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Program Verification: the very idea

max (a, b: INTEGER): INTEGER is
do

if a > b then
Result := a

else
Result := b

end
end

require
true

ensure
Result >= a
Result >= b

P: a program S: a specification

Does           P  S               hold?⊧

The Program Verification problem:
● Given: a program P and a specification S
● Determine: if every execution of P, for every value of input parameters, satisfies S
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Why is Verification Difficult?

P: a program S: a specification

Does      TM(P)  F(S)          hold?⊧

The very nature of universal (Turing-complete) 
computation entails the impossibility of deciding 
automatically the program verification problem.

TM(P): a Turing machine F(S): a first-order formula
⇕ ⇕

UNDECIDABLE
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Decidability vs. Expressiveness Trade-Off

If we restrict the expressiveness of:

– the computational model
and/or

– the specification language
the verification problem can become decidable

Def. Expressiveness: capability of describing 
extensive classes of:
● computations
● properties

Does      P  S          hold?⊧
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Verification of Finite-state Programs
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Verification of Finite-state Programs

Does      P  S         hold?⊧

In Model Checking we typically assume:

– finite-state programs
● every variable has finite domain

– monadic first-order logic
● restricted first-order logic fragment where the ordering 

of state values during a computation can be expressed

P: a finite-state program S: a monadic first-order specification

DECIDABLE
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Verification of Finite-state Programs

Does      FSA(P)  TL(S)         hold?⊧

In Model Checking we typically assume:

– finite-state programs
● equivalently: finite-state automata of some kind

– monadic first-order logic
● equivalently: temporal logic of some kind

P: a program S: a specification

FSA(P): a finite-state automaton TL(S): a temporal-logic formula
⇕ ⇕

DECIDABLE
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Model-Checking in Pictures

P: a program S: a specification

FSA(P): a finite-state automaton TL(S): a temporal-logic formula
⇕ ⇕

is_locked: BOOLEAN

toggle_lock: is
do

is_locked := not is_locked
end

ensure
is_locked = not old is_locked

⊧ □ (toggle_lock   ⇔ X toggle_lock)
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Finite-state Programs in the Real World

A few examples:
● Behavior of hardware

– inherently finite-state
● Concurrency aspects

– access to critical regions, scheduling of processes, ...
● Security aspects

– access policies, protocols, ...
● Reactive systems

– ongoing interaction between software and physical environment

Can finite-state models capture
significant aspects of real programs? Yes!
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Is the Abstraction Correct?

How to guarantee that the finite-state abstraction of an 
infinite-state program is accurate?
● In hardware verification, the real system is finite-state, so no 

abstraction is needed
● The finite-state model can be built and verified before the real 

implementation is produced
– A formal high-level model
– Increased confidence in some key features of the system under 

development
– Model-driven development: the implementation is derived 

(almost) automatically from the high-level finite-state model
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Is the Abstraction Correct?

How to guarantee that the finite-state 
abstraction of an infinite-state program is 
accurate?
● Software model-checking: the abstraction is built 

automatically and refined iteratively until we can 
guarantee that it is an accurate model of the real 
implementation for the properties under 
verification
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The Model-checking Paradigm
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The Model-Checking Paradigm

A: a finite-state automaton F: a temporal-logic formula

⊧

The Model Checking problem:
● Given: a finite-state automaton A and

      a temporal-logic formula F
● Determine: if every run of A satisfies F or not

– if not, provide a counterexample:
a run of A where F does not hold

□ (toggle_lock   ⇔ X toggle_lock)
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The Model-Checking Paradigm

A: a finite-state automaton F: a temporal-logic formula

⊧

Different choices are possible for the kinds
of automata and of formulae.
● We now describe more details for

linear-time model-checking where:
– A is a (nondeterministic) finite state automaton
– F is a propositional linear temporal logic formula

□ (toggle_lock   ⇔ X toggle_lock)
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Finite State Automata: Syntax
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Finite State Automata: Syntax

Def. Nondeterministic Finite State Automaton (FSA):
 a tuple [Σ, S, I, ρ, F]:
● Σ: finite nonempty (input) alphabet
● S: finite nonempty set of states
● I  S: set of ⊆ initial states
● F  S: set of ⊆ accepting states

● ρ: S x Σ  2→
S: transition function
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Finite State Automata: Syntax
Def. Nondeterministic Finite State Automaton (FSA):

 a tuple [Σ, S, I, ρ, F]:

● Σ: finite nonempty (input) alphabet
● S: finite nonempty set of states
● I  S: set of ⊆ initial states
● F  S: set of ⊆ accepting states

● ρ: S x Σ  2→
S: transition function

● Σ = { pull, push, turn_on, turn_off, start,
   stop, cook }

● S = { closed-off, open-off, closed-on,
   open-on, closed-cooking }

● I = { closed-off }
● F = { closed-off }
● ρ(closed-off, turn_on) = { closed-on }
● ρ(..., ...) = ...

