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Concurrent Programming with SCOOP

Almost all computer systems on the market today have more than one CPU, typically in the
form of a multi-core processor. The benefits of such systems are evident: the CPUs can share
the workload amongst themselves by working on different instructions in parallel, making the
overall system faster. This work sharing is unproblematic if the concurrently executing instruc-
tions are completely independent of each other. However, sometimes they need to access the
same region of memory or other computing resources, which can lead to so-called race condi-
tions where the result of a computation depends on the order of nondeterministic system events.
Therefore concurrent processes have to be properly synchronized, i.e. programmed to wait for
each other whenever necessary, and this calls for specialized programming techniques.

Today you will learn about the background and techniques of concurrent programming. In
particular, you will get to know an object-oriented programming model for concurrency called
SCOOP (Simple Concurrent Object-Oriented Programming). At the end of this lesson, you will
be able to

• explain the basics of concurrent execution of processes in modern operating systems, in
particular multiprocessing and multitasking,

• understand some of the most important problems related to concurrent programming, in
particular race conditions and deadlocks,

• distinguish between different types of process synchronization, in particular mutual ex-
clusion and condition synchronization,

• understand how these types of synchronization are realized in the SCOOP programming
model,

• program simple concurrent programs using SCOOP.

The lesson consists entirely of self-study material, which you should work through in the
usual two lecture hours. You should have a study partner with whom you can discuss what you
have learned. At the end of each study section there will be exercises that help you test your
knowledge; solutions to the exercises can be found on the last pages of the document.

1 Concurrent execution
This section introduces the notion of concurrency in the context of operating systems. This is
also where the idea of concurrent computation has become relevant first, and as we all have to
deal with operating systems on a daily basis, it also provides a good intuition for the problem.
You may know some of this content already from an operating systems class, in which case
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you should see this as a review and check that you are familiar again with all the relevant
terminology.

1.1 Multiprocessing and multitasking
Up until a few years ago, building computers with multiple CPUs (Central Processing Units)
was almost exclusively done for high-end systems or supercomputers. Nowadays, most end-
user computers have more than one CPU in the form of a multi-core processor (for simplicity,
we use the term CPU also to denote a processor core). In Figure 1 you see a system with two
CPUs, each of which handles one process.

Process 1 CPU 1 

Process 2 CPU 2 

Instructions 

Figure 1: Multiprocessing: instructions are executed in parallel

The situation where more than one CPU is used in a single system is known as multipro-
cessing. The processes are said to execute in parallel as they are running at the same time.

However, also if you have a computer with a single CPU, you may still have the impression
that programs run “in parallel”. This is because the operating system implements multitasking,
i.e. makes a single CPU appear to work at different tasks at once by switching quickly between
them. In this case we say that the execution of processes is interleaved as only one process is
running at a time. This situation is depicted in Figure 2. Of course, multitasking is also done
on multiprocessing systems, where it makes sense as soon as the number of processes is larger
than the number of available CPUs.

Process 1 

CPU 

Process 2 

Instructions 

Figure 2: Multitasking: instructions are interleaved

Both multiprocessing and multitasking are examples of concurrent execution. In general,
we say that the execution of processes is concurrent if they execute either truly in parallel or
interleaved. To be able to reason about concurrent executions, one often takes the assumption
that any parallel execution on real systems can be represented as an interleaved execution at a
fine enough level of granularity, e.g. at the machine level. It will thus be helpful for you to
picture any concurrent execution as the set of all its potential interleavings. In doing so, you
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CPU 
Registers 

P1 
Context 

P2 
Context 

Figure 3: Context switch: process P1 is removed from the CPU and P2 is assigned to it

will be able to detect any inconsistencies between different executions. We will come back to
this point in Section 3.1.

In the following section we will see how operating systems handle multitasking, and thus
make things a bit more concrete.

1.2 Operating system processes
Let’s have a closer look at processes, a term which we have used informally before. You will
probably be aware of the following terminology: a (sequential) program is merely a set of
instructions; a process is an instance of a program that is being executed. The exact structure of
a process may change from one operating system to the other; for our discussion it suffices to
assume the following components:

• Process identifier: the unique ID of a process.

• Process state: the current activity of a process.

