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Traitor 

A traitor is an entity that  
Ø  Statically, is declared as non-separate 
Ø  During an execution, can become attached to a 

separate object 
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Traitors here… 

-- Supplier 
class T  feature 

 b: A 
end 
 

-- In class C (client)  
x1: separate T 
a: A 
 
r (x: separate T) 

 do 
  a := x.b 
 end 

 
r (x1)   
a.f 
 

Is this call valid? 

And this one? 
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Traitors there... 

-- In class C (client)  
x1: separate T 
a: A 
 
r (x: separate T) 

 do 
  x.f (a) 
 end 

 
r (x1)   
 
 

-- Supplier 
class T feature 

 f (b: A) 
    do 
   b.f 
    end 

end 
 

Is this call valid? 

And this one? 
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Consistency rules: first attempt 

Original model (Object-Oriented Software 
Construction, Chapter 30) defines four 
consistency rules that eliminate traitors 
 
Written in English 
 
Easy to understand by programmers 
 
Are they sound? Are they complete? 
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Consistency rules: first attempt 

Separateness 
Consistency Rule (1) 

 
If the source of an 
attachment (assignment 
or argument passing) is 
separate, its target must 
also be separate 

 

r (buf: separate BUFFER [T]; x: T ) 
 local 
   buf1: separate BUFFER [T] 
   buf2: BUFFER [T] 
   x2: separate T 
 do 

       buf1 := buf   -- Valid 
   buf2 := buf1   -- Invalid  
   r (buf1, x2)   -- Invalid 
 end 
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Consistency rules: first attempt 

Separateness 
Consistency Rule (2) 

 
If an actual argument 
of a separate call is of 
a reference type, the 
corresponding formal 
argument must be 
declared as separate 

 

  -- In class BUFFER [G]: 
put (element: separate G) 
 

  -- In another class: 
store (buf: separate BUFFER [T]; x: T) 

 do 
       buf.put (x)   

 end   
 

 . . . 
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Consistency rules: first attempt 

Separateness 
Consistency Rule (3) 

 
If the source of an 
attachment is the result 
of a separate call to a 
query* returning a 
reference type, the 
target must be declared 
as separate 

 

  -- In class BUFFER [G]: 
item: G 

  
  -- In another class: 

consume (buf: separate BUFFER [T]) 
 local 
      element: separate T 
 do 

       element := buf.item 
    . . . 

 end   

(*A query is an attribute or function) 
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Consistency rules: first attempt 

Separateness 
Consistency Rule (4) 

 
If an actual argument 
or result of a separate 
call is of an expanded 
type, its base class 
may not include, 
directly or indirectly, 
any non-separate 
attribute of a 
reference type. 

 

 -- In class BUFFER [G]: 
put (element: G) 

  -- G not  declared separate 
 

  -- In another class: 
store (buf: separate BUFFER [E]; x: E) 

 do 
       buf l put (x)   

    -- E must be “fully expanded” 
 end    

 
 . . . 
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The “ad hoc” rules are too restrictive 

r (l: separate LIST [STRING]) 
 local 
   s: separate STRING 
 do 
   s := l [1] 
   l l put (s)    -- Invalid according to Rule 2  
         -- but is harmless  
 end 
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Ad hoc SCOOP rules: assessment 

The rules 
Ø  Prevent almost all traitors, + 
Ø  Are easy to understand by humans, + 
Ø  No soundness proof, - 
Ø  Too restrictive, - 
Ø  No support for agents - 

Can we do better? 
Ø  Refine and formalize the rules 
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A type system for SCOOP 

Goal: prevent all traitors through static (compile-time) 
checks 
 
Simplifies, refines and formalizes ad hoc rules 
 
Integrates expanded types and agents 
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Three components of a type 

Notation: 
  Γ  |-  x : (γ, α, C) 

 
 
1. Attached/detachable:   γ ∈ {!, ?} 
 
 
2. Processor tag   α ∈ {●, T, ⊥, <p>, <a l handler>} 
 
 
3. Ordinary (class) type C 
 
 

Current processor 

Some processor (top) 
x: separate U 

No processor (bottom) 

Under the binding Γ,  
x has the type (γ, α, C) 
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Examples 

u: U      -- u : (!, ●, U)  
v: separate V    -- v : (!, T, V)  
w: detachable separate W  -- w : (?, T, W)  

 -- Expanded types are attached and non-separate: 
i: INTEGER     -- i : (!, ●, INTEGER)  
Void      -- Void : (?, ⊥, NONE)  
Current     -- Current : (!, ● , Current) 
x: separate <px> T   -- x : (!, px, T) 
y: separate <px> Y    -- y : (!, px, Y) 
z: separate <px> Z    -- z : (!, px, Z)  
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Subtyping rules 

Conformance on class types like in Eiffel, essentially based 
on inheritance: 

