
Chair of Software Engineering

Concepts of Concurrent Computation

Bertrand Meyer
Sebastian Nanz

Lecture 11: CCS

Introduction

Process Calculi

I Question: Why do we need a theoretical model of concurrent
computation?

I Turing machines or the λ-calculus have proved to be useful models of
sequential systems

I Abstracting away from implementation details yields general insights
into programming and computation

I Process calculi help to focus on the essence of concurrent systems:
interaction

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 2/44

Introduction

The Calculus of Communicating Systems (CCS)

I We study the Calculus of Communicating Systems (CCS)

I Introduced by [Milner 1980]
I Milner’s general model:

I A concurrent system is a collection of processes
I A process is an independent agent that may perform internal activities

in isolation or may interact with the environment to perform shared
activities

I Milner’s insight: Concurrent processes have an algebraic structure

P1 op P2 ⇒ P1 op P2

I This is why a process calculus is sometime called a process algebra

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 3/44

Introduction

Introductory Example: A Simple Process

I A coffee and tea machine may take an order for either tea or coffee,
accept the appropriate payment, pour the ordered drink, and
terminate:

tea.coin.cup of tea.0 + coffee.coin.coin.cup of coffee.0

I We have the following elements of syntax:
I Actions: tea, cup of tea, etc.
I Sequential composition: the dot “.” (first do action tea, then coin, ...)
I Non-deterministic choice: the plus “+” (either do tea or coffee)
I Terminated process: 0

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 4/44

Introduction

Introductory Example: Execution of a Simple Process

I When a process executes it performs some action, and becomes a
new process

I The execution of an action a is symbolized by a transition
a−→

tea.coin.cup of tea.0 + coffee.coin.coin.cup of coffee.0
tea−→ coin.cup of tea.0
coin−→ cup of tea.0

cup of tea−→ 0

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 5/44

Syntax of CCS

Syntax of CCS

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 6/44

Syntax of CCS

Syntax of CCS

I Goal: In the following we introduce the syntax of CCS step-by-step

Basic principle

1. Define atomic processes that model the simplest possible behavior

2. Define composition operators that build more complex behavior from
simpler ones

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 7/44

Syntax of CCS

The Terminal Process

The simplest possible behavior is no behavior

Terminal process

We write 0 (pronounced “nil”) for the terminal or inactive process

I 0 models a system that is either deadlocked or has terminated

I 0 is the only atomic process of CCS

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 8/44

Syntax of CCS

Names and Actions

I We assume an infinite set A of port names, and a set
Ā = {ā | a ∈ A} of complementary port names

Input actions

When modeling we use a name a to denote an input action, i.e. the
receiving of input from the associated port a

Output actions

We use a co-name a to denote an output action, i.e. the sending of output
to the associated port a

Internal actions
We use τ to denote the distinguished internal action

I The set of actions Act is given by Act = A ∪ Ā ∪ {τ}

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 9/44

Syntax of CCS

Action Prefixing

The simplest actual behavior is sequential behavior

Action prefixing

If P is a process we write
α.P

to denote the prefixing of P with the action α

I α.P models a system that is ready to perform the action, α, and then
behaves as P, i.e.

α.P
α−→ P

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 10/44

Syntax of CCS

Example: Action Prefixing

A process that starts a timer, performs some internal computation, and
then stops the timer:

go.τ.stop.0
go−→ τ.stop.0

τ−→ stop.0
stop−→ 0

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 11/44

Syntax of CCS

Process Interfaces

Interfaces
The set of input and output actions that a process P may perform in
isolation constitutes the interface of P

I The interface enumerates the ports that P may use to interact with
the environment

Example: The interface of the coffee and tea machine is:

tea, coffee, coin, cup of tea, cup of coffee

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 12/44

Syntax of CCS

Non-deterministic Choice

A more advanced sequential behavior is that of alternative behaviors

Non-deterministic choice
If P and Q are processes then we write

P + Q

to denote the non-deterministic choice between P and Q

I P + Q models a process that can either behave as P (discarding Q)
or as Q (discarding P)

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 13/44

Syntax of CCS

Example: Non-deterministic Choice

tea.coin.cup of tea.0 + coffee.coin.coin.cup of coffee.0
tea−→ coin.cup of tea.