• Process context: the program counter and the values of the CPU registers.

• Memory: program text, global data, stack, and heap.

As discussed in Section 1.1, multiple processes can execute at the same time in modern
operating systems. If the number of processes is greater than the number of available CPUs,
processes need to be scheduled for execution on the CPUs. The operating system uses a special
program called the scheduler that controls which processes are running on a CPU and which
are ready, i.e. waiting until a CPU can be assigned to them. In general, a process can be in one
of the following three states while it is in memory:

• running: the process’s instructions are executed on a processor.

• ready: the process is ready to be executed, but is not currently assigned to a processor.

• blocked: the process is currently waiting for an event.

The swapping of process executions on a CPU by the scheduler is called a context switch.
Assume a process P1 is in the state running and should be swapped with a process P2 which is
currently ready, and consider Figure 3. The scheduler sets the state of P1 to ready and saves
its context in memory. By doing so, the scheduler will be able to wake up the process at a later
time, such that it can continue executing at the exact same point it had stopped. The scheduler
can then use the context of P2 to set the CPU registers to the correct values for P2 to resume its
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execution. Finally, the scheduler sets P2’s process state to running, thus completing the context
switch.

From the state running a process can also get into the state blocked; this means that it is
currently not ready to execute but waiting for some system event, e.g. for the completion of
some prerequisite task by another process. When a process is blocked it cannot be selected by
the scheduler for execution on a CPU. This can only happen after the required event triggers the
state of the blocked process to be set to ready again.

Exercise 1.1 Explain the difference between parallel execution, interleaved execution, and con-
current execution.

Exercise 1.2 What is a context switch? Why is it needed?

Exercise 1.3 Explain the different states a process can be in at any particular time.

2 Processors
Concurrency seems to be a great idea for running different sequential programs at the same time:
using multitasking, all programs appear to run in parallel even on a system with a single CPU,
making it more convenient for the user to switch between programs and have long-running tasks
complete “in the background”; in the case of a multiprocessing system, the computing power
of the additional CPUs speeds up the system overall.

Given these conveniences, it also seems to be a good idea to use concurrency not only for
executing different sequential programs, but also within a single program. For example, if a
program implements a certain time-intensive algorithm, we would hope that the program runs
faster on a multiprocessing system if we can somehow parallelize it internally. A program
which gives rise to multiple concurrent executions at runtime is called a concurrent program.

2.1 The notion of a processor
Imagine the following routine compute which implements a computation composed of two
tasks:

compute
do

t1.do_task1
t2.do_task2

end

Assume further that it takes m time units to complete the call do_task1 on the object attached to
entity t1 and n time units to complete do_task2 on the object attached to entity t2. If compute
is executed sequentially, we thus have to wait m time units after the call t1.do_task1 before we
can start on t2.do_task2, and the overall computation will take m+ n time units, as shown in
Figure 4.

If we have two CPUs, this seems rather a waste of time. What we would like to do instead
is to execute do_task1 on the object attached to entity t1 by one of the CPUs and do_task2 on
the object attached to entity t2 by the other CPU, such that the overall computation takes only
max(m,n) time units, as shown in Figure 5.
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CPU 1 CPU 2 

task 1 
task 2 

m 
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m + n 

Figure 4: Sequential execution: the overall computation takes m+n time units

CPU 1 CPU 2 

task 1 

task 2  m 
n 

max(m, n) 

Figure 5: Parallel execution: the overall computation takes max(m,n) time units

In order to be able to associate computation with different execution units, we introduce
the abstract notion of a processor. An (abstract) processor can best be understood as a kind of
virtual CPU: an entity supporting sequential execution of instructions on one or several objects.
Each processor has a request queue which holds the instructions that it has to execute, and works
them off one by one.

In contrast to physical CPUs, the number of processors is not bounded. We imagine that
processors can be assigned to physical CPUs via multitasking, just as operating systems pro-
cesses are. In the following we will use the term processor only in this abstract sense, and use
the term CPU to denote a physical CPU.

The fundamental idea of abstract processors in SCOOP is their relationship to objects: each
object is assigned to exactly one processor, called the handler of the object. On the other hand,
a processor can handle multiple objects.