D ≤Eiffel C    ⇔      (γ, α, D)  ≤  (γ, α, C) 
 
Attached ≤ detachable: 

  (!, α, C) ≤ (?, α, C)  
 
Any processor tag ≤ T : 

  (γ, α, C) ≤ (γ, T, C)  
 
In particular, non-separate ≤ T :  

  (γ, ●, C) ≤ (γ, T, C) 
 
⊥ ≤ any processor tag:    

  (γ, ⊥, C) ≤ (γ, α, C) 

Standard Eiffel 
(non-SCOOP) 
conformance 
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Using the type rules 

We can rely on the standard approach to assess validity 
 

Ø  Assignment rule: source conforms to target 
 
Enriched types give us additional guarantees 
 
No need for special validity rules for separate variables 
and expressions 
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a: separate C        -- a : (!, T, C) 
b: C          -- b : (!, ●, C) 
c: detachable C       -- c : (?, ●, C) 
f (x, y: separate C) do ... end    -- x : (!, T, C), y : (!, T, C) 
g (x: C) do ... end       -- x : (!, ●, C) 
h (x: detachable C): separate <p> C    -- x : (?, ●, C) : (!, p, C) 
    do ... end   
 
f (a, b) 
f (a, c)          
g (a)           
a := h (b) 
a := h (a)     
 

Invalid 
Invalid 

Invalid 

Assignment examples 
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Unified rules for call validity 

Informally, a variable x may be used as target of a 
separate feature call in a routine r if and only if: 
 

Ø  x is attached  

Ø  The processor that executes r has exclusive 
access to x’s processor 
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Feature call rule 

An expression exp of type (d, p, C) is controlled if and only 
if exp is attached and satisfies any of the following 
conditions: 

Ø  exp is non-separate, i.e. p = ● 
Ø  exp appears in a routine r that has an attached 

formal argument a with the same handler as exp, i.e. 
p = a l handler 

A call x l f (a) appearing in the context of a routine r in a 
class C is valid if and only if both : 

Ø  x is controlled 
Ø  x’s base class exports feature f to C, and the actual 

arguments conform in number and type to formal 
arguments of f 
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Unqualified explicit processor tags 

Unqualified explicit processor tags rely on a processor attribute. 
•  p: PROCESSOR   -- Tag declaration 
•  x: separate <p> T -- x : (!, <p>, T)  
•  y: separate <p> Y  -- y : (!, <p>, Y)  
•  z: separate Z   -- z : (!, T, Z)  

Attachment (where Y is a descendant of T, and Z a descendant of Y) 
•  x := y      
•  y := z     

Object creation 
•  create x   -- Fresh processor created to handle x. 
•  create y   -- No new processors created; y is put  

   -- on x’s processor. 
 

-- Valid because     (!, <p>, Y) ≤  (!, <p>, T) 
-- Invalid because (!, T, Z)   ≤  (!, <p>, Y) / 
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Object creation 

p: PROCESSOR 
 
a: separate X 
b: X 
c, d: separate <p> X 
 
create a 
 
 
create b     
 
 
create c 
 
 
create d 
 

Processor tag   

Create fresh processor for a 

Place b on current processor  

Create fresh processor p  for c 

Processor p already exists: place d on p 
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Qualified explicit processor tags 

Declared using “feature” handler on a read-only attached 
entity (such as a formal argument or current object) 

 
 x: separate <y.handler> T 

 -- x is handled by handler of  y 
 
Attachment, object creation: 

 r (list: separate LIST [T])  
  local 
   s1, s2: separate <list.handler> STRING 
      -- s1, s2 : (!, <list.handler>, STRING)  
  do 
    s1 := list [1] 
   s2 := list [2] 
   list.extend (s1 + s2)     -- Valid 
   create s1.make_empty    -- s1 created on list’s processor 
   list.extend (s1)      -- Valid 
 end 
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Processor tags 

Processor tags are always relative to the current object 
 
For example, an entity declared as non-separate is seen as 
non-separate by the current object. Separate clients, 
however, should see the entity as separate, because from 
their point of view it is handled by a different processor 
 
Type combinators are necessary to calculate the (relative) 
type of: 

Ø  Formal arguments 
Ø  Result 
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Result type combinator 

What is the type Tresult of a query call x l f (...)? 
 Tresult  = Ttarget * Tf 

  
    = (αx, px, TX) * (αf, pf, TF) 

 
    = (αf, pr, TF) 

           pf 
 px 

  
● 

 
T 

 
<q> 

  
● 

  
● 

 
T 
 

 
T 

 
T 

 
T 

 
T 

 
T 

 
<p> 
 

 
<p> 

 
T 

 
T 

x * f 
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Argument type combinator 

What is the expected actual  argument type in x l f (a)? 

