
Chair of Software Engineering

Concepts of Concurrent Computation

Bertrand Meyer
Sebastian Nanz	

Lecture 7: SCOOP type system

2

Traitor

A traitor is an entity that
Ø  Statically, is declared as non-separate
Ø  During an execution, can become attached to a

separate object

3

Traitors here…

-- Supplier
class T feature

 b: A
end

-- In class C (client)
x1: separate T
a: A

r (x: separate T)

 do
 a := x.b
 end

r (x1)
a.f

Is this call valid?

And this one?

4

Traitors there...

-- In class C (client)
x1: separate T
a: A

r (x: separate T)

 do
 x.f (a)
 end

r (x1)

-- Supplier
class T feature

 f (b: A)
 do
 b.f
 end

end

Is this call valid?

And this one?

5

Consistency rules: first attempt

Original model (Object-Oriented Software
Construction, Chapter 30) defines four
consistency rules that eliminate traitors

Written in English

Easy to understand by programmers

Are they sound? Are they complete?

6

Consistency rules: first attempt

Separateness
Consistency Rule (1)

If the source of an
attachment (assignment
or argument passing) is
separate, its target must
also be separate

r (buf: separate BUFFER [T]; x: T)
 local
 buf1: separate BUFFER [T]
 buf2: BUFFER [T]
 x2: separate T
 do

 buf1 := buf -- Valid
 buf2 := buf1 -- Invalid
 r (buf1, x2) -- Invalid
 end

7

Consistency rules: first attempt

Separateness
Consistency Rule (2)

If an actual argument
of a separate call is of
a reference type, the
corresponding formal
argument must be
declared as separate

 -- In class BUFFER [G]:
put (element: separate G)

 -- In another class:
store (buf: separate BUFFER [T]; x: T)

 do
 buf.put (x)

 end

 . . .

8

Consistency rules: first attempt

Separateness
Consistency Rule (3)

If the source of an
attachment is the result
of a separate call to a
query* returning a
reference type, the
target must be declared
as separate

 -- In class BUFFER [G]:
item: G

 -- In another class:

consume (buf: separate BUFFER [T])
 local
 element: separate T
 do

 element := buf.item
 . . .

 end

(*A query is an attribute or function)

9

Consistency rules: first attempt

Separateness
Consistency Rule (4)

If an actual argument
or result of a separate
call is of an expanded
type, its base class
may not include,
directly or indirectly,
any non-separate
attribute of a
reference type.

 -- In class BUFFER [G]:
put (element: G)

 -- G not declared separate

 -- In another class:
store (buf: separate BUFFER [E]; x: E)

 do
 buf l put (x)

 -- E must be “fully expanded”
 end

 . . .

10

The “ad hoc” rules are too restrictive

r (l: separate LIST [STRING])
 local
 s: separate STRING
 do
 s := l [1]
 l l put (s) -- Invalid according to Rule 2
 -- but is harmless
 end

11

Ad hoc SCOOP rules: assessment

The rules
Ø  Prevent almost all traitors, +
Ø  Are easy to understand by humans, +
Ø  No soundness proof, -
Ø  Too restrictive, -
Ø  No support for agents -

Can we do better?
Ø  Refine and formalize the rules

12

A type system for SCOOP

Goal: prevent all traitors through static (compile-time)
checks

Simplifies, refines and formalizes ad hoc rules

Integrates expanded types and agents

13

Three components of a type

Notation:
 Γ |- x : (γ, α, C)

1. Attached/detachable: γ ∈ {!, ?}

2. Processor tag α ∈ {●, T, ⊥, <p>, <a l handler>}

3. Ordinary (class) type C

Current processor

Some processor (top)
x: separate U

No processor (bottom)

Under the binding Γ,
x has the type (γ, α, C)

14

Examples

u: U -- u : (!, ●, U)
v: separate V -- v : (!, T, V)
w: detachable separate W -- w : (?, T, W)

 -- Expanded types are attached and non-separate:
i: INTEGER -- i : (!, ●, INTEGER)
Void -- Void : (?, ⊥, NONE)
Current -- Current : (!, ● , Current)
x: separate <px> T -- x : (!, px, T)
y: separate <px> Y -- y : (!, px, Y)
z: separate <px> Z -- z : (!, px, Z)