If a new object is created, the runtime system decides which handler it is assigned to or
whether a new processor is created for it, and this assignment remains fixed over the course
of the computation. The assignment is guided by an extension of the type system, as we will
see later. Assume for now that t1 is handled by a processor p, and t2 and t3 are handled by a
processor q. We can depict this with the diagram shown in Figure 6.

We frequently use such diagrams as they give us an idea of the associations of processors
and objects. Each region tagged by a processor name contains the objects this processor is
handling; processor regions are separated by a dashed line.

2.2 Synchronous and asynchronous feature calls
What does the handling of an object imply? It means that all operations on the given object
are executed by its handling processor; there is no sharing of objects between processors. For
example, assume that the following feature calls
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t1 

t3 

t2 

p q

Figure 6: Processor regions: t1 is handled by processor p, and t2 and t3 are handled by a
processor q

t1.do_task1
t2.do_task2
t3.f

are encountered by the current processor q, and that the processor association are as in Fig-
ure 6. Then q doesn’t execute the call t1.do_task1 by itself, but asks p to do it by appending
the call to p’s request queue. The benefit is that processor q doesn’t have to wait for the call
t1.do_task1 to complete: in contrast to the sequential case, q can just continue with other calls,
e.g. t2.do_task2, which it is handling by itself. Hence the two tasks can be executed concur-
rently. Lastly, the call t3.f is handled once again by processor q, therefore it is only started after
the task t2.do_task2 has been completed.

A feature call on an object which is handled by a different processor than the current one is
called an asynchronous feature call or a separate call (e.g., do_task1). In this case the current
processor can proceed after issuing the call to the other processor, and doesn’t have to wait for
the call to return. In contrast, a feature call on an object handled by the current processor is
called a synchronous feature call or a non-separate call (e.g. do_task2). This is the situation
well-known from ordinary sequential programming, and the current processor has to wait for
the call to return before continuing.

2.3 Separate entities
We have left open the question of how the runtime system determines whether a particular
object is handled by one processor or another. The answer is that the type system is extended
to guide the runtime system in this decision, thus giving the programmer control over whether
a call is executed synchronously or asynchronously.

To this end, a new keyword is introduced in the language SCOOP: separate. Along with
the usual

x : X

to denote an entity x that can be attached to objects of type X, we can now also write

x : separate X

to express that at runtime, x may be attached to objects handled by a different processor. We
then say that x is of type separate X, or that it is a separate entity.
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The value of a separate entity is called a separate reference, and an object attached to it is
called a separate object. To emphasize that a certain reference or object is not separate, we use
the term non-separate. We also extend our diagrams to include references to objects by drawing
arrows to the referenced object. If an arrow crosses the border of a processor’s domain, it is a
separate reference. The diagram in Figure 7 shows two objects x and y which are handled by
different processors, where x contains a separate reference to y.

x 

z 

y 

p q

y: separate Y z: Z 

Figure 7: Separate reference: y references an object on a different processor

2.4 Wait-by-necessity
We generalize the example of Section 2.1 by defining the following class WORKER:

class WORKER
feature

output: INTEGER
do_task (input: INTEGER) do ... end

end

The idea is that a worker can run do_task (input) and will store the result in the feature output.
Let’s assume that two workers are defined in the class MANAGER as follows:

class MANAGER
feature

worker1 : separate WORKER
worker2 : WORKER

−− in some routine:
do

. . .
worker1.do_task (input1)
worker2.do_task (input2)
result := worker1.output + worker2.output

end
end
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We have learned before that separate calls are spawned off asynchronously, so the current pro-
cessor doesn’t have to wait for them to return. The call worker1.do_task (input1) is there-
fore executed on a different processor; the second call worker2.do_task (input2) is synchronous
and is executed on the same processor the manager object is running on. Note that the call
worker1.do_task (input1) is a command and thus just transforms the target object worker1,
without returning a result. But what about the call worker1.output? This is a query and thus
returns a result. As we are interested in the result, we clearly have to wait for the call to return;
furthermore, we would also like to wait until previous computations on the object are finished
before retrieving the information.

