1 ADT: Map

A map (also called associative array) is a collection of unique keys and a collection of values, where each key is associated with a single value. Supported operations are:

- creating an empty map;
- querying whether a map contains a given key;
- lookup of a value associated with a given key, if the key is present;
- inserting a key and a value to be associated with it, if the key is not already present;
- removing a key (together with the associated value), if the key is present.

Design an abstract data type MAP that corresponds to the specification given above.

TYPES

MAP [K, V]

FUNCTIONS

- new: $M A P[K, V]$
- has $(m, k): M A P[K, V] \times K \rightarrow B O O L E A N$
- $\operatorname{item}(m, k): M A P[K, V] \times K \nrightarrow V$
- $\operatorname{put}(m, k, x): M A P[K, V] \times K \times V \nrightarrow M A P[K, V]$
- $\operatorname{remove}(m, k): M A P[K, V] \times K \nrightarrow M A P[K, V]$

PRECONDITIONS

$\mathbf{P 1} \operatorname{item}(m, k)$ require $\operatorname{has}(m, k)$
$\mathbf{P} 2 \operatorname{put}(m, k, x)$ require $\neg \operatorname{has}(m, k)$
$\mathbf{P} 3 \operatorname{remove}(m, k)$ require $\operatorname{has}(m, k)$
AXIOMS
A1 \neg has $(n e w, k)$
A2 $\operatorname{has}(\operatorname{put}(m, k, x), k)$
A3 $\operatorname{has}(\operatorname{put}(m, k, x), l)=\operatorname{has}(m, l)$, if $l \neq k$
A4 $\neg \operatorname{has}(\operatorname{remove}(m, k), k)$
A5 $\operatorname{has}(\operatorname{remove}(m, k), l)=\operatorname{has}(m, l)$, if $l \neq k$
A6 $\operatorname{item}(\operatorname{put}(m, k, x), k)=x$
A7 $\operatorname{item}(\operatorname{put}(m, k, x), l)=\operatorname{item}(m, l)$, if $l \neq k \wedge \operatorname{has}(m, l)$
A8 $\operatorname{item}(\operatorname{remove}(m, k), l)=\operatorname{item}(m, l)$, if $l \neq k \wedge \operatorname{has}(m, l)$

1.1 Proof of sufficient completeness

Prove that your ADT is sufficiently complete.
For all terms T of type MAP there exist resulting terms not involving any functions of the ADT when evaluating $\operatorname{has}(T, k)$ and $\operatorname{item}(T, k)$.

Induction basis

For all creators above holds.

- has $(n e w, k) \stackrel{A 1}{=}$ False

We don't have to check item (new, k), because the precondition is never satisfied.

Induction hypothesis

Assume for any $T_{\text {sub }}$ being a subterm of T that this is true.

Induction step

- For $T=\operatorname{put}\left(T_{\text {sub }}, k, x\right)$:

$$
\begin{gathered}
\operatorname{has}\left(p u t\left(T_{\text {sub }}, k, x\right), l\right)=\left\{\begin{array}{l}
\stackrel{A 2}{=} \operatorname{True} \text { if } k=l \\
\stackrel{A 3}{=} \operatorname{has}\left(T_{\text {sub }}, l\right) \text { if } k \neq l
\end{array}\right. \\
\operatorname{item}\left(\operatorname{put}\left(T_{\text {sub }}, k, x\right), l\right)=\left\{\begin{array}{l}
\stackrel{A 6}{=} x \text { if } k=l \\
\stackrel{A 7}{=} \operatorname{item}\left(T_{\text {sub }}, l\right) \text { if } k \neq l \wedge \operatorname{has}\left(T_{\text {sub }}, l\right)
\end{array}\right.
\end{gathered}
$$

- For $T=\operatorname{remove}\left(T_{s u b}, k\right)$:

$$
\begin{gathered}
\operatorname{has}\left(\operatorname{remove}\left(T_{\text {sub }}, k\right), l\right)=\left\{\begin{array}{l}
\underline{A 4} \text { False if } k=l \\
\stackrel{\text { A5 }}{=} \operatorname{has}\left(T_{\text {sub }}, l\right) \text { if } k \neq l
\end{array}\right. \\
\operatorname{item~}\left(\operatorname{remove}\left(T_{\text {sub }}, k\right), l\right) \stackrel{\text { A8 }}{=} \operatorname{has}\left(T_{\text {sub }}, l\right) \text { if } k \neq l \wedge \operatorname{has}\left(T_{\text {sub }}, l\right)
\end{gathered}
$$