● Deterministic, in this example (“microwave oven”)
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Finite State Automata: Semantics

Accepting run
r = closed-off closed-on closed-cooking

closed-cooking closed-on closed-off
over input word
w = turn_on start cook stop turn_off

Rejecting run
r' =closed-off open-off closed-off

closed-on
over input word
w' = pull push turn_on
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Finite State Automata: Semantics

Def. An accepting run of an FSA A=[Σ, S, I, ρ, F]
    over input word w = w(1) w(2) ... w(n)  ∈ Σ*
 is a sequence r = r(0) r(1) r(2) ... r(n)  S*∈
 of states such that:

– it starts from an initial state:     r(0)
 

 ∈ I

– it ends in an accepting state:      r(n)
 

 ∈ F

– it respects the transition function:
 r(i+1)

 
 ∈ ρ(r(i), w(i)) for all 0 ≤ i < n
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Finite State Automata: Semantics

Def. An accepting run of an FSA A=[Σ, S, I, ρ, F]
    over input word w = w(1) w(2) ... w(n)  ∈ Σ* is a
    sequence r = r(0) r(1) r(2) ... r(n)  S* of states such that:∈

– it starts from an initial state:     r(0)
 

 ∈ I

– it ends in an accepting state:      r(n)
 

 ∈ F

– it respects the transition function: r(i+1)
 

 ∈ ρ(r(i), w(i))
                                               for all 0 ≤ i < n

● Accepting run
r = closed-off closed-on closed-cooking

closed-cooking closed-on closed-off
● Over input word

w = turn_on start cook stop turn_off
● In practice: any path on the directed graph 

that starts in an initial state and ends in an 
accepting state
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Finite State Automata: Semantics

Def. Any FSA A=[Σ, S, I, ρ, F] defines
   a set of input words A⟨ ⟩:

  A⟨ ⟩  { w ≜  ∈ Σ*  | there is an
                         accepting run of A

                              over w }

      ⟨A  is called the ⟩ language of A
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Finite State Automata: Semantics

Def. Any FSA A=[Σ, S, I, ρ, F] defines
   a set of input words A⟨ ⟩:
  A⟨ ⟩  { w ≜  ∈ Σ*  | there is an
                          accepting run of A
                             over w }

      ⟨A  is called the ⟩ language of A

With regular expressions:

A⟨ ⟩ = ( (pull push)* (turn_on
  (pull push)*

(start cook* stop)*
(pull push)*

    turn_off)*   )*
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Linear Temporal Logic: Syntax

Def. Propositional Linear Temporal Logic (LTL) formulae
are defined by the grammar:

F  ::=  p  |  ¬ F  |  F ∧ G  |  X F  |  F U G

with p  ∈ P any atomic proposition from a fixed set P.

Propositional connectives:
● not:  ¬ F
● and:  F ∧ G
● or:  F ∨ G

  
≜ ¬ (¬F ∧ ¬G)

● implies: F ⇒ G ≜ ¬F ∨ G
● iff:   F ⇔ G ≜ (F ⇒ G)  ∧ (G ⇒ F)

Temporal (modal) operators:
● next:   X F
● until:  F U G
● release:  F R G ≜ ¬ (¬F U ¬G)
● eventually: ◊ F ≜ True U F
● always:  □ F ≜ ¬ ◊ ¬F
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Linear Temporal Logic: Syntax

Def. Propositional Linear Temporal Logic (LTL) formulae
are defined by the grammar:

F  ::=  p  |  ¬ F  |  F ∧ G  |  X F  |  F U G

with p  ∈ P any atomic proposition from a fixed set P.