Tactual  = Ttarget ⊗ Tformal  

  = (αx, px, TX) ⊗ (αf, pf, TF) 
  = (αf, pa, TF) 

           pf 
 px 

  
● 

 
T 

 
<q> 

  
● 

  
● 

 
T 
 

 
⊥ 

 
T 

 
⊥ 

 
T 

 
⊥  

 
<p> 
 

 
<p> 

 
T 

 
⊥  

x ⊗ f  
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Type combinators and expanded types 

Expanded objects are always attached and non-separate. 
Both * and ⊗ preserve expanded types 

•  (γ, α, C) * (!, ●, INTEGER)  = (!, ●, INTEGER)  
•  (γ, α, C) ⊗ (!, ●, BOOLEAN)  = (!, ●, BOOLEAN) 

x1: EXP    -- x1 : (!, ●, EXP) 

y1: separate Y  -- y1 : (!, T, Y)  

y1 l r (x1)   -- (!, ●, EXP) ≤ (!, T, Y) ⊗ (!, ●, EXP) 

      -- so call is valid 

expanded class 
 EXP 

feature 
 g: STRING 
 f: INTEGER 

end 

r (a: EXP) do … end 
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Type combinators and expanded types 

The non-separateness of expanded objects needs to be 
preserved when such an object crosses processor barriers. 
Import operation (implicit): like copy, but clones 
(recursively) all non-separate attributes. 
Variations 

Ø Deep import: The relative separateness of objects is 
preserved; copies are placed on the same processors 
as their originals. 

Ø Flat import: The whole object structure is placed on 
the client’s processor. 

Ø Independent import: The relative separateness of 
objects is preserved but copies are placed on fresh 
processors. 
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Recall: Traitors here... 

-- Supplier 
class T  
feature 

 a: A 
end 
 

-- in class C (client)  
x1: separate T 
a: A 
 
r (x: separate T) 

 do 
  a := x.a 

 end 
 
r (x1)   
a l f 
 

Traitor 

x1 : (!, T, T) 

a : (!, ●, A) 
a : (!, ●, A) 

x : (!, T, T) 

x.a : (!, T, T) * (!, ●, A) = (!, T, A) 
(!, T, A) ≤ (!, ●, A) 

So assignment is invalid 
/ 
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Recall: Traitors there… 

-- in class C (client)  
x1: separate Z 
b: A 
 
r (x: separate Z) 

 do 
  x.f (b) 
 end 

 
r (x1)   
 
 

-- supplier 
class Z  
feature 

 f (a: A) 
    do 
   a.f 
    end 

end 
 

Traitor 

x1 : (!, T, Z) 

b : (!, ●, A) 

x : (!, T, Z) 

a : (!, ●, A) 

(!, ●, A) ≤ (!, T, Z) ⊗ (!, ●, A) 
(!, ●, A) ≤ (!, ⊥, A) 
So call is invalid 

/ 
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Implicit types 

An attached non-writable entity e of type Te = (!, α, C) also 
has an implicit type Te imp = (!, e.handler, C). 
Example 

 r (x: separate T; y: detachable Y) 

 local 

  z: separate Z 

 do ... end 

  

 s: STRING = "I am a constant"  

  

 u: separate U once ... end        

x :: (!, T, T) = (!, x.handler, T) 

y :: (?, ●, Y) no implicit type 
because y is detachable 
z :: (!, T, Z) no implicit type 

because z is writable 

s :: (!, ●, STRING) = (!, s.handler, STRING)  

u :: (!, T, U) = (!, u.handler, U) 
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False traitors 

meet_friend (p: separate PERSON) 
 local 
   a_friend: PERSON   
 do 
   a_friend := p.friend  -- Invalid 
   visit (a_friend) 
 end 

spouse 
friend 

spouse 
friend 

spouse 
friend 

Tina Urs 

Hans 

visit (p: PERSON)   
 do … end 

Hans.meet_friend  (Urs) 
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Handling false traitors with object tests 

Use Eiffel object tests with downcasts of processor tags. 
An object test succeeds if the run-time type of its source conforms in 
all of 

Ø  Detachability 
Ø  Locality 
Ø  Class type to the type of its target. 

 
This allows downcasting a separate entity to a non-separate one, 
provided that the entity represents a non-separate object at runtime. 

 

meet_friend (p: separate PERSON)   

  do 

       if attached {PERSON} p.friend as ap then 

    visit (ap) 

   end 

  end 
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Genericity 

•  Entities of generic types may be separate 

•  Actual generic parameters may be separate 

 
•  All combinations are meaningful and useful 
•  Separateness is relative to object of generic class,  

e.g. elements of list: separate LIST [BOOK] are non-
separate with respect to (w.r.t.) list but separate w.r.t. 
Current. Type combiners apply. 

list: LIST [BOOK] 
list: separate LIST [BOOK] 

list: LIST [separate BOOK] 
list: separate LIST [separate BOOK] 


