ETH zirich

Chair of Software Engineering

Software Verification

Sebastian Nanz

Lecture 8: Abstract Interpretation

Plan for today's lecture

» In the first part we discuss program slicing as another
example of an application of data flow analysis.

» In the second part we discuss abstract interpretation, a
general framework for expressing program analyses.

E'H Ziirich

Chair of Software Engineering

Program Slicing

Program slicing

1 sum:=0 1 sum:=0
2 prod:=1
3 i:=0 3 i:=0
4 whilei<ydo 4 whilei<ydo
5 sum := sum + X 5 sum := sum + X
6 prod := prod * x
7/ =1+ 1 7/ =1+ 1
end end
8 print(sum) 8 print(sum)
9 print(prod)

"What program statements potentially affect the value of
variable sum at line 8 of the program?"

Program slicing

» Program slicing provides an answer to the question

"What program statements potentially affect the
values of the variables at program point |?"

» The resulting program statements are called the
program slice.

» The program point | is called the slicing criterion.

» An observer focusing on the slicing criterion (i.e. only

observing values of the variables at program point |)
cannot distinguish a run of the program from the run of its

slice.

Applications of program slicing

> Debugging: Slicing lets the programmer focus on the
program part relevant to a certain failure, which might
lead to quicker detection of a fault.

> Testing: Slicing can minimize test cases, i.e. find the
smallest set of statements that produces a certain failure
(good for regression testing).

> Parallelization: Slicing can determine parts of the
program which can be computed independently of each
other and can thus be parallelized.

Classification

» Static slicing vs. dynamic slicing
> Static: general, not considering a particular input

> Dynamic: computed for a fixed input, therefore
smaller slices can be obtained

» Backward slicing vs. forward slicing

> Backward: "Which statements affect the execution
of a statement?"

> Forward: "Which statements are affected by the
execution of a certain statement?"

» In the following we present an algorithm for static
backward slicing.

Program slice

A backward slice S of program P with respect to slicing
criterion | is any executable program with the following
properties:

1. S can be obtained by deleting zero or more statements
from P.

2. If P halts on input I, then the values of the variables at
program point | are the same in P and in S every time
program point | is executed.

Slicing algorithm

» We present a slicing algorithm for static backward
slicing.

» Many different approaches, we show one that
constructs a program dependence graph (PDG).

» A PDG is a directed graph with two types of edges:
> Data dependencies: given by data-flow analysis

> Control dependencies: program point | is control-
dependent on program point |' if
(1) I' labels the guard of a control structure
(2) the execution of | depends on the outcome of
the evaluation of the guard at I’

Control flow graph of the example program

[sum:=0]!
v
[prod:=1]2
v
[i:=07®
v
—> [i<y]* —_—
! [print(sum)]®
[sum := sum + x]° J
! [print(prod)J®
[prod := prod * x]¢

|

[i:=i+1]

©

10

Example: Program dependence graph

1. Data dependence subgraph

[sum:=0]" [prod:=1]* [i:=0F --» [icy]* \,

/ \\ \ \\ \\\ \

/ \ \ ~ S \
/ \ \ \\ \s\ \

)/ K \ TS w BREP R
‘[sum := sum + x]°
/ \

[prod := prod * x16 [i:=i+ 1]

/
/ /’ \ //

- Ve
/
| "2

[print(sum)]® [print(prod)]°

- \
w’

______ {11 e UdUD(x, |") where |I' labels a block}

X use
in block I'

(self-loops are omitted)

11

Example: Program dependence graph ©

2. Control dependence subgraph
ENTRY

[i:=073 [i<y]?

—7 O\

orod := prod * x]° [i:=i+1])

[sum := sum + x]P [

v
[print(sum)]® [print(prod)]°

—

(1) Edge from special node ENTRY to any node not within
any control structure (such as while, if-then-else)

(2) Edge from any guard of a control structure to any
statement within the control structure

12

Example: Computing the program slice ©

---->Data dependencies
—> Control dependencies

\
Asum := sum + xP [
- \
- \

N\
N ~N
. /
/ N \
, 4

- \

- \

- A/

[print(sum)]® [print(prod)]°

Slicing using the PDG:

(1) Take as initial node the one given by the slicing criterion

(2) Include all nodes which the initial node transitively
depends upon (use both data- and control-dependencies)

13

E," Ziirich

Chair of Software Engineering

Abstract Interpretation

One framework to rule them all ©

» In the past lecture we have introduced a particular style
of program analysis: data flow analysis.

