
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz

Concepts of Concurrent Compuation – Assignments
Spring 2011

Assignment 2: Synchronization, Satisfaction

ETH Zurich

1 Mutual Exclusion

1.1 Background

Consider the following algorithm for a process Pi in a set of processes P1, . . . , Pn:

turn := 0
∀ i ∈ {1, . . . , n} : claimed[i] := false
Pi

claimed[i] := true
2 while ∃ j ∈ {1, . . . , n} \ {i} : claimed[j] = true loop

claimed[i] := false
4 await (turn = 0 or turn = i)

turn := i
6 claimed[i] := true

end
8 critical section

claimed[i] := false
10 turn := 0

non-critical section

1.2 Task

Answer the following questions:

1. Does the algorithm enforce mutual exclusion? If so, justify your answer with an informal
proof. If not, provide a sequence of actions to illustrate how mutual exclusion could be
violated.

2. Does the algorithm guarantee the absence of deadlocks? If so, justify your answer with
an informal proof. If not, provide a sequence of actions to illustrate how a deadlock could
occur.

3. Does the algorithm guarantee the absence of starvation? If so, justify your answer with
an informal proof. If not, provide a sequence of actions to illustrate how starvation could
occur.

1

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz

Concepts of Concurrent Compuation – Assignments
Spring 2011

2 Yet Another Lock: Proofs

2.1 Background

This task is taken from The Art of Multiprocessor Programming [1]. Consider the following
protocol to achieve n-thread mutual exclusion.

busy := false
Pi

do {
2 do {

turn := i
4 } while (busy)

busy := true
6 } while (turn != i)

critical section
8 busy := false

non-critical section

2.2 Task

For each of the following questions either provide a proof, or display an execution where it fails.

1. Does the protocol satisfy mutual exclusion?

2. Is the protocol starvation-free?

3. Is the protocol deadlock-free?

3 Tree-based mutual exclusion

3.1 Background

This question assumes a “tree-based mutual exclusion” (TBME) algorithm which is based on
the following idea: The algorithm can be represented by a binary tree where each internal (non-
leaf) node represents a critical section shared by its descendants. The threads are at the leaves
of the tree. The root of the tree is the main critical section shared by all the threads.

To enter the main critical section, a thread starts at its leaf in the tree. The thread is re-
quired to traverse the path from its leaf up to the root, entering all the critical sections on
its path. Upon exiting the critical section, the thread traverses this path in reverse, this time
leaving all the critical sections on its path. Figure 1 illustrates this process. If thread 1 wants
to enter the main critical section, it must first enter critical section B. After having successfully
entered critical section B, thread 1 must enter critical section A, and so on.

At each internal node, there is a maximum of two threads competing against each other to
enter the node’s critical section. Therefore, a mutual exclusion algorithm for two threads (e.g.
Peterson’s algorithm for 2 threads) can be used to implement the critical section of an internal
node.

3.2 Task

1. What is the main advantage of the TBME algorithm over the Peterson algorithm for n
threads?

2

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz

Concepts of Concurrent Compuation – Assignments
Spring 2011

thread 1 thread 2 thread 3 thread 4 thread 5

critical section B critical section C

critical section A

main critical

section

Figure 1: tree-based mutual exclusion algorithm example

2. Provide a Java implementation of the TBME algorithm using the Peterson algorithm for
2 threads.

References

[1] Maurice Herlihy und Nir Shavit: The Art of Multiprocessor Programming. Morgan Kauf-
mann, 2008

3

	Mutual Exclusion
	Background
	Task

	Yet Another Lock: Proofs
	Background
	Task

	Tree-based mutual exclusion
	Background
	Task

