
Chair of Software Engineering

Software Verification

Sebastian Nanz

Lecture 8: Abstract Interpretation

2

Plan for today's lecture

  In the first part we discuss program slicing as another
example of an application of data flow analysis.

  In the second part we discuss abstract interpretation, a
general framework for expressing program analyses.

Chair of Software Engineering

Program Slicing

4

Program slicing

sum := 0

i := 0
while i < y do
 sum := sum + x

 i := i + 1
end
print(sum)

sum := 0
prod := 1
i := 0
while i < y do
 sum := sum + x
 prod := prod * x
 i := i + 1
end
print(sum)
print(prod)

"What program statements potentially affect the value of
variable sum at line 8 of the program?"

1
2
3
4
5
6
7

8
9

1

3
4
5

7

8

5

Program slicing

  Program slicing provides an answer to the question

  The resulting program statements are called the
program slice.
  The program point l is called the slicing criterion.
  An observer focusing on the slicing criterion (i.e. only
observing values of the variables at program point l)
cannot distinguish a run of the program from the run of its
slice.

"What program statements potentially affect the
values of the variables at program point l?"

6

Applications of program slicing

  Debugging: Slicing lets the programmer focus on the
program part relevant to a certain failure, which might
lead to quicker detection of a fault.
  Testing: Slicing can minimize test cases, i.e. find the
smallest set of statements that produces a certain failure
(good for regression testing).
  Parallelization: Slicing can determine parts of the
program which can be computed independently of each
other and can thus be parallelized.

7

Classification

  Static slicing vs. dynamic slicing
  Static: general, not considering a particular input
  Dynamic: computed for a fixed input, therefore

smaller slices can be obtained
  Backward slicing vs. forward slicing

  Backward: "Which statements affect the execution
of a statement?"

  Forward: "Which statements are affected by the
execution of a certain statement?"

  In the following we present an algorithm for static
backward slicing.

8

Program slice

A backward slice S of program P with respect to slicing
criterion l is any executable program with the following
properties:

1.  S can be obtained by deleting zero or more statements

from P.
2.  If P halts on input I, then the values of the variables at

program point l are the same in P and in S every time
program point l is executed.

9

Slicing algorithm

  We present a slicing algorithm for static backward
slicing.
  Many different approaches, we show one that
constructs a program dependence graph (PDG).
  A PDG is a directed graph with two types of edges:

  Data dependencies: given by data-flow analysis
  Control dependencies: program point l is control-

dependent on program point l' if
(1) l' labels the guard of a control structure
(2) the execution of l depends on the outcome of
 the evaluation of the guard at l'

10

Control flow graph of the example program

[print(sum)]8

[print(prod)]9

[i<y]4

[sum := sum + x]5

[prod := prod * x]6

[sum:=0]1

[i := i + 1]7

[prod:=1]2

[i:=0]3

11

Example: Program dependence graph

[i<y]4

[sum := sum + x]5

[sum:=0]1

[i := i + 1]7

[prod:=1]2 [i:=0]3

[prod := prod * x]6

[print(sum)]8 [print(prod)]9

{(l, l') | l ∈ ∪ UD(x, l') where l' labels a block}
x used

in block l'

1. Data dependence subgraph

(self-loops are omitted)

12

Example: Program dependence graph

[i<y]4

[sum := sum + x]5

[sum:=0]1

[i := i + 1]7

[prod:=1]2 [i:=0]3

[prod := prod * x]6

ENTRY

[print(sum)]8 [print(prod)]9

2. Control dependence subgraph

(1) Edge from special node ENTRY to any node not within
 any control structure (such as while, if-then-else)

(2) Edge from any guard of a control structure to any
 statement within the control structure

13

Example: Computing the program slice

[i<y]4

[sum := sum + x]5

[sum:=0]1

[i := i + 1]7

[prod:=1]2 [i:=0]3

[prod := prod * x]6

ENTRY

[print(sum)]8 [print(prod)]9

Slicing using the PDG:
(1) Take as initial node the one given by the slicing criterion

(2) Include all nodes which the initial node transitively
 depends upon (use both data- and control-dependencies)

Data dependencies
Control dependencies

Chair of Software Engineering

Abstract Interpreta4on

Introduc4on

15

One framework to rule them all

  In the past lecture we have introduced a particular style
of program analysis: data flow analysis.

  For these types of analyses, and others, a main concern
is correctness: how do we know that a particular analysis
produces sound results (does not forget possible errors)?

  In the following we discuss abstract interpretation, a
general framework for describing program analyses and
reasoning about their correctness.