Note that:

I prefixing binds harder than plus and

I the choice is made by the initial coffee/tea button press

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 14/44

Syntax of CCS

Process Constants and Recursion

The most advanced sequential behavior is the recursive behavior

Process constants
A process may be the invocation of a process constant, K ∈ K

This is only meaningful if K is defined beforehand

Recursive definition
If K is a process constant and P is a process we write

K
def
= P

to give a recursive definition of the behavior of K
(recursive if P invokes K)

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 15/44

Syntax of CCS

Example: Recursion (1)

A system clock, SC, sends out regular clock signals forever:

SC
def
= tick .SC

The system SC may behave as:

tick.SC
tick−→ SC

tick−→ . . .

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 16/44

Syntax of CCS

Example: Recursion (2)

A fully automatic coffee and tea machine CTM works as follows:

CTM
def
= tea.coin.cup of tea.CTM + coffee.coin.coin.cup of coffee.CTM

The system CTM may e.g. do:

tea.coin.cup of tea.CTM + coffee.coin.coin.cup of coffee.CTM

tea−→ coin.cup of tea.CTM
coin−→ cup of tea.CTM

cup of tea−→ CTM
α−→ . . .

This will serve drinks ad infinitum

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 17/44

Syntax of CCS

Parallel Composition

Finally: concurrent behavior

Parallel composition

If P and Q are processes we write

P |Q

to denote the parallel composition of P and Q

I P |Q models a process that behaves like P and Q in parallel:
I Each may proceed independently
I If P is ready to perform an action a and Q is ready to perform the

complementary action a, they may interact

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 18/44

Syntax of CCS

Example: Parallel Composition

Recall the coffee and tea machine:

CTM
def
= tea.coin.cup of tea.CTM + coffee.coin.coin.cup of coffee.CTM

Now consider the regular customer – the Computer Scientist, CS:

CS
def
= tea.coin.cup of tea.teach.CS

+ coffee.coin.coin.cup of coffee.publish.CS

I CS must drink coffee to publish

I CS can only teach on tea

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 19/44

Syntax of CCS

Example: Parallel Composition

Recall the coffee and tea machine:

CTM
def
= tea.coin.cup of tea.CTM + coffee.coin.coin.cup of coffee.CTM

Now consider the regular customer – the Computer Scientist, CS:

CS
def
= tea.coin.cup of tea.teach.CS

+ coffee.coin.coin.cup of coffee.publish.CS

I CS must drink coffee to publish

I CS can only teach on tea

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 19/44

Syntax of CCS

Example: Parallel Composition

On an average Tuesday morning the system

CTM |CS

is likely to behave as follows:

(tea.coin.cup of tea.CTM + coffee.coin.coin.cup of coffee.CTM)

| (tea.coin.cup of tea.teach.CS + coffee.coin.coin.cup of coffee.publish.CS)
τ−→ (coin.cup of tea.CTM) | (coin.cup of tea.teach.CS)
τ−→ (cup of tea.CTM) | (cup of tea.teach.CS)
τ−→ CTM | (teach.CS)

teach−→ CTM |CS

I Note that the synchronisation of actions such as tea/tea is expressed
by a τ -action (i.e. regarded as an internal step)

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 20/44

Syntax of CCS

Restriction

We control unwanted interactions with the environment by restricting the
scope of port names

Restriction
if P is a process and A is a set of port names we write

P r A

for the restriction of the scope of each name in A to P

I Removes each name a ∈ A and the corresponding co-name a from
the interface of P

I Makes each name a ∈ A and the corresponding co-name a
inaccessible to the environment

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 21/44

Syntax of CCS

Example: Restriction

I Recall the coffee and tea machine and the computer scientist:

CTM |CS

I Restricting the coffee and tea machine on coffee makes the
coffee-button inaccessible to the computer scientist:

(CTMr {coffee}) |CS

I As a consequence CS can only teach, and never publish

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 22/44

Syntax of CCS

Summary: Syntax of CCS

P ::= K | process constants (K ∈ K)
α.P | prefixing (α ∈ Act)∑

i∈I Pi | summation (I is an arbitrary index set)
P1|P2 | parallel composition
P r L restriction (L ⊆ A)

The set of all terms generated by the abstract syntax is called
CCS process expressions

Notation
P1 + P2 =

∑
i∈{1,2} Pi Nil = 0 =

∑
i∈∅ Pi

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 23/44

Syntax of CCS

CCS Program

CCS program

A collection of defining equations of the form

K
def
= P

where K ∈ K is a process constant and P ∈ P is a CCS process expression

I Only one defining equation per process constant

I Recursion is allowed: e.g. A
def
= a.A | A

I Note that the program itself gives only the definitions of process
constants: we can only execute processes (which can however
mention the process constants defined in the program)

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 24/44

Syntax of CCS

Exercise: Syntax of CCS

Which of the following expressions are correctly built CCS expressions?
Assume that A, B are process constants and that a, b are port names.