This waiting happens automatically in SCOOP, and the corresponding synchronization prin-
ciple is called wait-by-necessity:

“If a client has started one or more calls on a certain separate object, and it executes
on that object a call to a query, that call will only proceed after all the earlier ones
have been completed, and any further client operations will wait for the query to
terminate.”

This rule ensures that after completion of the call worker2.do_task (input2), the processor will
also wait for the asynchronous completion of call worker1.do_task (input1) before combining
the results. This mechanism is completely automatic, so you as a programmer don’t have to
worry about this. However, when trying to optimize programs, it is important to know that
queries on an object will act as a barrier, i.e. a program point where execution waits for all
previously spawned calls on that object before proceeding.

Exercise 2.1 How does the execution of an asynchronous feature call differ from a synchronous
one? How are asynchronous feature calls expressed in SCOOP?

Exercise 2.2 Consider that the following SCOOP program fragment is executed on a proces-
sor p:

worker1.do_task1
worker2.do_task2
manager.evaluate
worker3.do_task3
result := worker2.value + worker3.value
manager.finish

The object-processor associations are given as follows: worker1 and worker2 are handled by
processor q, manager by processor p, and worker3 by processor r. The call worker1.do_task1
takes 20 time units until it returns, worker2.do_task2 30 time units, manager.evaluate 40 time
units, worker3.do_task3 20 time units, manager.finish 20 time units; the queries return imme-
diately. What is the minimum time for execution of this program? Draw a sequence diagram to
justify your answer.

Exercise 2.3 Consider classes A and B
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class A
feature

b: separate B
c: C

set_b (b1: separate B) do b := b1 end
set_c (c1: C) do c := c1 end

end

class B
feature

a: separate A

set_a (a1: separate A) do a := a1 end

end

and assume that the following program fragment is executed

a.set_b (b)
a.set_c (c)
b.set_a (a)

where a and c are handled by processor p, and b is handled by processor q. Draw a diagram
showing the association of objects with processor regions and any separate or non-separate
references.

Exercise 2.4 Under what conditions does wait-by-necessity become applicable?

3 Mutual exclusion
Up until now, concurrency seems easy enough to handle. If we want a feature to be evaluated
concurrently, we have to declare its corresponding target separate. At runtime, this gives rise
to an asynchronous feature call, and we are done. However, what happens if different calls
interfere with each other, for example access and modify the same objects? We will see that this
might change the results of computations in unexpected ways, and we thus have to avoid these
situations by using a special type of synchronization called mutual exclusion. Luckily, SCOOP
has a simple mechanism for ensuring mutual exclusion.

3.1 Race conditions
Consider the following class COUNTER which only has a single attribute value, and features to
set and increment value.

class COUNTER
feature

value : INTEGER

set_value (a_value: INTEGER)
do

value := a_value
end

increment
do

value := value + 1
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end
end

Now assume that an entity x of type separate COUNTER is created and consider the following
code:

x.set_value (0)
x.increment
i := x.value

What is the value of i at the end of this execution? Clearly, if this code was part of a sequential
program, the value would be 1. In a concurrent setting where we have two or more processors,
the value of x can be read/modified by all processors though that handle objects owning a sep-
arate reference to x. For example consider the following call executed concurrently by another
processor (different from the processor executing the above code):

x.set_value (2)

What is the value of i now?
The answer is that, if these are the only feature calls running concurrently and x is attached

to the same object in both cases, i could have any of the values 1, 2, or 3. The reason for this
is easily explained. Assume that processor p is handling the object associated with x. This
processor will receive feature calls for evaluation from concurrently executed code parts, and
will interleave them. The following interleavings could be taken:

x.set_value (2)
x.set_value (0)
x.increment
i := x.value

x.set_value (0)
x.set_value (2)

x.increment
i := x.value

x.set_value (0)
x.increment

x.set_value (2)
i := x.value

x.set_value (0)
x.increment
i := x.value

x.set_value (2)
i = 1 and x.value = 1 i = 3 and x.value = 3 i = 2 and x.value = 2 i = 1 and x.value = 2

This is not really what we intended. The result of our computation has become arbitrary, and
depends on the scheduling that determines a particular interleaving. Remember that we have no
control over the scheduling.