> For these types of analyses, and others, a main concern
is correctness: how do we know that a particular analysis
produces sound results (does not forget possible errors)?

» In the following we discuss abstract interpretation, a
general framework for describing program analyses and
reasoning about their correctness.

15

Main ideas: Concrete computations ©

» An ordinary program describes computations in some
concrete domain of values.

> Example: program states that record the integer
value of every program variable.

o € State = Var -> Z

> Possible computations can be described by the concrete
semantics of the programming language used.

16

Main ideas: Abstract computations

» Abstract interpretation of a program describes
computation in a different, abstract domain.

> Example: program states that only record a specific
property of integers, instead of their value: their
sign, whether they are even/odd, or contained in

[-32768, 32767] etc.
0 € AbstractState = Var -> {even, odd}

» In order to obtain abstract computations, an abstract

semantics for the programming language has to be defined.

> Abstract interpretation provides a framework for
proving that the abstract semantics is sound with respect
to the concrete semantics.

17

The collecting semantics ©

We assume the state of a program to be modeled as:
o € State = Var ->Z

We will use the following notation for function update:

N _Jk ifx=y
a[x ~ k](y) = {o(y) otherwise

We construct the collecting semantics as a function which
gives for every program label the set of all possible states.

C : Labels -> 8&(State)

18

Rules of the collecting semantics ©

ll Cy={o[x~n]| o€ CandCl[e]o = n}
[X = e]

o

ll oo Ciirie = {0 | 0 € C,and C[b]o = true}
[b]— Cirase = {0 | 0 € €, and C[b]o = false}

l, l’rr'ue

l4 l,
\1/
C=C1 U
|

Note: In difference to the lecture on program analysis,
labels are not on blocks, but on edges. ‘9

Example: Collecting semantics ©

Assume x > 0.

€, ={o | a(x) > O}

C,={oly~1]loe C} U
{o[x > o(x)-1]1| 0 € C,}

C,=C,N{o | o(x) 2 0}

Cy = {oly = a(x)a(y)] | o € C5}

Cs = C,N{o | a(x) = 0}

20

Solving the equations ©

» The equation system we obtain has variables C;, ..., Cs
which are interpreted over the complete lattice &(State).
> We can express the equation system as a monotone
function F : 8(State)® -> £(State)?

F(Cy, ..., C5) = ({o | a(x)> 0}, ..., C,N{a | o(x) = 0})

> Using Tarski's Fixed Point Theorem, we know that a least
fixed point exists.

> We have seen: The least fixed point can be computed by
repeatedly applying F, starting with the bottom element L =

(99,99 9) of the complete lattice until stabilization.

F(L)CF(F(L))E..EFY(L)=F™I(L)

21

Example: Fixed Point Computation ©

ll d{[x~m,y~n] | m > O}

[y:=1]
>l2 @é[XHm,ywl] | m>0} U {[x>m-1y~m] | m> 0}

[x 2 0] — @ {[x~0,y~m] | m > 0} .. efc.
I @ {[x~m,y~1] | m > 0}
[y:=x*y]

V4 7 {[x>m,y~m] | m> 0}
— [x:=x-1]

C;={o | o(x) > 0}
C,={oly~1]|loe C} U
{o[x~>o(x)-1]1| 0 € C,}
C;=C,N{o | o(x) # O}
Cy={oly » o(x)-a(y)] | o € C3}
Cs=C,N{o | o(x) = O}

22

Domain for Sign Analysis

We want to focus on the sign of integers, using the domain
o0 € AbstractState = Var -> Signs

where Signs is the following structure:

T T represents all integers
+ the positive integers
_ ol [+ - the negative integers
O the set {0}
1 L the empty set

How is such a structure called?
A complete lattice

23

Example: Sign Analysis

Assume x > 0. Use the abstract domain for sign analysis.