16

Main ideas: Concrete computations

  An ordinary program describes computations in some
concrete domain of values.

  Example: program states that record the integer
value of every program variable.

 σ ∈ State = Var -> Z

  Possible computations can be described by the concrete
semantics of the programming language used.

17

Main ideas: Abstract computations

  Abstract interpretation of a program describes
computation in a different, abstract domain.

  Example: program states that only record a specific
property of integers, instead of their value: their
sign, whether they are even/odd, or contained in
[-32768, 32767] etc.

 σ ∈ AbstractState = Var -> {even, odd}

  In order to obtain abstract computations, an abstract
semantics for the programming language has to be defined.
  Abstract interpretation provides a framework for
proving that the abstract semantics is sound with respect
to the concrete semantics.

18

The collecting semantics

We assume the state of a program to be modeled as:

 σ ∈ State = Var -> Z

We will use the following notation for function update:

 σ[x ↦ k](y) =

We construct the collecting semantics as a function which
gives for every program label the set of all possible states.

 C : Labels -> ℘(State)

!

"

$

%
$

k if x = y
σ(y) otherwise

19

Rules of the collecting semantics

Cl' = {σ[x ↦ n] | σ ∈ Cl and C[e]σ = n}

Cltrue = {σ | σ ∈ Cl and C[b]σ = true}
Clfalse = {σ | σ ∈ Cl and C[b]σ = false}

Cl = Cl1 ∪ Cl2

[x := e]

[b]

l1 l2

l

lfalse

ltrue

l'

l

l

Note: In difference to the lecture on program analysis,
labels are not on blocks, but on edges.

20

Example: Collecting semantics

[y:=1]

[x ≠ 0]

[y:=x*y]

[x:=x-1]

1

3

2
5

4

C1 = {σ | σ(x) > 0}

C2 = {σ[y ↦ 1] | σ ∈ C1} ∪
 {σ[x ↦ σ(x) - 1] | σ ∈ C4}

 C3 = C2∩{σ | σ(x) ≠ 0}

C4 = {σ[y ↦ σ(x)·σ(y)] | σ ∈ C3}

C5 = C2∩{σ | σ(x) = 0}

Assume x > 0.

21

Solving the equations

  The equation system we obtain has variables C1, ..., C5
which are interpreted over the complete lattice ℘(State).
  We can express the equation system as a monotone
function F : ℘(State)5 -> ℘(State)5

 F(C1, ..., C5) = ({σ | σ(x) > 0}, ..., C2∩{σ | σ(x) = 0})
  Using Tarski's Fixed Point Theorem, we know that a least
fixed point exists.
  We have seen: The least fixed point can be computed by
repeatedly applying F, starting with the bottom element ⊥ =
(∅,∅,∅,∅,∅) of the complete lattice until stabilization.

 F(⊥) ⊑ F(F(⊥)) ⊑ ... ⊑ Fn(⊥) = Fn+1(⊥)

22

Example: Fixed Point Computation

[y:=1]

[x ≠ 0]

[y:=x*y]

[x:=x-1]

1

3

2
5

4

∅

∅
∅

∅

∅

{[x↦m,y↦n] | m > 0}

{[x↦m,y↦1] | m > 0}

{[x↦0,y↦m] | m > 0}
{[x↦m,y↦1] | m > 0}

{[x↦m,y↦m] | m > 0}

C1 = {σ | σ(x) > 0}
C2 = {σ[y ↦ 1] | σ ∈ C1} ∪
 {σ[x ↦ σ(x) - 1] | σ ∈ C4}
C3 = C2∩{σ | σ(x) ≠ 0}
C4 = {σ[y ↦ σ(x)·σ(y)] | σ ∈ C3}
C5 = C2∩{σ | σ(x) = 0}

∪ {[x↦m-1,y↦m] | m > 0}

... etc.

23

Domain for Sign Analysis

We want to focus on the sign of integers, using the domain

 σ ∈ AbstractState = Var -> Signs

where Signs is the following structure:

How is such a structure called?

⊤

⊥

+ 0 -

A complete lattice

⊤ represents all integers
+ the positive integers
- the negative integers
0 the set {0}
⊥ the empty set

24

Example: Sign Analysis

[y:=1]

[x ≠ 0]

[y:=x*y]

[x:=x-1]

1

3

2
5

4

A1 = [x ↦ +, y ↦ T]

A2 = A1[y ↦ +] ⊔
 A4[x ↦ A4(x) ⊖ +]

A3 = A2

A4 = A3[y ↦ A3(x) ⊗ A3(y)]

A5 = A2 ⊓ [x ↦ 0, y ↦ T]

Assume x > 0. Use the abstract domain for sign analysis.