I a.b.A + B

X

I (a.0 + a.A) r {a, b}

X

I (a.0 | a.A) r {a, τ}

x

I τ.τ.B + 0

X

I (a.b.A + a.0) |B

X

I (a.b.A + a.0).B

x

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 25/44

Syntax of CCS

Exercise: Syntax of CCS

Which of the following expressions are correctly built CCS expressions?
Assume that A, B are process constants and that a, b are port names.

I a.b.A + B X

I (a.0 + a.A) r {a, b}

X

I (a.0 | a.A) r {a, τ}

x

I τ.τ.B + 0

X

I (a.b.A + a.0) |B

X

I (a.b.A + a.0).B

x

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 25/44

Syntax of CCS

Exercise: Syntax of CCS

Which of the following expressions are correctly built CCS expressions?
Assume that A, B are process constants and that a, b are port names.

I a.b.A + B X

I (a.0 + a.A) r {a, b} X
I (a.0 | a.A) r {a, τ}

x

I τ.τ.B + 0

X

I (a.b.A + a.0) |B

X

I (a.b.A + a.0).B

x

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 25/44

Syntax of CCS

Exercise: Syntax of CCS

Which of the following expressions are correctly built CCS expressions?
Assume that A, B are process constants and that a, b are port names.

I a.b.A + B X

I (a.0 + a.A) r {a, b} X
I (a.0 | a.A) r {a, τ} x

I τ.τ.B + 0

X

I (a.b.A + a.0) |B

X

I (a.b.A + a.0).B

x

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 25/44

Syntax of CCS

Exercise: Syntax of CCS

Which of the following expressions are correctly built CCS expressions?
Assume that A, B are process constants and that a, b are port names.

I a.b.A + B X

I (a.0 + a.A) r {a, b} X
I (a.0 | a.A) r {a, τ} x

I τ.τ.B + 0 X

I (a.b.A + a.0) |B

X

I (a.b.A + a.0).B

x

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 25/44

Syntax of CCS

Exercise: Syntax of CCS

Which of the following expressions are correctly built CCS expressions?
Assume that A, B are process constants and that a, b are port names.

I a.b.A + B X

I (a.0 + a.A) r {a, b} X
I (a.0 | a.A) r {a, τ} x

I τ.τ.B + 0 X

I (a.b.A + a.0) |B X

I (a.b.A + a.0).B

x

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 25/44

Syntax of CCS

Exercise: Syntax of CCS

Which of the following expressions are correctly built CCS expressions?
Assume that A, B are process constants and that a, b are port names.

I a.b.A + B X

I (a.0 + a.A) r {a, b} X
I (a.0 | a.A) r {a, τ} x

I τ.τ.B + 0 X

I (a.b.A + a.0) |B X

I (a.b.A + a.0).B x

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 25/44

Operational Semantics of CCS

Operational Semantics of CCS

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 26/44

Operational Semantics of CCS

Operational Semantics

I Goal: Formalize the execution of a CCS process

Syntax

CCS
(process term + equations)

−→ Semantics
LTS
(labelled transition systems)

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 27/44

Operational Semantics of CCS

Labelled Transition System

Definition
A labelled transition system (LTS) is a triple (Proc,Act, { α−→| α ∈ Act})
where

I Proc is a set of processes (the states),

I Act is a set of actions (the labels), and

I for every α ∈ Act,
α−→ ⊆ Proc × Proc is a binary relation on

processes called the transition relation

We use the infix notation P
α−→ P ′ to say that (P,P ′) ∈ α−→

It is customary to distinguish the initial process (the start state)

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 28/44

Operational Semantics of CCS

Labelled Transition Systems
Conceptually it is often beneficial to think of a (finite) LTS as something
that can be drawn as a directed (process) graph

I Processes are the nodes
I Transitions are the edges

Example: The LTS

{{P,Q,R}, {a, b, τ}, {P a−→ Q,P
b−→ R,Q

τ−→ R}}

corresponds to the graph

P

Q

R

a

b

τ

I Question: How can we produce an LTS (semantics) of a process
term (syntax)?