\Ll Aj=[xP+,yr T]

[y:=1]
) 2 Ap = Agly = +]u

[x 2 0] _5> Aglx = Ay(x) © +]
|3

[y::x*y] As= A
|4 Ay = Asly > As(x) @ As(y)]
— [x:=x-1]

As=A,N[x~0,y~ T]

E," Ziirich

Chair of Software Engineering

Abstract Interpretation

Introductory example: Expressions

A little language of expressions

Syntax
eiiznle*e

Concrete semantics
C[n] =n
Cle *e]=C[e] - C[e]

Example
C[-:3*2*-B5]=C[-3*2]-C[-B]=C[-3*2] - (-B)=..=30

Introductory example: Abstraction ©

Assume that we are not interested in the value of an
expression but only in its sign:

> Negative: -

> ZLero: 0

> Positive: +
Abstract semantics o | - | 0]+
A[n] = sign(n) T ol
Ale * e]= Ale] ® Ale] 0 0|0
Example

A[-3*2* 5]z A[-3* 2]® A[-5]= A[-3* 2]®(-)= .. =
=(=)e(+)e(-)=(+)

27

Introductory example: Soundness

» We want to express that the abstract semantics
correctly describes the sign of a corresponding concrete

computation.
> For this we first link each concrete value to an abstract

value:

Representation function
p:Z->{-0,+)
- if n<0

pn)=40 ifn=0
o+ ifn>0

28

Introductory example: Soundness ©

» Conversely, we can also link abstract values to the set of
concrete values they describe:

Concretization function
y:{-,0,+}->&(2)

({n|n<0} ifs=-
v(s) =1 {0} ifs=0
{n[n>0} ifs=+

» Soundness then describes intuitively that the concrete
value of an expression is described by its abstract value:

Ve.C[e] € v(A[e])

29

Extending the language

Syntax
ei=nle*ele+e| -e

Abstract semantics _lol «
A[n] = sign(n) o | *]10] -
Al-e]=oA[e]

2 I A
Ale +e]= Ale] © Ale]

- -1 -12

0 O | +

Observation: The abstract domain {-,0,+} is not closed
under the interpretation of addition.

30

Extending the abstract domain

We have to introduce an additional abstract value:

T "top" - (any value)

®

|
o
+

41+ | O
o
+

e A e T I B I B

31

The new abstract domain ©

We can extend the concretization function to the new
abstract domain {-,0,+, 7, 1} (add L for completeness):

v(r)=Z v(1) =%
We obtain the following structure when drawing the
partial order induced by

a<biff y(a) € y(b)

T

- O +

1

How is such a structure called?

A complete lattice
32

Construction of complete lattices ©

» If we know some complete lattices, we can construct
new ones by combining them

» Such constructions become important when designing
new analyses with complex analysis domains

Example: Total function space

Let (D4, 5;) be a partially ordered set and let S be a set.
Then (D, E), defined as follows, is a complete lattice:

»D=5->D; ("space of total functions")
> fCf iff vse S:f(s)C, f'(s) ("point-wise ordering")

33

The framework of abstract interpretation ©

» Starting from a concrete domain C, define an abstract
domain (A, E), which must be a complete lattice

> Define a representation function p that maps a concrete
value to its best abstract value

b:C->A
> From this we can derive the concretization functiony

v:A->&(C)
v(a) ={c € C | p(c) E a}
and abstraction function a for sets of concrete values
a: &C)->A
a(C)=U{p(c) | c € ¢}

34

Galois connections

» The following properties of a and y hold:

Monotonicity
(1) aandy are monotone functions

Galois connection

(3) ¢ < y(a(c)) for all c € 8(C)
(2) a 2 a(y(a)) foralla € A

» Galois connection: This property means intuitively that

the functions a and vy are "almost inverses" of each other.

