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Introduction

Process Calculi

I Question: Why do we need a theoretical model of concurrent
computation?

I Turing machines or the λ-calculus have proved to be useful models of
sequential systems

I Abstracting away from implementation details yields general insights
into programming and computation

I Process calculi help to focus on the essence of concurrent systems:
interaction
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Introduction

The Calculus of Communicating Systems (CCS)

I We study the Calculus of Communicating Systems (CCS)

I Introduced by [Milner 1980]
I Milner’s general model:

I A concurrent system is a collection of processes
I A process is an independent agent that may perform internal activities

in isolation or may interact with the environment to perform shared
activities

I Milner’s insight: Concurrent processes have an algebraic structure

P1 op P2 ⇒ P1 op P2

I This is why a process calculus is sometime called a process algebra
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Introduction

Introductory Example: A Simple Process

I A coffee and tea machine may take an order for either tea or coffee,
accept the appropriate payment, pour the ordered drink, and
terminate:

tea.coin.cup of tea.0 + coffee.coin.coin.cup of coffee.0

I We have the following elements of syntax:
I Actions: tea, cup of tea, etc.
I Sequential composition: the dot “.” (first do action tea, then coin, ...)
I Non-deterministic choice: the plus “+” (either do tea or coffee)
I Terminated process: 0
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Introduction

Introductory Example: Execution of a Simple Process

I When a process executes it performs some action, and becomes a
new process

I The execution of an action a is symbolized by a transition
a−→

tea.coin.cup of tea.0 + coffee.coin.coin.cup of coffee.0
tea−→ coin.cup of tea.0
coin−→ cup of tea.0

cup of tea−→ 0
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Syntax of CCS
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Syntax of CCS

Syntax of CCS

I Goal: In the following we introduce the syntax of CCS step-by-step

Basic principle

1. Define atomic processes that model the simplest possible behavior

2. Define composition operators that build more complex behavior from
simpler ones
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Syntax of CCS

The Terminal Process

The simplest possible behavior is no behavior

Terminal process

We write 0 (pronounced “nil”) for the terminal or inactive process

I 0 models a system that is either deadlocked or has terminated

I 0 is the only atomic process of CCS
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Syntax of CCS

Names and Actions

I We assume an infinite set A of port names, and a set
Ā = {ā | a ∈ A} of complementary port names

Input actions

When modeling we use a name a to denote an input action, i.e. the
receiving of input from the associated port a

Output actions

We use a co-name a to denote an output action, i.e. the sending of output
to the associated port a

Internal actions
We use τ to denote the distinguished internal action

I The set of actions Act is given by Act = A ∪ Ā ∪ {τ}
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Syntax of CCS

Action Prefixing

The simplest actual behavior is sequential behavior

Action prefixing

If P is a process we write
α.P

to denote the prefixing of P with the action α

I α.P models a system that is ready to perform the action, α, and then
behaves as P, i.e.

α.P
α−→ P
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Syntax of CCS

Example: Action Prefixing

A process that starts a timer, performs some internal computation, and
then stops the timer:

go.τ.stop.0
go−→ τ.stop.0

τ−→ stop.0
stop−→ 0
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Syntax of CCS

Process Interfaces

Interfaces
The set of input and output actions that a process P may perform in
isolation constitutes the interface of P

I The interface enumerates the ports that P may use to interact with
the environment

Example: The interface of the coffee and tea machine is:

tea, coffee, coin, cup of tea, cup of coffee
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Syntax of CCS

Non-deterministic Choice

A more advanced sequential behavior is that of alternative behaviors

Non-deterministic choice
If P and Q are processes then we write

P + Q

to denote the non-deterministic choice between P and Q

I P + Q models a process that can either behave as P (discarding Q)
or as Q (discarding P)
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Syntax of CCS

Example: Non-deterministic Choice

tea.coin.cup of tea.0 + coffee.coin.coin.cup of coffee.0
tea−→ coin.cup of tea.