□ ( start  ⇒ X (cook U stop) )
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Linear Temporal Logic: Semantics

● □ ( start )

● X ( cook )

● □ ( X cook )

● cook  ∧ □ ( X cook )

● stop  ∧ start
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Linear Temporal Logic: Semantics

● □ ( start )

start, start, start, ...
● X ( cook )

● □ ( X cook )

● cook  ∧ □ ( X cook )

● stop  ∧ start
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Linear Temporal Logic: Semantics

● □ ( start )

start, start, start, ...
● X ( cook )

[any], cook, [any], ...
● □ ( X cook )

● cook  ∧ □ ( X cook )

● stop  ∧ start
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Linear Temporal Logic: Semantics

● □ ( start )

start, start, start, ...
● X ( cook )

[any], cook, [any], ...
● □ ( X cook )

[any], cook, cook, 
cook, ...

● cook  ∧ □ ( X cook )

cook, cook, cook, 
cook, ...

● stop  ∧ start
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Linear Temporal Logic: Semantics

● □ ( start )

start, start, start, ...
● X ( cook )

[any], cook, [any], ...
● □ ( X cook )

[any], cook, cook, 
cook, ...

● cook  ∧ □ ( X cook )

cook, cook, cook, 
cook, ...

● stop  ∧ start

Ø
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Linear Temporal Logic: Semantics

Def. A word w = w(1) w(2) ... w(n)  ∈ P*
  satisfies an LTL formula F
    at position 1 ≤ i ≤ n, denoted w, i  F⊧ ,
  under the following conditions:

– w, i  p      ⊧     iff    p = w(i)
– w, i  ⊧ ¬ F          iff    w, i ⊧ F does not hold
– w, i  ⊧ F ∧ G       iff    both w, i  ⊧ F  and w, i  G⊧  hold
– w, i  ⊧ X F        iff    i < n and w, i+1  ⊧ F

● i.e., F holds in the next step
– w, i  F ⊧ U G        iff    for some i ≤ j ≤ n it is: w, j  G⊧

                                and for all i ≤ k < j it is w, k  ⊧ F
● i.e., F holds until G will hold
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Linear Temporal Logic: Semantics

For derived operators:
– w, i  ⊧ ◊ F             iff    for some i ≤ j ≤ n it is: w, j  F⊧

● i.e., F holds eventually (in the future)

– w, i  ⊧ □ F             iff    for all i ≤ j ≤ n it is: w, j  F⊧
● i.e., F holds always (in the future)
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Linear Temporal Logic: Semantics

Def. Satisfaction:
                 w  F    ⊧ ≜   w, 1   F⊧

i.e., word w satisfies formula F initially

Def. Any LTL formula F defines a set of words F⟨ ⟩:
  F⟨ ⟩  { w ≜  P*  | ∈ w  F }⊧

      ⟨F  is called the ⟩ language of F
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Linear Temporal Logic: Semantics

Def. Any LTL formula F defines a set of words F⟨ ⟩:
  F⟨ ⟩  { w ≜  P*  | ∈ w  F }⊧

      ⟨F  is called the ⟩ language of F

 ⟨ □ start  = start, start, start, ...⟩
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Verification as Emptiness Checking

A: a finite-state automaton F: a temporal-logic formula⊧

The Model Checking problem:
● Given: a finite-state automaton A and a temporal-logic formula F
● Determine: if every run of A satisfies F or not

– if not, also provide a counterexample:
a run of A where F does not hold

?

⇕ ⇕
⟨A⟩ = words accepted by A ⟨F⟩ = words satisfying F
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Verification as Emptiness Checking

A: a finite-state automaton F: a temporal-logic formula⊧
?

⇕ ⇕
⟨A⟩ = words accepted by A ⟨F⟩ = words satisfying F

A  F⊧     means:   “ every accepting run of A produces
         a word that satisfies F ”

A  F⊧    iff:                w  A  ∈ ⟨ ⟩ implies w  F∈ ⟨ ⟩

       iff:                A  ⟨ ⟩ ⊆ F⟨ ⟩

       iff:               A  ⟨ ⟩ ∩ F⟨ ⟩
c = ∅ 

    iff:             A  ⟨ ⟩ ∩ ⟨¬ F  ⟩ = ∅
⟨A⟩

⟨F⟩
⟨F⟩c
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Automata-theoretic Model Checking

An semantic view of the Model Checking 
problem:
● Given: a finite-state automaton A

   and a temporal-logic formula F
● if A  ⟨ ⟩ ∩ ⟨¬ F  is ⟩ empty then every run of A

satisfies F
● if A  ⟨ ⟩ ∩ ⟨¬ F  is ⟩ not empty then some run of A

does not satisfy F
– any member of the nonempty intersection

A  ⟨ ⟩ ∩ ⟨¬ F  ⟩ is a counterexample
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Automata-theoretic Model Checking

How to check ⟨A  ⟩ ∩ ⟨¬ F  ⟩ = ∅ algorithmically (given A, F)?