35

lon

IS connect

Galoi

Figure

36

Galois insertions

> For a Galois connection, there may be several elements
of A that describe the same element in C

> As aresult, A may contain elements which are irrelevant
for describing C

> The concept of Galois insertion fixes this:

Monotonicity
(1) aand vy are monotone functions

Galois insertion

(3) ¢ < y(a(c)) for all c € 8(C)
(2) a = a(y(a)) foralla € A

37

Tolp

C

Galois inser

Figure

38

Induced Operations

> A Galois connection can be used to induce the abstract
operations from the concrete ones.

a"op°y , A abstract execution

a Y
v

8C)—op ¥

» We can show that the induced operation op=a - op ° vy
is the most precise abstract operation in this setting.

» The induced operation might not be computable. In this
case we can define an upper approximation op#, op L op¥,
and use this as abstract operation.

concrete execution

39

E," Ziirich

Chair of Software Engineering

Abstract Interpretation

Range analysis ©

> To introduce the notion of widening, we have a look at
range analysis, which provides for every variable an over-

approximation of its integer value range.

> We are left with the task of choosing a suitable
abstract domain: the interval lattice suggests itself.

[-o0 +oo]

[0 0]
,’\
[1,+e0]

] [02]

RN N
o [10] (011 [12]
\\/\/\/\/,
[-1-1] [0,0] [11] [2,2

1

Interval = {J_}U {[X,Y] | XLy, X € Z U {°°},Y €ZU {°°}} 41

Example

Consider the following program:

ll [x|—>T]
[x:=1]
3 2 [x~[1,1]] v [x~[2,2]] = [x~[1,2]]
[X<n]—
|3 [x~[1,1]]

— [x:=x+1]

» At program point 2, the following sequence of abstract
states arises: [x~[1,11], [x~[1,2]1], [x~[1,31], ...
Consequence: The analysis never terminates (or, if n is

statically known, converges only very slowly).
42

The ascending chain condition

»Using an arbitrary complete lattice as abstract domain,
the solution is not computable in general.

» The reason for that is the fact that the value space
might be unbounded, containing infinite ascending chains:
(1), is such that C I, EI;C- -,
but there exists non such that |l =1.,,="-"-

> If we replace it with an abstract space that is finite (or
does not possess infinite ascending chains), then the
computation is guaranteed to terminate.

» In general, we want an abstract domain to satisfy the
ascending chain condition, i.e. each ascending chain

eventually stabilises:
then there exists n such that | =1, ="

43

Non-termination

» The reason for the non-termination in the example is
that the interval lattice contains infinite ascending chains.

[-oo;oo]

" [O4e0]

S - 1,+oo

. [FL1] [0.2] ,[]
NN i

O [-10] [01] [1,.2]

NN

[-1-1] [0,0] [11] [2.2

1

> Trick, if we cannot eliminate ascending chains: We
redefine the join operator of the lattice to jump to the

extremal value more quickly.
Before: [1,1]1u[2,2] = [1,2] Now: [1,1] V [2,2] = [1,+°] 4,

Widening

A widening V : D x D -> D on a partially ordered set (D, C)
satisfies the following properties:

1. Forallx,y € D. xExVy and yExVy

2. For all ascending chains x; £ x, E x5 C - - - the ascending
chainy; =x; Ly, =y; VX Lo Ly =y, V Xy
eventually stabilizes.

» Widening is used to accelerate the convergence towards
an upper approximation of the least fixed point.

45

Example (continued) ©

» Assume we have a widening operator V that is defined
such that [1,1]1 V [2,2] = [1, +c°]

\Ll [x|—>T]
[x:=1] [x~[1,+e2]]V [x~[1,n]]= [x~[1+eo]]
) 2 [><4“’[1,1]] V [x~[2,2]]= [x~[1,+ee]]
[x < n] —> [X'_’[n+1,+°°]]

|3 [x>[L1] [x~{1n]]

[X:=x+1]

> The analysis converges quickly.

46

Reading

Patrick Cousot and Radhia Cousot. Abstract interpretation:

a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In: POPL'77,
pages 238-252. ACM Press, 1977

Neil D. Jones, Flemming Nielson: Abstract Interpretation:

a Semantics-Based Tool for Program Analysis, 1994

Flemming Nielson, Hanne Riis Nielson, Chris Hankin:
Principles of Program Analysis, Springer, 2005.

Chapter 1. Section 1.5
Chapter 4 (advanced material)

47

