
1

Strong specifications for API design

Nadia Polikarpova

Software Architecture, Spring 2011

Chair of Software Engineering

API design principles* 2

Document state space very carefully

* Joshua Bloch, “How to Design a Good API and Why it Matters”

 Informal principles

 Easy to state, (sometimes) hard to follow

 Can strong formal specifications help?

Chair of Software Engineering

EiffelBase

 The most widely used Eiffel library

 More than 2300 features in 125 data structure
classes

 Large and complex inheritance hierarchy

 What can we learn from the design of EiffelBase?

3

Chair of Software Engineering

Example: COLLECTION

deferred class COLLECTION [G] inherit CONTAINER [G]

extendible: BOOLEAN -- May new items be added?

prunable: BOOLEAN -- May items be removed?

is_inserted (v: G): BOOLEAN
-- Has `v' been inserted by the most recent insertion?

put (v: G) -- Ensure that structure includes `v'.
require extendible
ensure is_inserted (v)

prune (v: G) -- Remove one occurrence of `v' if any.
require prunable

wipe_out -- Remove all items.
require prunable
ensure is_empty

end

4

Chair of Software Engineering

The put with a thousand faces (1) 5

SET

DISPENSERSEQUENCE

COUNTABLE_

SEQUENCE

TABLE

put (v)

require extendible

ensure is_inserted (v)

inapplicable

extendible = False

bag_put (v) inapplicable
put (k, v)

c: COLLECTION [CHARACTER]
...
c := “I‟m a string”
c.put („!‟) -- ?nothing happens!

Chair of Software Engineering

The put with a thousand faces (2) 6

put (k, v)

require valid_key (k)

INTEGER_

INTERVAL

put (v)

ensure not old has (v) implies count = old count + 1

t: TABLE [INTEGER, INTEGER]
...
create {INTEGER_INTERVAL} t.make (1, 10)
t.put (20, 5) -- ?postcondition violation!

Chair of Software Engineering

The put with a thousand faces (3) 7

TABLE

put (v)

require extendible

STRING ARRAY ARRAYED_LIST

HASH_TABLE

replace value at index k with v

insert key-value pair (k, v)

if key k is not present

put (k, v)

require valid_key (k)

Chair of Software Engineering

The prune with a thousand faces 8

prune (v)

require prunable

STRING

SEQUENCE

DYNAMIC_LIST

COUNTABLE_

SEQUENCE

ARRAY

INTEGER_

INTERVAL

FILE

remove the first occurrence of v

after the cursor position

inapplicable

prunable = False
remove the first occurrence of v

inapplicable

prunable = False

inapplicable

prunable = False
inapplicable

prunable = False

remove the first occurrence of v

wipe_out also inapplicable

since requires prunable

Chair of Software Engineering

EiffelBase: observations

 Deferred classes have vague semantics

 about 1/3 features in class LIST have no
postcondition or related invariant clause

 often “placeholders” like extendible and
prunable

 Many features of ancestors are inapplicable in
descendants

 31 features in EiffelBase.structures are explicitly
marked “Inapplicable”

 even more with precondition False

 The semantics is often inconsistent among
descendants

9

Chair of Software Engineering

API with no contracts 10

class A [G]

q1: G

q2: BOOLEAN

c1 (x: G)

c2

c3

Queries Commands

a: A [INTEGER]
...
print (a.q1)

Chair of Software Engineering

11

class A [G]

q1: G
require q1_able

q2: BOOLEAN

c1 (x: G)

c2
require c2_able

c3

Queries Commands

q1_able: BOOLEAN

c2_able: BOOLEAN

a: A [INTEGER]
...
if a.q1_able then

print (a.q1)
else

-- ?
end

API with vague contracts

Chair of Software Engineering

12

class A [G]

q1: G
require not s.is_empty
ensure Result = s.last

q2: BOOLEAN
ensure Result = s.is_empty

c1 (x: G)
ensure

s = old s.extended (x)

c2
require

not s.is_empty
ensure

s = old s.but_last

c3
ensure s.is_empty

Queries

Commands

API with model-based contracts

Abstract state

s: SEQUENCE [G]

q1: G
require not s.is_empty
ensure Result = s.last

c1 (x: G)
ensure

s = old s.extended (x)

Chair of Software Engineering

13API with model-based contracts

class STACK [G]

top: G
require not s.is_empty
ensure Result = s.last

is_empty: BOOLEAN
ensure Result = s.is_empty

push (x: G)
ensure

s = old s.extended (x)

pop
require

not s.is_empty
ensure

s = old s.but_last

wipe_out
ensure s.is_empty

Queries

CommandsAbstract state

s: SEQUENCE [G]