Combination of three different algorithms:

● LTL2FSA: given LTL formula F build automaton
a(F) such that ⟨F  = ⟩ ⟨a(F)⟩

● FSA-Intersection: given automata A, B build
automaton C such that ⟨A  ⟩ ∩ ⟨B  = ⟩ ⟨C⟩

● FSA-Emptiness: given automaton A check whether
⟨A  = ⟩ ∅ is the case
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LTL2FSA: from LTL to FSA

Given an LTL formula F, it is always possible to 
build automatically an FSA a(F) that accepts 

precisely the same words that satisfy F.

There are various algorithms to achieve this, with various degrees 
of sophistication and efficiency. Let us skip the details and just 
demonstrate the idea on an example.
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LTL2FSA: from LTL to FSA

● Always:
● when start occurs:

● stop will occur in the future and
● cook holds until the occurrence of stop

□ ( start  ⇒ X (cook U stop) )
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LTL2FSA: from LTL to FSA

● Always:
● when start occurs:

● stop will occur in the future and
● cook holds until the occurrence of stop

As long as start does not 
occur, everything's fine.

□ ( start  ⇒ X (cook U stop) )
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LTL2FSA: from LTL to FSA

● Always:
● when start occurs:

● stop will occur in the future and
● cook holds until the occurrence of stop

As long as start does not 
occur, everything's fine.

start occurs: move to a 
different (non-accepting) 
state and start monitoring.

□ ( start  ⇒ X (cook U stop) )
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LTL2FSA: from LTL to FSA

● Always:
● when start occurs:

● stop will occur in the future and
● cook holds until the occurrence of stop

As long as start does not 
occur, everything's fine.

start occurs: move to a 
different (non-accepting) 
state and start monitoring.

stop must occurs in the 
future for things to be fine.

□ ( start  ⇒ X (cook U stop) )
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LTL2FSA: from LTL to FSA

● Always:
● when start occurs:

● stop will occur in the future and
● cook holds until the occurrence of stop

As long as start does not 
occur, everything's fine.

start occurs: move to a 
different (non-accepting) 
state and start monitoring.

stop must occurs in the 
future for things to be fine.

cook can occur 
before stop does.

□ ( start  ⇒ X (cook U stop) )
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LTL2FSA: from LTL to FSA

● Always:
● when start occurs:

● stop will occur in the future and
● cook holds until the occurrence of stop

Corner cases:
● which events satisfy ¬start?
● what happens if neither cook nor stop occur 

in B2?

□ ( start  ⇒ X (cook U stop) )
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LTL2FSA: complete the transitions

● Always:
● when start occurs:

● stop will occur in the future and
● cook holds until the occurrence of stop

● if this doesn't happen, fail

□ ( start  ⇒ X (cook U stop) )
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LTL2FSA: complement

● Always:
● when start occurs:

● stop will occur in the future and
● cook holds until the occurrence of stop

● if this doesn't happen, fail

¬□ ( start  ⇒ X (cook U stop) )
≡

 ◊ ( start  ∧ X (¬cook R ¬stop))

● Sometimes:
● start occurs and from that moment on:
● cook becomes false after stop

□ ( start  ⇒ X (cook U stop) )
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Given automata A, B it is always possible to build 
automatically an FSA C that accepts precisely the words that 

both A and B accept.

Automaton C represents all possible parallel runs of A and B where 
a word is accepted if and only if both A and B accept it. The 
(simple) construction is called “product automaton”.

FSA-Intersection: running FSA in parallel
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FSA-Intersection: running FSA in parallel

x =
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FSA-Intersection: running FSA in parallel

x =
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FSA-Intersection: running FSA in parallel

x =
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FSA-Intersection: running FSA in parallel

x =
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FSA-Intersection: running FSA in parallel

x =
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FSA-Intersection: running FSA in parallel

x =
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Def. Given FSA A=[Σ, SA, IA, ρA, FA] and B=[Σ, SB, IB, ρB, FB]
  let     C  ≜ A x B ≜ [ΣC, SC, IC, ρC, FC] be defined as:
● ΣC ≜ Σ
● SC ≜ SA  x SB

● IC ≜ { (s, t) | s  I∈ A  and t  I∈ B }
● ρC((s, t), σ) ≜ { (s', t') | s'  ρ∈ A(s, σ)  and t'  ρ∈ B(t, σ) }  

● FC ≜ { (s, t) | s  F∈ A  and t  F∈ B }

Theorem.
⟨A x B⟩

=
⟨A  ⟩ ∩ ⟨B⟩

FSA-Intersection: running FSA in parallel
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Given an automaton A it is always possible to check 
automatically if it accepts some word.