The situation that the result of a concurrent execution is dependent on the nondeterministic
scheduling is called a race condition or a data race. Data races are one of the most prominent
problems in the domain of concurrent programming, and you can imagine that it gives rise to
errors which can be quite hard to detect. For example, when you are running a program such as
the above, say, 100 times, it might be that, because of a specific timing of events, you always
obtain the values i = 1 and x.value = 1. But when you run the program for the 101st time, one
of the other results arises. This means that such errors can stay hidden for a long time, and
might never be detected during testing.

The question is now how to avoid data races. SCOOP has a specific mechanism for this that
eliminates these types of errors at compile-time (before you even run the program!), which will
be explained in the next section.
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3.2 The separate argument rule
To avoid data races we have to synchronize different computations such that they don’t interfere
with each other. Let’s think about the main reason for the problem to occur. In the above
example, two computations shared a resource, namely the object attached to x. A part of a
program that accesses a shared resource is called a critical section. The problem would not
have occurred if, at any time, at most one computation would be in its critical section. The form
of synchronization ensuring this property is called mutual exclusion.

SCOOP has a simple way to ensure mutual exclusion: its runtime system automatically locks
the processors which handle separate objects passed as arguments of a routine. If a processor is
locked, no other computation can use it to evaluate a feature call; the processor becomes private
to whoever locked it. Let’s make an example to see how that helps us.

Recall the above example, but let’s extend it to see the routine the code has been taken from:

compute (x: separate COUNTER)
do

x.set_value (0)
x.increment
i := x.value

end

Consider now the call compute (x) and assume that x is handled by processor p. As ex-
plained above, since x is a separate argument to the routine, the processor p must be locked.
The current processor, which is about to execute the compute feature, waits until the underly-
ing runtime system locks processor p. As soon as p is locked, the body of the routine can be
executed without interference (multiple locks on a processor are not possible), and hence upon
completion of the routine we always obtain the result i = 1 and x.value = 1.

This is so important that SCOOP forces us to make separate entities which we want to access
an argument of the enclosing routine. This is formulated as the separate argument rule:

“The target of a separate call must be a formal argument of the routine that contains
the separate call.”

In other words, all calls on separate objects must be wrapped in a procedure that makes it
possible to pass the target as argument. Hence only one of the following two examples is
correct:

x : separate X
compute

do
x.f

end

x : separate X
compute (x1: separate X)

do
x1.f

end

Incorrect: Target x is declared separate,
but not an argument of the enclosing rou-
tine compute.

Correct: Target x1 is separate and there-
fore has to be an argument of the enclos-
ing routine. In order to execute x.f, we use
the call compute (x).
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Note that if an argument of a separate type is passed, the corresponding formal argument
must also be of separate type. Thus, in the example above on the right hand side, x1 must be
declared of type separate X, since x, which we want to pass as an argument is also of type
separate X. This type system restriction avoids that entities declared as non-separate can be-
come attached to separate objects, which would compromise the correctness of the SCOOP
model.

An analogous requirement holds also for assignments. For example, if x1 := x and x is of
type separate X (or might just be attached to an object on a separate processor), then x1 must
be of type separate X too. This can be remembered by “nonsep := sep” being disallowed, and
is also summarized in the following typing rule:

“If the source of an attachment (assignment or argument passing) is separate, its
target must be separate too.”

Note that an assignment the other way around ( “sep := nonsep”, i.e. non-separate source, sep-
arate target) is however admissible.

Exercise 3.1 Explain the terms data race and mutual exclusion. How does SCOOP ensure
mutual exclusion?

Exercise 3.2 Consider the following class MOTORBIKE that models a motorbike with engine,
wheels, and status display. The class doesn’t compile properly. Find all errors and fix them,
assuming that the type declarations of all attributes are correct and that the omitted classes
ENGINE, DISPLAY, WHEEL have the features mentioned.