Chair of Software Engineering

Abstract Interpreta4on

Founda4ons

26

Introductory example: Expressions

A little language of expressions

Syntax
e ::= n | e * e

Concrete semantics
C[n] = n
C[e * e] = C[e] · C[e]

Example
C[-3 * 2 * -5] = C[-3 * 2] · C[-5] = C[-3 * 2] · (-5) = ... = 30

27

Introductory example: Abstraction

Assume that we are not interested in the value of an
expression but only in its sign:

  Negative: –
  Zero: 0
  Positive: +

Abstract semantics
A[n] = sign(n)

A[e * e] = A[e] ⊗ A[e]

Example
A[-3 * 2 * -5] = A[-3 * 2] ⊗ A[-5] = A[-3 * 2] ⊗ (-) = ... =
= (-) ⊗ (+) ⊗ (-) = (+)

⊗ - 0 +

-
0
+

+
0
-

+
0
0

28

Introductory example: Soundness

  We want to express that the abstract semantics
correctly describes the sign of a corresponding concrete
computation.
  For this we first link each concrete value to an abstract
value:

Representation function
β : Z -> {-, 0, +}

β(n) =

!

"

$

%
$

- if n < 0
0 if n = 0
+ if n > 0

29

Introductory example: Soundness

  Conversely, we can also link abstract values to the set of
concrete values they describe:

Concretization function

γ : {-, 0, +} -> ℘(Z)

γ(s) =

  Soundness then describes intuitively that the concrete
value of an expression is described by its abstract value:

 ∀e. C[e] ∈ γ(A[e])
!

"

$

%
$

{n | n < 0} if s = -
{0} if s = 0
{n | n > 0} if s = +

30

Extending the language

Syntax
e ::= n | e * e | e + e | -e

Abstract semantics
A[n] = sign(n)
A[-e] = ⊝A[e]

A[e + e] = A[e] ⊕ A[e]

Observation: The abstract domain {-,0,+} is not closed
under the interpretation of addition.

⊕ - 0 +

-
0
+

- 0 +

⊝ + 0 -

+ 0
-

+

? -

31

Extending the abstract domain

We have to introduce an additional abstract value:

 ⊤ "top" – (any value)

⊕ - 0 + ⊤
- - - ⊤ ⊤
0 0 + ⊤
+ + ⊤
⊤ ⊤

32

The new abstract domain

We can extend the concretization function to the new
abstract domain {-,0,+, ⊤, ⊥} (add ⊥ for completeness):

 γ(⊤) = Z γ(⊥) = ∅
We obtain the following structure when drawing the
partial order induced by

 a ≤ b iff γ(a) ⊆ γ(b)

How is such a structure called?

⊤

⊥

+ 0 -

A complete lattice

33

Construction of complete lattices

  If we know some complete lattices, we can construct
new ones by combining them
  Such constructions become important when designing
new analyses with complex analysis domains

Example: Total function space

Let (D1, ⊑1) be a partially ordered set and let S be a set.
Then (D, ⊑), defined as follows, is a complete lattice:
  D = S -> D1 ("space of total functions")
  f ⊑ f' iff ∀ s ∈ S : f(s) ⊑1 f'(s) ("point-wise ordering")

34

The framework of abstract interpretation

  Starting from a concrete domain C, define an abstract
domain (A, ⊑), which must be a complete lattice
  Define a representation function β that maps a concrete
value to its best abstract value

 β : C -> A
  From this we can derive the concretization function γ

 γ : A -> ℘(C)
 γ(a) = {c ∈ C | β(c) ⊑ a}

and abstraction function α for sets of concrete values

 α : ℘(C) -> A

 α(C) = ⨆ {β(c) | c ∈ C}

35

Galois connections

  The following properties of α and γ hold:

Monotonicity

 (1) α and γ are monotone functions
Galois connection

 (3) c ⊆ γ(α(c)) for all c ∈ ℘(C)
 (2) a ⊒ α(γ(a)) for all a ∈ A

  Galois connection: This property means intuitively that
the functions α and γ are "almost inverses" of each other.

36

Figure: Galois connection

c

γ(a)

α(c)

a

C A

37

Galois insertions

  For a Galois connection, there may be several elements
of A that describe the same element in C
  As a result, A may contain elements which are irrelevant
for describing C
  The concept of Galois insertion fixes this:

Monotonicity

 (1) α and γ are monotone functions
Galois insertion

 (3) c ⊆ γ(α(c)) for all c ∈ ℘(C)
 (2) a = α(γ(a)) for all a ∈ A

38

Figure: Galois insertion

c

γ(α(c))

α(c)

C A

39

Induced Operations

  A Galois connection can be used to induce the abstract
operations from the concrete ones.