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 29/44

Operational Semantics of CCS

Informal Translation

I Terminal process: 0

behavior: 0 6−→
I Action prefixing: α.P

behavior: α.P P
α

I Non-deterministic choice: α.P + β.Q

behavior: α.P + β.QP Q
α β

I Recursion: X
def
= · · · .α.X

behavior: X α.X

· · ·

α

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 30/44

Operational Semantics of CCS

Informal Translation

I Parallel composition: α.P |β.Q
Combines sequential composition and choice to obtain interleaving

behavior: α.P |β.Q

P |β.Q

α.P |Q

P |Q

α

β

β

α

I What about interaction?

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 31/44

Operational Semantics of CCS

Process Interaction
I Concurrent processes, i.e. P and Q in P |Q, may interact where their

interfaces are compatible
I A synchronizing interaction between two processes (sub-systems), P

and Q, is an activity that is internal to P |Q
I Parallel composition: α.P |β.Q

Allows interaction if β = α

behavior: a.P | a.Q

P | a.Q

a.P |Q

P |Q

a

a

a

a

τ

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 32/44

Operational Semantics of CCS

Structural Operational Semantics for CCS

Structural Operational Semantics (SOS) [Plotkin 1981]

Small-step operational semantics where the behavior of a system is
inferred using syntax driven rules

Given a collection of CCS defining equations, we define the following LTS
(Proc,Act, { a−→| a ∈ Act}):

I Proc is the set of all CCS process expressions

I Act is the set of all CCS actions including τ

I the transition relation is given by SOS rules of the form:

RULE
premises

conclusion
conditions

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 33/44

Operational Semantics of CCS

SOS rules for CCS

ACT
α.P

α−→ P
SUMj

Pj
α−→ P ′

j∑
i∈I Pi

α−→ P ′
j

j ∈ I

COM1 P
α−→ P ′

P|Q α−→ P ′|Q
COM2 Q

α−→ Q ′

P|Q α−→ P|Q ′

COM3 P
a−→ P ′ Q

a−→ Q ′

P|Q τ−→ P ′|Q ′

RES P
α−→ P ′

P r L
α−→ P ′ r L

α, α 6∈ L CON P
α−→ P ′

K
α−→ P ′ K

def
= P

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 34/44

Operational Semantics of CCS

Exercise: Derivations

Let A
def
= a.A. Show that(

(A | a.0) | b.0
) a−→

(
(A | a.0) | b.0

)
.

COM1

COM1

CON

ACT

a.A
a−→ A

A
a−→ A

A
def
= a.A

A | a.0 a−→ A | a.0

(A | a.0) | b.0 a−→ (A | a.0) | b.0

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 35/44

Operational Semantics of CCS

Exercise: Derivations

Let A
def
= a.A. Show that(

(A | a.0) | b.0
) a−→

(
(A | a.0) | b.0

)
.

COM1

COM1

CON

ACT

a.A
a−→ A

A
a−→ A

A
def
= a.A

A | a.0 a−→ A | a.0
(A | a.0) | b.0 a−→ (A | a.0) | b.0

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 35/44

Operational Semantics of CCS

Exercise: Derivations

Let A
def
= a.A. Show that(

(A | a.0) | b.0
) a−→

(
(A | a.0) | b.0

)
.

COM1

COM1

CON

ACT

a.A
a−→ A

A
a−→ A

A
def
= a.A

A | a.0 a−→ A | a.0
(A | a.0) | b.0 a−→ (A | a.0) | b.0

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 35/44

Operational Semantics of CCS

Exercise: Derivations

Let A
def
= a.A. Show that(

(A | a.0) | b.0
) a−→

(
(A | a.0) | b.0

)
.

COM1

COM1

CON

ACT

a.A
a−→ A

A
a−→ A

A
def
= a.A

A | a.0 a−→ A | a.0
(A | a.0) | b.0 a−→ (A | a.0) | b.0

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 35/44

Operational Semantics of CCS

Exercise: Derivations

Let A
def
= a.A. Show that(

(A | a.0) | b.0
) a−→

(
(A | a.0) | b.0

)
.