class MOTORBIKE
create

make
feature

engine: separate ENGINE
display: DISPLAY
front_wheel: separate WHEEL
back_wheel: separate WHEEL

make
do

create engine; create display
create front_wheel; create back_wheel

end
initialize

do
engine.initialize
initialize_wheels
display.show ("Ready")

end

initialize_wheels
do

display.show ("Initializing wheels ...")
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front_wheel.initialize
back_wheel.initialize

end

switch_wheels
local

wheel: WHEEL
do

wheel := front_wheel
front_wheel := back_wheel
back_wheel := wheel

end
end

4 Condition synchronization
Protecting access to shared variables is not the only reason why a process has to synchronize
with other processes. For example, assume that a process continuously takes data items out of a
buffer to process them. Hence, the process should only access the buffer if it holds at least one
element; if it finds the buffer empty, it therefore needs to wait until another process puts a data
item in. Delaying a process until a certain condition holds (as in this case, until the “buffer is
not empty”) is called condition synchronization. As you will see, SCOOP has an elegant way
of expressing condition synchronization by reinterpreting the preconditions of a routine as wait
conditions.

As an example of a problem that requires processes to use condition synchronization, we
describe the so-called producer-consumer problem, which corresponds to issues found in many
variations on concrete systems. Devices and programs such as keyboards, word processors and
the like can be seen as producers: they produce data items such as characters or files to print.
On the other hand the operating system and printers are the consumers of these data items. It
has to be ensured that these different entities can communicate with each other appropriately so
that for example no data items get lost.

On a more abstract level, we can describe the problem as follows. We consider two types of
processes, both of which execute in an infinite loop:

• Producer: At each loop iteration, produces a data item for consumption by a consumer.

• Consumer: At each loop iteration, consumes a data item produced by a producer.

Producers and consumers communicate via a shared buffer implementing a queue; we as-
sume that the buffer is unbounded, thus we only have to take care not to take out an item from an
empty buffer, but are always able to insert new items. Instead of giving the full implementation
we just assume to have a generic class BUFFER[T] to implement an unbounded queue:

buffer: separate BUFFER[INTEGER]

Producers append data items to the back of the queue using a routine put(item: INTEGER), and
consumers remove data items from the front using get: INTEGER; the number of items in a
queue is determined by the feature count: INTEGER.
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As part of the consumer behavior, we might for example want to implement the following
routine for consuming data items from the buffer:

consume (a_buffer: separate BUFFER[INTEGER])
require

not (a_buffer.count == 0)
local

value: INTEGER
do

value := a_buffer.get
end

Note that we have used a precondition to ensure that if we attempt to get a value from the
buffer, it is not currently empty. However, what should happen if the buffer is indeed found
empty? In a sequential setting, we would just throw an exception. However, this is not justified
in the presence of concurrency: eventually a producer will put a value into the buffer again,
allowing the consumer to proceed; the consumer will just have to wait a while. To implement
this behavior, the runtime system first ensures that the lock on a_buffer’s processor is released
(which was locked to allow the precondition to be evaluated); this allows values to be put in the
buffer. The call is then reevaluated at a later point.

This means that the semantics of preconditions is reinterpreted: they are now treated as
wait conditions, meaning that the execution of the body of the routine is delayed until they are
satisfied. We can summarize this behavior in the wait rule:

“A routine call with separate arguments will execute when all corresponding pro-
cessors are available and the precondition is satisfied. The processors are held
exclusively for the duration of the routine.”

We complete the producer-consumer example by showing the code of the producer’s main rou-
tine:

produce (a_buffer: separate BUFFER[INTEGER])
local

value: INTEGER
do

value := random.produceValue
a_buffer.put (value)

end

Since the buffer is unbounded, a wait condition is not necessary. It is however easily added
and then makes the solution completely symmetric.

Exercise 4.1 What is the difference between the require clause in SCOOP and in ordinary
Eiffel?

Exercise 4.2 Imagine a SCOOP routine has a precondition such as n > 0, that doesn’t involve
any separate targets. What do you think should happen in this case?

Exercise 4.3 You are to implement a controller for a device which can be accessed with the
following interface:
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class DEVICE
feature

startup do ... end
shutdown do ... end

end
There are also two sensors, one for heat and one for pressure, which can be used to monitor the
device.

class SENSOR
feature

value: INTEGER
device: DEVICE

end
Write a class CONTROLLER in SCOOP that can poll the sensors concurrently to running the
device. You should implement two routines: run starts the device and then monitors it with help
of a routine emergency_shutdown, which shuts the device down if the heat sensor exceeds the
value 70 or the pressure sensor the value 100.