Chair of Software Engineering

Model-based contracts (MBC)

note model: sequence
class STACK[G]

sequence: MML_SEQUENCE [G]
-- Sequence of elements.

is_empty: BOOLEAN
-- Is the stack empty?

ensure Result = sequence.is_empty
top: G

-- Top of the stack.
require not sequence.is_empty
ensure Result = sequence.last

push (v: G)
-- Push `v‟ on the stack.

ensure sequence = old sequence.extended (v)
pop

-- Pop the rop of the stack.
require not sequence.is_empty
ensure sequence = old sequence.but_first

14

Chair of Software Engineering

MBC for reusable components

 Models make the abstract state space of the class
explicit

 give clients and developers intuition “how to
think” about the class

 using standard mathematical objects as models
improves understanding

 Completeness can be defined and analyzed for
model-based contracts

 violation of completeness are a hint for the
developer

 complete contracts prevent inconsistencies in
inheritance hierarchies

15

Chair of Software Engineering

Example: TABLE.put

note
model: map

deferred class TABLE [K, V]
put (k: K; v: V)

-- Associate value `v' with key `k'.
require map.domain.has (k)
ensure map = old map.replaced (k, v)

...
map: MML_MAP [K, V]

-- Map of keys to values.
end

16

Being abstract is something profoundly different from
being vague... The purpose of abstraction is not to be
vague, but to create a new semantic level in which one

can be absolutely precise.
E. Dijkstra

Chair of Software Engineering

Example: SEQUENCE.prune

note
model: sequence, index

deferred class SEQUENCE [G]
prune (v: G)

-- Remove the first occurrence of `v‟.
ensure

sequence = old (sequence.removed_at
(sequence.index_of (v)))

index = old (sequence.index_of (v))
...
sequence: MML_SEQUENCE [G]

-- Sequence of elements.
end

17

Chair of Software Engineering

Testing experiment

 Added MBC to a subset of EiffelBase

7 flattened classes, 254 public methods, 5750 LOC

 Debugging revealed 3 faults in the implementation

 Automatic random testing against MBC for 30
minutes revealed 1 more fault (shown next)

 All 4 failing test cases would not violate original
contracts

A larger class of faults is testable against complete
model-based contracts

18

Chair of Software Engineering

Fault example (1)

merge_right (other: LINKED_LIST [G])
-- Merge `other' into current structure after cursor
-- position. Do not move cursor. Empty `other'.

require not after

ensure
new_count: count = old count + old other.count
same_index: index = old index
other_is_empty: other.is_empty
sequence_effect: sequence = old (sequence.front (index) +

other.sequence + sequence.tail (index + 1)))
end

19

first

other.first

last

other.last

active

Chair of Software Engineering

Fault example (2)

merge_right (other: LINKED_LIST [G])
-- Merge `other' into current structure after cursor
-- position. Do not move cursor. Empty `other'.

require not after
do ...
if active = Void then
first := other.first
active := first

else ... end
count := count + other.count
...

ensure
new_count: count = old count + old other.count
same_index: index = old index
other_is_empty: other.is_empty
sequence_effect: sequence = old (sequence.front (index) +

other.sequence + sequence.tail (index + 1)))
end

20

active first

other.first

Chair of Software Engineering

EiffelBase2: goals and results

 Verifiability

 Simple and consistent hierarchy: avoid
“overabstraction” and “taxomania”

 Complete model-based contracts

21

EiffelBase2 EiffelBase

Classes 57 125

Features 537 2300

hidden by descendants 0 31

with incomplete contract 5% (LIST) 65%

with no contract 0% (LIST) 30%

Chair of Software Engineering

EiffelBase2: try it!

http://eiffelbase2.origo.ethz.ch

22

Chair of Software Engineering

Conclusions

 Reusable components need strong specifications
even on high levels of abstraction

 Model-based contracts is an effective approach to
writing strong specifications in Eiffel

 Definition of completeness can be used to reason
whether model-based contracts are strong enough

 Complete contracts prevent behavioral
inconsistencies in class hierarchies

 EiffelBase2 case study has shown that writing
strong model-based contracts is feasible

 Testing against stronger contracts reveals more
faults

23

Chair of Software Engineering

API design principles revisited 24

Document state space very carefully
Model documents abstract state space formally