It suffices to check whether any final state can be reached 
starting from any initial state.

This amount to checking reachability on the graph representing the 
automaton: if a path is found, it corresponds to an accepted word; 
otherwise the automaton accepts an empty language.

FSA-Emptiness: node reachability
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It suffices to check whether any final state can be reached 
starting from any initial state.

FSA-Emptiness: node reachability

From the initial state B1 both 
accepting states can be reached.

Correspondingly we find the accepted 
words:

● start
● start cook cook
● start stop start
● ...

The accepted language is not empty.
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Automata-theoretic Model Checking

Automata-theoretic Model Checking Algorithm:
● Given: a finite-state automaton A and a temporal-logic 

formula F

1. TL2FSA: build “tableau” automaton a(¬F)

2.FSA-Intersection: build “product” automaton A x a(¬F)

3.FSA-Emptiness: check whether A x a(¬F) = ∅
● If A x a(¬F) = ∅ then any run of A satisfies F
● If A x a(¬F) ≠ ∅ then show a run of A where F does 

not hold
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Automata-theoretic Model Checking
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Transition Systems vs.
Finite State Automata
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Transition Systems
● A slight variant of the model-checking framework uses finite-state 

transition systems instead of finite-state automata to model the 
finite-state program/system.
● Kripke structures is another name for finite-state transition 

systems.
● A finite-state transition system is a finite-state automaton where 

propositions are associated to states rather than transition.
● The finite-state transition system and finite-state automaton models 

are essentially equivalent and it is easy to switch from one to the 
other.

● The finite-state transition system model is closer to the notion of 
finite-state program, but the automaton model is more amenable to 
variants and generalizations (see e.g., class on real-time model-
checking).
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Automaton vs. Transition System
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Automaton vs. Transition System

□ ( start  ⇒ X (cook U stop) )

□ (closed-cooking ⇒
  X (closed-cooking U closed-on))



63

Transition System vs. Automaton

◊□ C ◊□ C
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From Programs to Transition Systems

n_to_n (n: INTEGER): INTEGER
require 0 ≤ n ≤ 2
local i: INTEGER
do

from i := n ; Result := 1
until i = 0
loop

Result := Result * n
i := i – 1

end
ensure Result = nn end
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From Programs to Transition Systems

forever (b: BOOLEAN)
local old, new: BOOLEAN
do

from old := b ; new := not b
until old = new
loop

old := new
new := not old

end
end
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Variants of the Model-Checking Algorithm



67

Variants of the Model-Checking Algorithm

The basic model-checking algorithm:
● TL2FSA: build automaton a(¬F)
● FSA-Intersection: build automaton A x a(¬F)
● FSA-Emptiness: check whether A x a(¬F) = ∅

can be refined into different variants:

● Explicit-state model-checking
● Symbolic (BDD-based) model-checking
● Bounded (SAT-based) model-checking

The variants differ in how they represent automata and formulae 
and how they analyze them. Hybrid approaches are also possible.



68

Explicit-state Model Checking

Explicit-state model-checking represents automata 
explicitly as graphs:

● TL2FSA: build automaton a(¬F)
– the automaton is represented as a graph

● FSA-Intersection: build automaton A x a(¬F)
– the intersection is usually built on-the-fly while checking 

emptiness, because the product automaton can be large
● FSA-Emptiness: check whether A x a(¬F) = ∅

– a search on the expanded intersection graph looks for 
reachable accepting nodes

SPIN is an example of explicit-state model checker.
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Symbolic Model Checking
Symbolic model-checking represents 
automata implicitly (symbolically) 
through their transition functions 
encoded as BDDs (Binary Decision 
Diagrams):
● A BDD is an efficient representation of 

Boolean functions (i.e., truth tables) as 
acyclic graphs

● Logic operations (e.g., conjunction, 
negation) can be performed efficiently 
directly on BDDs
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Symbolic Model Checking
Logic operations (e.g., conjunction, negation) can be 
performed efficiently directly on BDDs