Exercise 4.4 Name and explain three forms of synchronization used in SCOOP.

Exercise 4.5 Write down three possible outputs for the SCOOP program shown below:

class APPLICATION
create make
feature

x: separate X
y: separate Y
z: Z

make
do

create x; create y; create z
print ("C")
run1 (x)
z.h
run2 (y)

end

class X
feature

n: INTEGER

f
do

n := 1
print ("K")

end
end

class Y
feature

g (x: separate X)
require

x.n = 1
do

print ("Q")
end

end

run1 (xx: separate X)
do

print ("A")
xx.f

end

run2 (yy: separate Y)
do

yy.g (x)
print ("L")
yy.g (x)

end
end

class Z
feature

h
do

print ("P")
end

end
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5 Deadlock
While we have seen that locking is necessary for the proper synchronization of processes, it
also introduces a new class of errors in concurrent programs: deadlocks. A deadlock is the
situation where a group of processors blocks forever because each of the processors is waiting
for resources which are held by another processor in the group. In SCOOP, the resources are
the locks of the processors. As prescribed by the wait rule, a lock on processor p is requested
when executing a call to a routine with a separate argument handled by p; the lock is held for
the duration of the routine.

As a minimal example, consider the following class:

class C
creation

make

feature
a : separate A
b : separate A

make (x : separate A, y : separate A)
do

a := x
b := y

end

f do g (a) end
g (x : separate A) do h (b) end
h (y : separate A) do ... end

end

Now imagine that the following code is executed, where c1 and c2 are of type separate C, a
and b are of type separate A, and a is handled by processor p, and b by processor q:

create c1.make (a, b)
create c2.make (b, a)
c1.f
c2.f

Since the arguments are switched in the initialization of c1 and c2, a sequence of calls is possible
that lets their handlers first acquire the locks to p and q respectively, such that they end up in a
situation where each of them requires a lock held by the other handler.

Deadlocks are currently not automatically detected by SCOOP, and it is the programmers
responsibility to make sure that programs are deadlock-free. An implementation of a scheme for
preventing deadlocks is however underway, and is based on locking orders that prevent cyclical
locking.

Exercise 5.1 Explain in detail how a deadlock can happen in the above example by describing
a problematic sequence of calls and locks taken.
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Answers to the exercises
Answer 1.1 If all processes in a group are running at the same time, their execution is said to be
parallel. If all processes of a group have started to execute but only one process is running at a
time, their execution is said to be interleaved. We say that the execution of a group of processes
is concurrent if it is either parallel or interleaved. 2

Answer 1.2 A context switch is the exchange of one process’s context (its program counter and
CPU registers) with another process’s context on a CPU. A context switch enables the sharing
of a CPU by multiple processes. 2

Answer 1.3 A process can be in one of three states: running, ready, and blocked. If a process is
running, its instructions are currently executed on a processor; if a process is ready, it is waiting
for the scheduler to be assigned to a CPU; if a process is blocked, it is currently waiting for an
external event which will set its state to ready. 2

Answer 2.1 An asynchronous feature call is executed on a different processor than the current
one. This means it runs concurrently with other computations that are subsequently executed
on the current processor. Ordinary sequential feature calls which are executed on the current
processor are called synchronous. In SCOOP, a feature call t. f where t is separate (of some type
separate X) will be executed asynchronously; if t’s type is non-separate, it will be executed
synchronously. 2

Answer 2.2 The computation takes at least 80 time units, as can be seen from the following
sequence diagram.

p q 

evaluate 
finish 

40 

20 80 

r 

do_task1 
do_task2 

do_task3 

20 

20 

30 

2

Answer 2.3 The following diagram depicts the object-processor associations and the references
after execution of the program fragment.
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a 

c 

b 

p q

b: separate B 
c: C 

a: separate A 

2

Answer 2.4 A statement will be executed with wait-by-necessity semantics if it contains a query
on a separate target. 2

Answer 3.1 A data race is the situation where the result of a concurrent computation depends
on scheduling. Mutual exclusion is a form of synchronization to avoid the simultaneous use of
a shared resource (such as a shared object) by multiple processes.