Note that:

I prefixing binds harder than plus and

I the choice is made by the initial coffee/tea button press
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Syntax of CCS

Process Constants and Recursion

The most advanced sequential behavior is the recursive behavior

Process constants
A process may be the invocation of a process constant, K ∈ K

This is only meaningful if K is defined beforehand

Recursive definition
If K is a process constant and P is a process we write

K
def
= P

to give a recursive definition of the behavior of K
(recursive if P invokes K)
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Syntax of CCS

Example: Recursion (1)

A system clock, SC, sends out regular clock signals forever:

SC
def
= tick .SC

The system SC may behave as:

tick.SC
tick−→ SC

tick−→ . . .
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Syntax of CCS

Example: Recursion (2)

A fully automatic coffee and tea machine CTM works as follows:

CTM
def
= tea.coin.cup of tea.CTM + coffee.coin.coin.cup of coffee.CTM

The system CTM may e.g. do:

tea.coin.cup of tea.CTM + coffee.coin.coin.cup of coffee.CTM

tea−→ coin.cup of tea.CTM
coin−→ cup of tea.CTM

cup of tea−→ CTM
α−→ . . .

This will serve drinks ad infinitum
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Syntax of CCS

Parallel Composition

Finally: concurrent behavior

Parallel composition

If P and Q are processes we write

P |Q

to denote the parallel composition of P and Q

I P |Q models a process that behaves like P and Q in parallel:
I Each may proceed independently
I If P is ready to perform an action a and Q is ready to perform the

complementary action a, they may interact
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Syntax of CCS

Example: Parallel Composition

Recall the coffee and tea machine:

CTM
def
= tea.coin.cup of tea.CTM + coffee.coin.coin.cup of coffee.CTM

Now consider the regular customer – the Computer Scientist, CS:

CS
def
= tea.coin.cup of tea.teach.CS

+ coffee.coin.coin.cup of coffee.publish.CS

I CS must drink coffee to publish

I CS can only teach on tea
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Syntax of CCS

Example: Parallel Composition

On an average Tuesday morning the system

CTM |CS

is likely to behave as follows:

(tea.coin.cup of tea.CTM + coffee.coin.coin.cup of coffee.CTM)

| (tea.coin.cup of tea.teach.CS + coffee.coin.coin.cup of coffee.publish.CS)
τ−→ (coin.cup of tea.CTM) | (coin.cup of tea.teach.CS)
τ−→ (cup of tea.CTM) | (cup of tea.teach.CS)
τ−→ CTM | (teach.CS)

teach−→ CTM |CS

I Note that the synchronisation of actions such as tea/tea is expressed
by a τ -action (i.e. regarded as an internal step)
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Syntax of CCS

Restriction

We control unwanted interactions with the environment by restricting the
scope of port names

Restriction
if P is a process and A is a set of port names we write

P r A

for the restriction of the scope of each name in A to P

I Removes each name a ∈ A and the corresponding co-name a from
the interface of P

I Makes each name a ∈ A and the corresponding co-name a
inaccessible to the environment
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Syntax of CCS

Example: Restriction

I Recall the coffee and tea machine and the computer scientist:

CTM |CS

I Restricting the coffee and tea machine on coffee makes the
coffee-button inaccessible to the computer scientist:

(CTMr {coffee}) |CS

I As a consequence CS can only teach, and never publish
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Syntax of CCS

Summary: Syntax of CCS

P ::= K | process constants (K ∈ K)
α.P | prefixing (α ∈ Act)∑

i∈I Pi | summation (I is an arbitrary index set)
P1|P2 | parallel composition
P r L restriction (L ⊆ A)

The set of all terms generated by the abstract syntax is called
CCS process expressions

Notation
P1 + P2 =

∑
i∈{1,2} Pi Nil = 0 =

∑
i∈∅ Pi
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Syntax of CCS

CCS Program

CCS program

A collection of defining equations of the form

K
def
= P

where K ∈ K is a process constant and P ∈ P is a CCS process expression

I Only one defining equation per process constant

I Recursion is allowed: e.g. A
def
= a.A | A

I Note that the program itself gives only the definitions of process
constants: we can only execute processes (which can however
mention the process constants defined in the program)
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Syntax of CCS

Exercise: Syntax of CCS

Which of the following expressions are correctly built CCS expressions?
Assume that A, B are process constants and that a, b are port names.