COM1

COM1

CON

ACT
a.A

a−→ A

A
a−→ A

A
def
= a.A

A | a.0 a−→ A | a.0
(A | a.0) | b.0 a−→ (A | a.0) | b.0

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 35/44

Operational Semantics of CCS

Restriction and Interaction

a.0 | a.0

0 | a.0 a.0 | 0

0 | 0

a
a

a
a

τ

(a.0 | a.0) r {a}

0 | 0

τ

LTS of a.0 | a.0 LTS of (a.0 | a.0) r {a}

I Restriction can be used to produce closed systems, i.e. their actions
can only be taken internally (visible as τ -actions)

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 36/44

Operational Semantics of CCS

Restriction and Interaction

a.0 | a.0

0 | a.0 a.0 | 0

0 | 0

a
a

a
a

τ

(a.0 | a.0) r {a}

0 | 0

τ

LTS of a.0 | a.0 LTS of (a.0 | a.0) r {a}

I Restriction can be used to produce closed systems, i.e. their actions
can only be taken internally (visible as τ -actions)

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 36/44

Behavioral Equivalence

Behavioral Equivalence

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 37/44

Behavioral Equivalence

Behavioral Equivalence

I Goal: Express the notion that two concurrent systems “behave in the
same way”

I We are not interested in syntactical equivalence, but only in the fact
that the processes have the same behavior

I Main idea: two processes are behaviorally equivalent if and only if an
external observer cannot tell them apart

I Bisimulation [Park 1980]: Two processes are equivalent if they have
the same traces and the states that they reach are also equivalent

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 38/44

Behavioral Equivalence

Strong Bisimilarity

Let (Proc,Act, { α−→ | α ∈ Act}) be an LTS

Strong Bisimulation

A binary relation R ⊆ Proc × Proc is a strong bisimulation iff whenever
(P,Q) ∈ R then for each α ∈ Act:

I if P
α−→ P ′ then Q

α−→ Q ′ for some Q ′ such that (P ′,Q ′) ∈ R

I if Q
α−→ Q ′ then P

α−→ P ′ for some P ′ such that (P ′,Q ′) ∈ R

Strong Bisimilarity

Two processes P1,P2 ∈ Proc are strongly bisimilar (P1 ∼ P2) if and only
if there exists a strong bisimulation R such that (P1,P2) ∈ R

∼ = ∪{R | R is a strong bisimulation}

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 39/44

Behavioral Equivalence

Strong Bisimilarity of CCS Processes

I The concept of strong bisimilarity is defined for LTS

I The semantics of CCS is given in terms of LTS, whose states are CCS
processes

I Thus, the definition also applies to CCS processes
I Two processes are bisimilar if there is a concrete strong bisimulation

relation that relates them
I To show that two processes are bisimilar it suffices to exhibit such a

concrete relation

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 40/44

Behavioral Equivalence

Example: Strong Bisimulation

Consider the processes P and Q with the following behavior:

P

P1 P2

a a

b
b Q1

Q

a

b

We claim that they are bisimilar

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 41/44

Behavioral Equivalence

Example: Strong Bisimulation

To show our claim we exhibit the following strong bisimulation relation:

R = {(P,Q), (P1,Q1), (P2,Q1)}

I (P,Q) is in R
I R is a bisimulation:

I For each pair of states in R , all possible transitions from the first can
be matched by corresponding transitions from the second

I For each pair of states in R , all possible transitions from the second
can be matched by corresponding transitions from the first

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 42/44

Behavioral Equivalence

Example: Strong Bisimulation
Graphically, we show R with dotted lines:

P

P1 P2

a a

b
b Q1

Q

a

b

Now it is easy to see that:
I For each pair of states in R , all possible transitions from the first

can be matched by corresponding transitions from the second
I For each pair of states in R , all possible transitions from the second

can be matched by corresponding transitions from the first

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 43/44

Behavioral Equivalence

Exercise: Strong Bisimulation

Consider the processes

P
def
= a.(b.0 + c .0)

Q
def
= a.b.0 + a.c .0

and show that P 6∼ Q

Bertrand Meyer Sebastian Nanz Concepts of Concurrent Computation 44/44

	Introduction
	Syntax of CCS
	Operational Semantics of CCS
	Behavioral Equivalence