In SCOOP, an object can only be accessed by its handler, and this handler must be locked
before it can be used to execute calls on the object. Mutual exclusion follows from the fact that
only one processor can have a lock on another processor at any time. A lock on the handler of
some object is taken by passing this object as an argument to the routine it is used in. SCOOP
enforces this argument passing by the separate argument rule. 2

Answer 3.2 The class contains numerous violations of the separate argument rule. These vio-
lations are reported and fixed in the following code:

class MOTORBIKE
feature

engine: separate ENGINE
front_wheel: separate WHEEL
back_wheel: separate WHEEL
display: DISPLAY

initialize (e: separate ENGINE) −− Added separate argument
do

e.initialize −− Fixed: engine.initialize was incorrect as ’engine’ is a
separate target, but not argument of the routine ’initialize’

initialize_wheels(front_wheel, back_wheel)
display.show ("Ready") −− This is correct: display is non−separate

end

initialize_wheels (f, b: separate WHEEL) −− Added separate arguments
do

display.show ("Initializing wheels ...")
f.initialize −− Fixed
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b.initialize −− Fixed
end

switch_wheels
local

wheel: separate WHEEL −− Fixed: changed type from WHEEL to
separate WHEEL...

do
wheel := front_wheel −− ...otherwise this would violate the typing rule:

a separate source is assigned to a non−separate target
front_wheel := back_wheel
back_wheel := wheel

end
end

Answer 4.1 In ordinary Eiffel, a precondition that evaluates to false gives rise to an exception.
In SCOOP no exception is thrown and instead the call is scheduled for reevaluation at a later
point. 2

Answer 4.2 A precondition that doesn’t involve any separate targets will always evaluate to
the same value, as the objects involved cannot be changed concurrently. If such a precondition
evaluates to false, an exception is therefore thrown, just as in the sequential case. 2

Answer 4.3 The controller can be implemented in the following manner:

class CONTROLLER
create

make

feature
device: DEVICE
heat: separate SENSOR
pressure: separate SENSOR

make (d: DEVICE; h, p: separate SENSOR)
do

device := d
heat := h
pressure := p

end

run (d: DEVICE)
do

d.startup
emergency_shutdown (d, heat, pressure)

end
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emergency_shutdown (d: DEVICE; h, p: separate SENSOR)
require

h.value > 70 or p.value > 100
do

d.shutdown
end

end

Note that the wait conditions on emergency_shutdown ensure that the shutdown is initiated only
if the sensors exceed their threshold values. Observe that the separate argument rule is correctly
abided by. 2

Answer 4.4 There are three major forms of synchronization provided in SCOOP: mutual ex-
clusion, condition synchronization, and wait-by-necessity. Mutual exclusion for object access
is ensured by the separate argument rule. Condition synchronization (waiting until a certain
condition is true) is provided via the reinterpretation of preconditions as wait conditions. Wait-
by-necessity is provided for queries on separate targets and ensures that an object is only queried
after all previous calls have been finished and causes the caller to wait for this. 2

Answer 4.5 Three possible output sequences are:

• CAKPLQQ

• CAPKQLQ

• CAKPQLQ

In routine make “C” is always printed at the beginning. Then there are three non-separate calls,
which will be worked off one after the other. In run1, “A” is always printed first, but then the
call xx.f is separate, i.e. will execute asynchronously. Hence, “K” might be printed after “A”,
but also after “P” has been printed as a result of the call z.h. The call yy.g (x) proceeds only if
x.n = 1 is true, i.e. after “K” has been printed. Since both calls to yy.g (x) are asynchronous, but
print("L") is synchronous “L” may be printed before or after the first “Q”, but must be printe
before the second “Q”. 2

Answer 5.1 The following sequence of calls can happen. First c1.f is executed, leading to the
call g (a). Since a is a separate argument of routine g, its handler p gets locked. Then c2.f is
executed, leading to the call g (b), since the roles of a and b are switched in c1 and c2; this
means that q is locked. On processor p, the call h (b) is issued, thus requesting a lock on q;
on processor q, the call h (a) is issued, thus requesting a lock on p: a deadlock has occurred as
none of the processors can proceed any further. 2
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