I a.b.A + B

X

I (a.0 + a.A) r {a, b}

X

I (a.0 | a.A) r {a, τ}

x

I τ.τ.B + 0

X

I (a.b.A + a.0) |B

X

I (a.b.A + a.0).B

x
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Operational Semantics of CCS

Operational Semantics of CCS
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Operational Semantics of CCS

Operational Semantics

I Goal: Formalize the execution of a CCS process

Syntax

CCS
(process term + equations)

−→ Semantics
LTS
(labelled transition systems)
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Operational Semantics of CCS

Labelled Transition System

Definition
A labelled transition system (LTS) is a triple (Proc,Act, { α−→| α ∈ Act})
where

I Proc is a set of processes (the states),

I Act is a set of actions (the labels), and

I for every α ∈ Act,
α−→ ⊆ Proc × Proc is a binary relation on

processes called the transition relation

We use the infix notation P
α−→ P ′ to say that (P,P ′) ∈ α−→

It is customary to distinguish the initial process (the start state)
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Operational Semantics of CCS

Labelled Transition Systems
Conceptually it is often beneficial to think of a (finite) LTS as something
that can be drawn as a directed (process) graph

I Processes are the nodes
I Transitions are the edges

Example: The LTS

{{P,Q,R}, {a, b, τ}, {P a−→ Q,P
b−→ R,Q

τ−→ R}}

corresponds to the graph

P

Q

R

a

b

τ

I Question: How can we produce an LTS (semantics) of a process
term (syntax)?
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Operational Semantics of CCS

Informal Translation

I Terminal process: 0

behavior: 0 6−→
I Action prefixing: α.P

behavior: α.P P
α

I Non-deterministic choice: α.P + β.Q

behavior: α.P + β.QP Q
α β

I Recursion: X
def
= · · · .α.X

behavior: X α.X

· · ·

α
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Operational Semantics of CCS

Informal Translation

I Parallel composition: α.P |β.Q
Combines sequential composition and choice to obtain interleaving

behavior: α.P |β.Q

P |β.Q

α.P |Q

P |Q

α

β

β

α

I What about interaction?
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Operational Semantics of CCS

Process Interaction
I Concurrent processes, i.e. P and Q in P |Q, may interact where their

interfaces are compatible
I A synchronizing interaction between two processes (sub-systems), P

and Q, is an activity that is internal to P |Q
I Parallel composition: α.P |β.Q

Allows interaction if β = α

behavior: a.P | a.Q

P | a.Q

a.P |Q

P |Q

a

a

a

a

τ
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Operational Semantics of CCS

Structural Operational Semantics for CCS

Structural Operational Semantics (SOS) [Plotkin 1981]

Small-step operational semantics where the behavior of a system is
inferred using syntax driven rules

Given a collection of CCS defining equations, we define the following LTS
(Proc,Act, { a−→| a ∈ Act}):

I Proc is the set of all CCS process expressions

I Act is the set of all CCS actions including τ

I the transition relation is given by SOS rules of the form:

RULE
premises

conclusion
conditions
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Operational Semantics of CCS

SOS rules for CCS

ACT
α.P

α−→ P
SUMj

Pj
α−→ P ′

j∑
i∈I Pi

α−→ P ′
j

j ∈ I

COM1 P
α−→ P ′

P|Q α−→ P ′|Q
COM2 Q

α−→ Q ′

P|Q α−→ P|Q ′

COM3 P
a−→ P ′ Q

a−→ Q ′

P|Q τ−→ P ′|Q ′

RES P
α−→ P ′

P r L
α−→ P ′ r L

α, α 6∈ L CON P
α−→ P ′

K
α−→ P ′ K

def
= P
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Operational Semantics of CCS

Exercise: Derivations

Let A
def
= a.A. Show that(

(A | a.0) | b.0
) a−→

(
(A | a.0) | b.0

)
.

