
Chair of Software Engineering

Software Architecture

Bertrand Meyer, Carlo A. Furia, Martin Nordio

ETH Zurich, February-May 2011

Lecture 2: The software lifecycle

2

Software lifecycle models

Describe an overall distribution of the software
construction into tasks, and the ordering of these tasks

They are models in two ways:

 Provide an abstracted version of reality

 Describe an ideal scheme, not always
 followed in practice

3

Lifecycle: the waterfall model

Feasibility
study

Requirements

Specification

Global
design

Detailed
design

Implemen-
tation

V & V

Distribution

Royce, 1970 (original article
actually presented the model to
criticize it!)

Succession of steps, with possibility
at each step to question and update
the results of the preceding step

4

A V-shaped variant

FEASIBILITY STUDY

REQUIREMENTS
ANALYSIS

GLOBAL DESIGN

DETAILED DESIGN

DISTRIBUTION

IMPLEMENTATION

UNIT
VALIDATION

SUBSYSTEM
VALIDATION

SYSTEM
VALIDATION

5

Arguments for the waterfall

(After B.W. Boehm: Software engineering economics)

 The activities are necessary
• (But: merging of middle activities)

 The order is the right one.

6

Merging of middle activities

Feasibility
study

Requirements

Specification

Global
design

Detailed
design

Implemen-
tation

V & V

Distribution

7

Arguments for the waterfall

(After B.W. Boehm: Software engineering economics)

 The activities are necessary
• (But: merging of middle activities)

 The order is the right one.

8

Problems with the waterfall

 Late appearance of actual code.

 Lack of support for
requirements change — and more
generally for extendibility and
reusability

 Lack of support for the
maintenance activity (70% of
software costs?)

 Division of labor hampering Total
Quality Management

 Impedance mismatches

 Highly synchronous model

Feasibility
study

Requirements

Specification

Global
design

Detailed
design

Implemen-
tation

V & V

Distribution

9

Lifecycle: “impedance mismatches”

As Management requested it As the Project Leader defined it As Systems designed it

As
Programming
developed it

As Operations installed it What the user wanted

(Pre-1970 cartoon; origin unknown)

10

A modern variant

11

The spiral model (Boehm)

Apply a waterfall-like approach to successive prototypes

Iteration 1

Iteration 2

Iteration 3

12

The Spiral model

13

“Prototyping” in software

The term is used in one of the following meanings:

 1. Experimentation:

• Requirements capture

• Try specific techniques: GUI, implementation
(―buying information‖)

 2. Pilot project

 3. Incremental development

 4. Throw-away development

(Fred Brooks, The Mythical Man-Month, 1975:
―Plan to throw one away, you will anyhow‖).

14

The problem with throw-away development

Software development is hard because of the need to
reconcile conflicting criteria, e.g. portability and
efficiency

A prototype typically sacrifices some of these criteria

Risk of shipping the prototype

In the 20th-anniversary edition of his book (1995), Brooks
admitted that ―plan to throw one away‖ is bad advice

15

Seamless, incremental development

Seamless development:

 Single set of notation, tools, concepts, principles throughout
 Continuous, incremental development
 Keep model, implementation and documentation consistent

Reversibility: can go back and forth

These are in particular some of the ideas behind the Eiffel method

16

Seamless development

 Single notation, tools,
concepts, principles

 Continuous, incremental
development

 Keep model, implementation
and documentation consistent

 Reversibility: go back and
forth

Example classes:

PLANE, ACCOUNT,
TRANSACTION…

STATE,
COMMAND…

HASH_TABLE…

TEST_DRIVER…

TABLE…

Analysis

Design

Implemen-
tation

V&V

Generali-
zation

17

Generalization

Prepare for reuse. For example:
 Remove built-in limits
 Remove dependencies on

specifics of project
 Improve documentation,

contracts...
 Abstract
 Extract commonalities and

revamp inheritance
hierarchy

Few companies have the guts to
provide the budget for this

B

A*

Y

X

Z

A D I V G

18

Finishing a design

It seems that the sole purpose of the work of engineers,
designers, and calculators is to polish and smooth out,
lighten this seam, balance that wing until it is no longer
noticed, until it is no longer a wing attached to a fuselage,
but a form fully unfolded, finally freed from the ore, a
sort of mysteriously joined whole, and of the same quality
as that of a poem. It seems that perfection is reached,
not when there is nothing more to add, but when there is
no longer anything to remove.

(Antoine de Saint-Exupéry,
Terre des Hommes, 1937)

19

Reversibility

Analysis

Design

Implemen-
tation

V&V

Generali-
zation

20

The cluster model

Cluster 1
Cluster 2 A

D

I

V&V

G

A

D

I

V&V

G

A

D

I

V&V

G

A

D

I

V&V

G

21

Extremes

Cluster 1

Cluster 2

A
D

I

V&V

G

A
D

I

V&V

G

A
D

I

V&V

G

A

D

I

V&V

G

―Trickle‖ ―Clusterfall‖

A

D

I

V&V

G

A

D

I

V&V

G

Cluster 1 Cluster 2

22

Dynamic rearrangement

Cluster 1
A

D

I

V&V

G

Cluster 2

A

D

I

V&V

G
A

D

I

V&V

G

Cluster 3

A

D

I

V&V

G

Cluster 4

23

Bottom-up order of cluster development

Cluster 1
A

D

I

V&V

G

A

D

I

V
&

V

G

Cluster 2
A

D

I

V&V

G

A

D

I

V
&

V

G

Cluster n
A

D

I

V&V

G

A

D

I

V
&

V

G

Time

Base technology

Specialized functions

Start with most
fundamental
functionalities, end
with user interface

24

Seamless development with EiffelStudio

Diagram Tool

•System diagrams can be produced automatically
from software text

•Works both ways: update diagrams or update text
– other view immediately updated

No need for separate UML tool

Metrics Tool

Profiler Tool

Documentation generation tool

...

25

Summary

Software development involves fundamental tasks such as
requirements, design, implementation, V&V, maintenance…

Lifecycle models determine how they will be ordered

The Waterfall is still the reference, but many variants are
possible, e.g. Spiral, Cluster

Seamless development emphasizes the fundamental unity
of the software process