15

Subtyping rules

Conformance on class types like in Eiffel, essentially based
on inheritance:

D ≤Eiffel C ⇔ (γ, α, D) ≤ (γ, α, C)

Attached ≤ detachable:

 (!, α, C) ≤ (?, α, C)

Any processor tag ≤ T :

 (γ, α, C) ≤ (γ, T, C)

In particular, non-separate ≤ T :

 (γ, ●, C) ≤ (γ, T, C)

⊥ ≤ any processor tag:

 (γ, ⊥, C) ≤ (γ, α, C)

Standard Eiffel
(non-SCOOP)
conformance

16

Using the type rules

We can rely on the standard approach to assess validity

Ø  Assignment rule: source conforms to target

Enriched types give us additional guarantees

No need for special validity rules for separate variables
and expressions

17

a: separate C -- a : (!, T, C)
b: C -- b : (!, ●, C)
c: detachable C -- c : (?, ●, C)
f (x, y: separate C) do ... end -- x : (!, T, C), y : (!, T, C)
g (x: C) do ... end -- x : (!, ●, C)
h (x: detachable C): separate <p> C -- x : (?, ●, C) : (!, p, C)
 do ... end

f (a, b)
f (a, c)
g (a)
a := h (b)
a := h (a)

Invalid
Invalid

Invalid

Assignment examples

18

Unified rules for call validity

Informally, a variable x may be used as target of a
separate feature call in a routine r if and only if:

Ø  x is attached

Ø  The processor that executes r has exclusive
access to x’s processor

19

Feature call rule

An expression exp of type (d, p, C) is controlled if and only
if exp is attached and satisfies any of the following
conditions:

Ø  exp is non-separate, i.e. p = ●
Ø  exp appears in a routine r that has an attached

formal argument a with the same handler as exp, i.e.
p = a l handler

A call x l f (a) appearing in the context of a routine r in a
class C is valid if and only if both :

Ø  x is controlled
Ø  x’s base class exports feature f to C, and the actual

arguments conform in number and type to formal
arguments of f

20

Unqualified explicit processor tags

Unqualified explicit processor tags rely on a processor attribute.
•  p: PROCESSOR -- Tag declaration
•  x: separate <p> T -- x : (!, <p>, T)
•  y: separate <p> Y -- y : (!, <p>, Y)
•  z: separate Z -- z : (!, T, Z)

Attachment (where Y is a descendant of T, and Z a descendant of Y)
•  x := y
•  y := z

Object creation
•  create x -- Fresh processor created to handle x.
•  create y -- No new processors created; y is put

 -- on x’s processor.

-- Valid because (!, <p>, Y) ≤ (!, <p>, T)
-- Invalid because (!, T, Z) ≤ (!, <p>, Y) /

21

Object creation

p: PROCESSOR

a: separate X
b: X
c, d: separate <p> X

create a

create b

create c

create d

Processor tag

Create fresh processor for a

Place b on current processor

Create fresh processor p for c

Processor p already exists: place d on p

22

Qualified explicit processor tags

Declared using “feature” handler on a read-only attached
entity (such as a formal argument or current object)

 x: separate <y.handler> T

 -- x is handled by handler of y

Attachment, object creation:

 r (list: separate LIST [T])
 local
 s1, s2: separate <list.handler> STRING
 -- s1, s2 : (!, <list.handler>, STRING)
 do
 s1 := list [1]
 s2 := list [2]
 list.extend (s1 + s2) -- Valid
 create s1.make_empty -- s1 created on list’s processor
 list.extend (s1) -- Valid
 end

23

Processor tags

Processor tags are always relative to the current object

For example, an entity declared as non-separate is seen as
non-separate by the current object. Separate clients,
however, should see the entity as separate, because from
their point of view it is handled by a different processor

Type combinators are necessary to calculate the (relative)
type of:

Ø  Formal arguments
Ø  Result

24

Result type combinator

What is the type Tresult of a query call x l f (...)?
 Tresult = Ttarget * Tf

 = (αx, px, TX) * (αf, pf, TF)

 = (αf, pr, TF)

 pf
 px

●

T

<q>

●

●

T

T

T

T

T

T

<p>

<p>

T

T

x * f

25

Argument type combinator

What is the expected actual argument type in x l f (a)?

