
Chair of Software Engineering

Code Review

Exercise Session

1

Reviews

• Review: examination of (software) artifacts, in
order to find mistakes and improve the quality
of the artifact

• Examples for artifacts

– Source Code

– Design Documents (SRS Doc, API-Design Doc)

2

Purpose of code reviews

• Ensure that code has sufficient quality to be
released / committed
– Review formatting / documentation of code

– Review code correctness and efficiency

• Teach (new) developers how to improve code
w.r.t.
– Code quality

– Consistency

– Maintainability

3

Why review?

• Reviewing is effective to find mistakes

• Developers (hopefully) write better code
when others will look at it

– “You don‘t want to be the guy with the ugly
code...“

4

Effectiveness of Reviews

• Inspection of design & code [Fagan 1976]
– 67% - 82% of all faults were found by inspections
– 25% time saved on programmer resources (despite inspections)

• [Fagan 1986]
– 93% of all faults were found by inspections

• Cost reduction for fault detection (compared with testing)
– [Acerman+ 1989]: 85%
– [Fowler 1986]: 90%
– [Bush 1990]: 25.000 US$ saved PER inspection

5

How to review?

Many different approaches, e.g.

• Personal review

– Author reviews her own code  Not objective,
but available to every developer

• Over-the-shoulder

– Other developer looks „over the shoulder“ of the
code author; read / discuss code together

6

How to review?

Many different approaches (continued)
• Walkthroughs

– Scheduled meeting, chaired by a moderator
– Participants prepare for the meeting in advance
– Author presents and provides information

• Advantage: author knows the code best
• Disadvantage: author might feel attacked personally; tries to defend

the code

• Inspections (more formal than walkthroughs)
– Code presenter different from code author (author is present

but has passive role; only answers specific questions)
– Stronger focus on specific aspects (checklist approach)

Result of reviews: Review Report (protocoll of the meeting,
records all errors found) 7

Best practices

• Restrict to review to max. 60 – 90 min
– Reviewers performance in finding defects drops

after that time span as human concentration
declines

• Review fewer than 200 - 400 LOC/hour
– With more LOC, the ability to find defects

diminishes

– Reviewing needs time if code should be fully
understood by reviewers

8

Best practices

• Authors should prepare the source code for
review
– Format and document code

– Put special review- comments on sections which
should be reviewed in in-depth

• Establish quantifiable goals for code review
and capture metrics so you can improve your
process

9

Best practices

• Use checklists for authors and reviewers
– Helps to limit discussion and focus on important aspects

• Verify that defects are actually fixed

– Follow up on the Review Report produced in the last meeting

• Create a good code review culture in which finding defects
is viewed positively
– Review the product, not the producer
– Ask questions instead of making accusations
– Stick to the review agenda
– Raise issues, don‘t resolve them
– Limit discussions
– Stick to technical correctness; avoid style discussions

 10

What to review

Include sections...
• of complicated logic
• where defects severely

damage essential system
capability

• dealing with new
environments

• designed by new or
inexperienced team
members

Omit sections...
• which are

„straightforward“ (no
complications)

• of a type already
reviewed by the team in a
similar past project

• that, if faulty, are not
expected to effect
functionality

• Reused code
• Repeated parts of code

11

Summary

• Very effective techniques to ensure higher
quality of code (and other software artifacts)

• Low technology (“paper and pencil”)

– Many supporting tools are available
(search for them)

• Use reviews in your own projects

12

Sources

Slides based on material from:
• G. Engels; Slides: Software Quality Assurance – Chapter V; University of Paderborn;

2008; http://is.uni-paderborn.de/fachgebiete/fg-engels/lehre/ss08/software-
quality-assurance/lecture-notes.html

• SmartBear Software; White Paper; 11 Best Practices for Peer Code Review;
http://www.smartbear.com/PDF/11_Best_Practices_for_Peer_Code_Review.pdf

• *Ackerman+1989+ A.F. Ackerman, L.S. Buchwald, F.H. Lewski, “Software inspections:

an effective verification process”, IEEE Software 6 (May 1989), pp. 31-36
• *Bush 1990+ M. Bush, “Improving software quality: the use of formal inspections at

Jet Propulsion laboratory” Proceedings of the 12th International Conference on
Software Engineering, Nice, France, March 1990, pp. 196-199

• *Fowler 1986+ P.J. Fowler, “In-process inspections of workproducts at AT&T”, AT&T
Technical Journal 65 (March/April 1986), pp. 102-112

• *Fagan 1976+ M.E. Fagan, “Design and code inspections to reduce errors in
program development”, IBM Systems Journal 15 (No. 3, 1976), pp. 182-211

• [Fagan 1986+ M.E. Fagan, “Advances in software inspections”, IEEE Transactions on
Software Engineering, SE-12 (July 1986), pp. 744-751

13

http://is.uni-paderborn.de/fachgebiete/fg-engels/lehre/ss08/software-quality-assurance/lecture-notes.html
http://is.uni-paderborn.de/fachgebiete/fg-engels/lehre/ss08/software-quality-assurance/lecture-notes.html
http://is.uni-paderborn.de/fachgebiete/fg-engels/lehre/ss08/software-quality-assurance/lecture-notes.html
http://is.uni-paderborn.de/fachgebiete/fg-engels/lehre/ss08/software-quality-assurance/lecture-notes.html
http://is.uni-paderborn.de/fachgebiete/fg-engels/lehre/ss08/software-quality-assurance/lecture-notes.html
http://is.uni-paderborn.de/fachgebiete/fg-engels/lehre/ss08/software-quality-assurance/lecture-notes.html
http://is.uni-paderborn.de/fachgebiete/fg-engels/lehre/ss08/software-quality-assurance/lecture-notes.html
http://is.uni-paderborn.de/fachgebiete/fg-engels/lehre/ss08/software-quality-assurance/lecture-notes.html
http://is.uni-paderborn.de/fachgebiete/fg-engels/lehre/ss08/software-quality-assurance/lecture-notes.html
http://is.uni-paderborn.de/fachgebiete/fg-engels/lehre/ss08/software-quality-assurance/lecture-notes.html
http://is.uni-paderborn.de/fachgebiete/fg-engels/lehre/ss08/software-quality-assurance/lecture-notes.html
http://is.uni-paderborn.de/fachgebiete/fg-engels/lehre/ss08/software-quality-assurance/lecture-notes.html
http://www.smartbear.com/PDF/11_Best_Practices_for_Peer_Code_Review.pdf