COM1

COM1

CON

ACT

a.A
a−→ A

A
a−→ A

A
def
= a.A

A | a.0 a−→ A | a.0

(A | a.0) | b.0 a−→ (A | a.0) | b.0
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Operational Semantics of CCS

Restriction and Interaction

a.0 | a.0

0 | a.0 a.0 | 0

0 | 0

a
a

a
a

τ

(a.0 | a.0) r {a}

0 | 0

τ

LTS of a.0 | a.0 LTS of (a.0 | a.0) r {a}

I Restriction can be used to produce closed systems, i.e. their actions
can only be taken internally (visible as τ -actions)
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Operational Semantics of CCS
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Behavioral Equivalence
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Behavioral Equivalence

Behavioral Equivalence

I Goal: Express the notion that two concurrent systems “behave in the
same way”

I We are not interested in syntactical equivalence, but only in the fact
that the processes have the same behavior

I Main idea: two processes are behaviorally equivalent if and only if an
external observer cannot tell them apart

I Bisimulation [Park 1980]: Two processes are equivalent if they have
the same traces and the states that they reach are also equivalent
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Behavioral Equivalence

Strong Bisimilarity

Let (Proc,Act, { α−→ | α ∈ Act}) be an LTS

Strong Bisimulation

A binary relation R ⊆ Proc × Proc is a strong bisimulation iff whenever
(P,Q) ∈ R then for each α ∈ Act:

I if P
α−→ P ′ then Q

α−→ Q ′ for some Q ′ such that (P ′,Q ′) ∈ R

I if Q
α−→ Q ′ then P

α−→ P ′ for some P ′ such that (P ′,Q ′) ∈ R

Strong Bisimilarity

Two processes P1,P2 ∈ Proc are strongly bisimilar (P1 ∼ P2) if and only
if there exists a strong bisimulation R such that (P1,P2) ∈ R

∼ = ∪{R | R is a strong bisimulation}
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Behavioral Equivalence

Strong Bisimilarity of CCS Processes

I The concept of strong bisimilarity is defined for LTS

I The semantics of CCS is given in terms of LTS, whose states are CCS
processes

I Thus, the definition also applies to CCS processes
I Two processes are bisimilar if there is a concrete strong bisimulation

relation that relates them
I To show that two processes are bisimilar it suffices to exhibit such a

concrete relation
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Behavioral Equivalence

Example: Strong Bisimulation

Consider the processes P and Q with the following behavior:

P

P1 P2

a a

b
b Q1

Q

a

b

We claim that they are bisimilar
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Behavioral Equivalence

Example: Strong Bisimulation

To show our claim we exhibit the following strong bisimulation relation:

R = {(P,Q), (P1,Q1), (P2,Q1)}

I (P,Q) is in R
I R is a bisimulation:

I For each pair of states in R , all possible transitions from the first can
be matched by corresponding transitions from the second

I For each pair of states in R , all possible transitions from the second
can be matched by corresponding transitions from the first
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Behavioral Equivalence

Example: Strong Bisimulation
Graphically, we show R with dotted lines:

P

P1 P2

a a

b
b Q1

Q

a

b

Now it is easy to see that:
I For each pair of states in R , all possible transitions from the first

can be matched by corresponding transitions from the second
I For each pair of states in R , all possible transitions from the second

can be matched by corresponding transitions from the first
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Behavioral Equivalence

Exercise: Strong Bisimulation

Consider the processes

P
def
= a.(b.0 + c .0)

Q
def
= a.b.0 + a.c .0

and show that P 6∼ Q
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