Tactual = Ttarget ⊗ Tformal

 = (αx, px, TX) ⊗ (αf, pf, TF)
 = (αf, pa, TF)

 pf
 px

●

T

<q>

●

●

T

⊥

T

⊥

T

⊥

<p>

<p>

T

⊥

x ⊗ f

26

Type combinators and expanded types

Expanded objects are always attached and non-separate.
Both * and ⊗ preserve expanded types

•  (γ, α, C) * (!, ●, INTEGER) = (!, ●, INTEGER)
•  (γ, α, C) ⊗ (!, ●, BOOLEAN) = (!, ●, BOOLEAN)

x1: EXP -- x1 : (!, ●, EXP)

y1: separate Y -- y1 : (!, T, Y)

y1 l r (x1) -- (!, ●, EXP) ≤ (!, T, Y) ⊗ (!, ●, EXP)

 -- so call is valid

expanded class
 EXP

feature
 g: STRING
 f: INTEGER

end

r (a: EXP) do … end

27

Type combinators and expanded types

The non-separateness of expanded objects needs to be
preserved when such an object crosses processor barriers.
Import operation (implicit): like copy, but clones
(recursively) all non-separate attributes.
Variations

Ø Deep import: The relative separateness of objects is
preserved; copies are placed on the same processors
as their originals.

Ø Flat import: The whole object structure is placed on
the client’s processor.

Ø Independent import: The relative separateness of
objects is preserved but copies are placed on fresh
processors.

28

Recall: Traitors here...

-- Supplier
class T
feature

 a: A
end

-- in class C (client)
x1: separate T
a: A

r (x: separate T)

 do
 a := x.a

 end

r (x1)
a l f

Traitor

x1 : (!, T, T)

a : (!, ●, A)
a : (!, ●, A)

x : (!, T, T)

x.a : (!, T, T) * (!, ●, A) = (!, T, A)
(!, T, A) ≤ (!, ●, A)

So assignment is invalid
/

29

Recall: Traitors there…

-- in class C (client)
x1: separate Z
b: A

r (x: separate Z)

 do
 x.f (b)
 end

r (x1)

-- supplier
class Z
feature

 f (a: A)
 do
 a.f
 end

end

Traitor

x1 : (!, T, Z)

b : (!, ●, A)

x : (!, T, Z)

a : (!, ●, A)

(!, ●, A) ≤ (!, T, Z) ⊗ (!, ●, A)
(!, ●, A) ≤ (!, ⊥, A)
So call is invalid

/

30

Implicit types

An attached non-writable entity e of type Te = (!, α, C) also
has an implicit type Te imp = (!, e.handler, C).
Example

 r (x: separate T; y: detachable Y)

 local

 z: separate Z

 do ... end

 s: STRING = "I am a constant"

 u: separate U once ... end

x :: (!, T, T) = (!, x.handler, T)

y :: (?, ●, Y) no implicit type
because y is detachable
z :: (!, T, Z) no implicit type

because z is writable

s :: (!, ●, STRING) = (!, s.handler, STRING)

u :: (!, T, U) = (!, u.handler, U)

31

False traitors

meet_friend (p: separate PERSON)
 local
 a_friend: PERSON
 do
 a_friend := p.friend -- Invalid
 visit (a_friend)
 end

spouse
friend

spouse
friend

spouse
friend

Tina Urs

Hans

visit (p: PERSON)
 do … end

Hans.meet_friend (Urs)

32

Handling false traitors with object tests

Use Eiffel object tests with downcasts of processor tags.
An object test succeeds if the run-time type of its source conforms in
all of

Ø  Detachability
Ø  Locality
Ø  Class type to the type of its target.

This allows downcasting a separate entity to a non-separate one,
provided that the entity represents a non-separate object at runtime.

meet_friend (p: separate PERSON)

 do

 if attached {PERSON} p.friend as ap then

 visit (ap)

 end

 end

33

Genericity

•  Entities of generic types may be separate

•  Actual generic parameters may be separate

•  All combinations are meaningful and useful
•  Separateness is relative to object of generic class,

e.g. elements of list: separate LIST [BOOK] are non-
separate with respect to (w.r.t.) list but separate w.r.t.
Current. Type combiners apply.

list: LIST [BOOK]
list: separate LIST [BOOK]

list: LIST [separate BOOK]
list: separate LIST [separate BOOK]