  We can show that the induced operation op = α ∘ op ∘ γ
is the most precise abstract operation in this setting.
  The induced operation might not be computable. In this
case we can define an upper approximation op#, op ⊑ op#,
and use this as abstract operation.

℘(C) ℘(C)

A A

α γ

op

α ∘ op ∘ γ abstract execution

concrete execution

Chair of Software Engineering

Abstract Interpreta4on

Widening

41

Range analysis

  To introduce the notion of widening, we have a look at
range analysis, which provides for every variable an over-
approximation of its integer value range.
  We are left with the task of choosing a suitable
abstract domain: the interval lattice suggests itself.

Interval = {⊥}∪ {[x,y] | x ≤ y, x ∈ Z ∪ {∞}, y ∈ Z ∪ {∞}}

⊥

[0,0] [1,1] [2,2] [-1,-1]

[-∞,+∞]

[-1,0] [0,1] [1,2]

[-1,1] [0,2]
[1,+∞]

[0,+∞]

42

Example

  At program point 2, the following sequence of abstract
states arises: [x↦[1,1]], [x↦[1,2]], [x↦[1,3]], ...
Consequence: The analysis never terminates (or, if n is
statically known, converges only very slowly).

[x:=1]

[x ≤ n]

[x:=x+1]

1

3

2
4

[x↦⊤]

[x↦[1,1]]

[x↦[1,1]]

⊔ [x↦[2,2]] = [x↦[1,2]]

 Consider the following program:

43

The ascending chain condition

 Using an arbitrary complete lattice as abstract domain,
the solution is not computable in general.
  The reason for that is the fact that the value space
might be unbounded, containing infinite ascending chains:

 (ln)n is such that l1 ⊑ l2 ⊑ l3 ⊑ · · ·,
 but there exists no n such that ln = ln+1 = · · ·

  If we replace it with an abstract space that is finite (or
does not possess infinite ascending chains), then the
computation is guaranteed to terminate.
  In general, we want an abstract domain to satisfy the
ascending chain condition, i.e. each ascending chain
eventually stabilises:

 if (ln)n is such that l1 ⊑ l2 ⊑ l3 ⊑ · · ·,
 then there exists n such that ln = ln+1 = · · ·

44

Non-termination

  The reason for the non-termination in the example is
that the interval lattice contains infinite ascending chains.

  Trick, if we cannot eliminate ascending chains: We
redefine the join operator of the lattice to jump to the
extremal value more quickly.
Before: [1,1] ⊔ [2,2] = [1,2] Now: [1,1] ∇ [2,2] = [1,+∞]

⊥

[0,0] [1,1] [2,2] [-1,-1]

[-∞,+∞]

[-1,0] [0,1] [1,2]

[-1,1] [0,2]
[1,+∞]

[0,+∞]

45

Widening

A widening ∇ : D x D -> D on a partially ordered set (D, ⊑)
satisfies the following properties:

1.  For all x, y ∈ D. x ⊑ x∇y and y ⊑ x∇y
2.  For all ascending chains x1 ⊑ x2 ⊑ x3 ⊑ · · · the ascending

chain y1 = x1 ⊑ y2 = y1 ∇ x2 ⊑ · · · ⊑ yn+1 = yn ∇ xn+1
eventually stabilizes.

  Widening is used to accelerate the convergence towards
an upper approximation of the least fixed point.

46

Example (continued)

  Assume we have a widening operator ∇ that is defined
such that [1,1] ∇ [2,2] = [1, +∞]

  The analysis converges quickly.

[x:=1]

[x ≤ n]

[x:=x+1]

1

3

2
4

[x↦⊤]

[x↦[1,1]]

[x↦[1,1]]

∇ [x↦[2,2]] = [x↦[1,+∞]]

[x↦[1,n]]

[x↦[1,+∞]] ∇ [x↦[1,n]] = [x↦[1,+∞]]

[x↦[n+1,+∞]]

47

Reading

Patrick Cousot and Radhia Cousot. Abstract interpretation:
a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In: POPL'77,
pages 238-252. ACM Press, 1977

Neil D. Jones, Flemming Nielson: Abstract Interpretation:
a Semantics-Based Tool for Program Analysis, 1994

Flemming Nielson, Hanne Riis Nielson, Chris Hankin:
Principles of Program Analysis, Springer, 2005.
Chapter 1: Section 1.5
Chapter 4 (advanced material)

