 

∇ [x↦[2,2]]  = [x↦[1,+∞]]  

[x↦[1,n]]  

[x↦[1,+∞]] ∇ [x↦[1,n]]  = [x↦[1,+∞]]  

[x↦[n+1,+∞]]  
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pages 238-252. ACM Press, 1977  
 
Neil D. Jones, Flemming Nielson:  Abstract Interpretation: 
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Flemming Nielson, Hanne Riis Nielson, Chris Hankin: 
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Chapter 1: Section 1.5 
Chapter 4 (advanced material) 