● TL2FSA: build automaton a(¬F)
– the transition function of the automaton is 

represented as a BDD
● FSA-Intersection: build automaton A x a(¬F)

– the intersection is a BDD built by manipulating the 
two BDDs

● FSA-Emptiness: check whether A x a(¬F) = ∅
– emptiness checking is also performed directly on 

the BDD
● it amount to reduction to a canonical form and 

then comparison with the canonical BDD for 
unsatisfiable Boolean functions

SMV is an example of symbolic model checker.
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Bounded model-checking considers all paths of bounded size on the 
automaton and represents them as a propositional formula. Propositional 
formulas are then checked for satisfiability with SAT-solvers (i.e., 
automatic provers for propositional satisfiability).

● The bound k of the path size is an additional input to the model-checking 
problem with respect to standard model-checking. However, if the bound is 
“large enough” the problem is equivalent to standard model-checking.

● Even if the encoding as a propositional formula is quite large, SAT-solvers 
can handle huge (e.g., > 105 propositions) formulas efficiently.

               NP-completeness should never scare the compiler writer.
                                          -- Andrew W. Appel

Bounded Model Checking

verification tool
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Bounded Model Checking

● TL2FSA: build automaton a(¬F)
– the LTL formula is translated directly into a 

propositional formula p(¬F)
● FSA-Intersection: build automaton A x a(¬F)

– the product of two propositional formulas is simply 
their conjunction p(A) ∧ p(¬F)

● FSA-Emptiness: check whether A x a(¬F) = ∅
– emptiness checking is equivalent to satisfiability 

checking of p(A) ∧ p(¬F)

nuSMV and ℤot are examples of bounded model checkers.
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Variants of the Model-Checking Approach
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Variants of the Model-Checking Problem

The Model Checking problem:
● Given: a finite-state automaton A and a temporal-logic formula F
● Determine: if any run of A satisfies F or not

– if not, also provide a counterexample: a run of A where F does not hold

The general problem can be refined into variants, 
according to the nature of A and F.

● The same generic automata-theoretic solution
(TL2FSA -> Intersection -> Emptiness)

applies to any of these variants
(modulo some technicalities)
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Variants of the Model-Checking Problem

The general problem can be refined into variants, 
according to the nature of A and F.

Classes of automata:
● Finite State Automata

(FSA)
● Büchi Automata (BA)
● Alternating Automata

(AA)
● ...

Classes are non disjoint

Classes of temporal logic:
● Linear-time temporal logic
● Branching-time temporal 

logic
● Temporal logic with

past operators
● ...

Classes are non disjoint
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Automata Classes
● Finite-state Automata (FSA)

– those presented in this lecture
– FSA runs correspond to finite words (words of finite length)

● Büchi Automata (BA)
– named after Julius Büchi (Swiss logician, ETH graduate)
– BA runs correspond to infinite words (words of unbounded length)

● this complicates the definitions of acceptance, product, and 
complement, as well as the algorithm for emptiness

– infinite words are needed to model:
● reactive systems: ongoing interaction with environment

– e.g, control system, interactive protocol, etc.
● liveness and fairness

– e.g., “process P will not starve”
– the most common presentation of linear-time model-checking uses BA
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Temporal Logic Classes
● Linear-time Temporal Logic (LTL)

– the one presented in this lecture
– LTL formulae express properties of linear sequences, that is words

● linear: every element has only one possible successor
● linear time: every step has only one possible “future”

● Branching-time Temporal Logic
– includes path quantifiers in the syntax
– for example CTL (Computation Tree Logic):

F  ::=  p  |  ¬ F  |  F ∧ G  |  X∃  F  |  X∀  F  |  F U∃  G |  F U∀  G

– branching-time formulae express properties of branching structures, 
that is trees

● branching: an element can have multiple possible successors
● branching time: a step can have many possible “futures”

– e.g.: ◊∃  p: “there exists a path where p eventually holds”
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Linear vs. Branching

LTL and CTL have different strengths and 
weaknesses
● Expressiveness: LTL and CTL

have incomparable expressive power
– CTL formula ∀◊∀□ p:

“p will stabilize at True within
  a bounded amount of time”
doesn't have an equivalent LTL formula

– LTL formula ◊□ p:
“p is ultimately True in every computation”

doesn't have an equivalent CTL formula
– see infinite computation tree

(p holds precisely in green nodes)


