Tic-Tac-Toe ADT

1 Abstract Data Types and Design by Contract

1.1 Incompleteness in contracts

Tic-Tac-Toe game is played on a 3 -by- 3 board, which is initially empty. There are two players: a "cross" player and a "circle" player. They take turns; each turn changes exactly one cell on the board from empty to the symbol of the current player (cross or circle). The "cross" player always starts the game. The rules that define when the game ends and which player wins are omitted from the task for simplicity.

Below you will find an interface view of GAME class representing Tic-Tac-Toe games.

```
class GAME
create make
feature -- Initialization
    make
        -- Create an empty 3-by-3 board
        ensure
            cross_turn: next_turn = Cross
        end
feature -- Constants
    Empty:INTEGER is 0
    Cross: INTEGER is 1
    Circle: INTEGER is 2
        -- Symbolic constants for players and states of board cells
feature -- Access
    next_turn: INTEGER
        -- Player that will do the next turn
    item (i, j: INTEGER): INTEGER
            -- Value in the board cell (i, j)
        require
            i_in_bounds: i>= 1 and i<= 3
            j_in_bounds: j>=1 and j<=3
        ensure
            valid_value: Result = Empty or Result = Cross or Result = Circle
        end
feature -- Basic operations
    put_cross (i, j: INTEGER)
        -- Put cross into the cell (i, j)
        require
            cross_turn: next_turn = Cross
            i_in_bounds: i >= 1 and i<= 3
```

```
        j_in_bounds: j >==1 and j<= 3
        empty: item (i, j) = Empty
        ensure
            cross_put: item (i, j) = Cross
            circle_turn: next_turn = Circle
        end
    put_circle (i, j: INTEGER)
        -- Put circle into the cell (i, j)
    require
        circle_turn: next_turn = Circle
        i_in_bounds: i >==1 and }i<=
        j_in_bounds: j >==1 and j<=3
        empty: item (i, j) = Empty
    ensure
        circle_put: item (i, j) = Circle
        cross_turn: next_turn = Cross
    end
invariant
    valid_player: next_turn = Cross or next_turn = Circle
end
```

The contract of this class is incomplete with respect to the game description given above. In which contract elements does the incompleteness reside? Express in natural language what the missing parts of the specification are. Give an example of a scenario that is allowed by the above contract, but should not happen in Tic-Tac-Toe:

The postcondition of make doesn not describe the board cell values. Postconditions of put_cross (i, j) and put_circle (i, j) do not describe what happens with board cells other than (i, j). For example, after a sequence of calls
create game.make
game.put_cross (2, 2)
game.put_circle (1, 1)
we expect game.item $(2,2)=$ Cross, but according to the contracts also game.item $(2,2)=$ Empty and game.item $(2,2)=$ Circle are possible.

1.2 ADT GAME

Create an ADT that describes Tic-Tac-Toe games. The ADT functions should correspond one-to-one to the features of the GAME class above. The axioms of the ADT should be sufficiently complete, overcoming the incompleteness of the class contracts.

TYPES

GAME

FUNCTIONS

- make : GAME
- next_turn : GAME \rightarrow INTEGER
- item : GAME $\times I N T E G E R \times I N T E G E R \nrightarrow I N T E G E R$
- put_cross : GAME \times INTEGER $\times I N T E G E R \nrightarrow G A M E$
- put_circle : GAME \times INTEGER $\times I N T E G E R \nrightarrow G A M E$
- Empty : INTEGER
- Cross : INTEGER
- Circle : INTEGER

PRECONDITIONS

$\mathbf{P} 1 \operatorname{item}(g, i, j)$ require $1 \leq i \leq 3$ and $1 \leq j \leq 3$
P2 put_cross (g, i, j) require next_turn $(g)=C r o s s$ and $1 \leq i \leq 3$ and $1 \leq j \leq 3$ and $\operatorname{item}(g, i, j)=$ Empty

P3 put_circle (g, i, j) require next_turn $(g)=$ Circle and $1 \leq i \leq 3$ and $1 \leq j \leq$ 3 and $\operatorname{item}(g, i, j)=$ Empty

AXIOMS

We assume $1 \leq i, j, k, l \leq 3$.
A1 next_turn $($ make $)=$ Cross
A2 next_turn(put_cross $(g, i, j))=$ Circle
A3 next_turn $($ put_circle $(g, i, j))=$ Cross
A4 item $($ make $, i, j)=$ Empty
A5 item $\left(p u t _c r o s s(g, i, j), i, j\right)=$ Cross
A6 $(k \neq i \vee l \neq j) \Longrightarrow \operatorname{item}\left(p u t _c r o s s(g, i, j), k, l\right)=\operatorname{item}(g, k, l)$
A7 $\operatorname{item}($ put_circle $(g, i, j), i, j)=$ Circle
A8 $(k \neq i \vee l \neq j) \Longrightarrow \operatorname{item}($ put_circle $(g, i, j), k, l)=\operatorname{item}(g, k, l)$
A9 Empty $=0$
A10 Cross $=1$
A11 Circle $=2$

1.3 Proof of sufficient completeness

Prove that your specification is sufficiently complete.

For all terms T there exist resulting terms not involving any functions of the ADT when evaluating next_turn (T) and $\operatorname{item}(T)$.

Once again we assume $1 \leq i, j, k, l \leq 3$.

Induction basis

For all creators above holds.

- $n e x t _t u r n($ make $) \stackrel{A 1}{=}$ Cross $\stackrel{A 10}{=} 1$
- item $($ make $, i, j) \stackrel{A 4}{=}$ Empty $\stackrel{A 9}{=} 0$

Induction hypothesis

Assume for Tsub being a subterm of T that this is true.

Induction step

- For put_cross:

$$
\begin{aligned}
& - \text { next_turn }(\text { put_cross }(g, i, j)) \stackrel{A 2}{=} \text { Circle } \stackrel{A 11}{=} 2 \\
& \quad \text { item }(\text { put_cross }(g, i, j), k, l)=\left\{\begin{array}{l}
\stackrel{A 5}{=} \text { Cross } \stackrel{A 10}{=} 1 \text { if } i=k \wedge l=j \\
\stackrel{\text { A6 }}{=} \text { item }(g, k, l) \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- For put_circle:

$$
-n e x t _t u r n\left(p u t _c i r c l e(g, i, j)\right) \stackrel{A 3}{=} C r o s s \stackrel{A 10}{=} 1
$$

$$
\operatorname{item}(\text { put_circle }(g, i, j), k, l)=\left\{\begin{array}{l}
\stackrel{A 7}{=} \operatorname{Circle} \stackrel{A 11}{=} 2 \text { if } i=k \wedge l=j \\
\stackrel{A 8}{=} \operatorname{item}(g, k, l) \text { otherwise }
\end{array}\right.
$$

