Strong specifications for API design

Nadia Polikarpova

Software Architecture, Spring 2011

@ API design principles*

* Joshua Bloch, “How to Design a Good APl and Why it Matters”

t well

API should do oné thing and do |

Implementation should not impact AP|

Document state space very carefully

its client
Document contract between method and its

Subclass only where it makes sense

User of API should not be surprised by behavior

Report
port errors as soon as possible after they occur

= Informal principles
= Easy to state, (sometimes) hard to follow
= (Can strong formal specifications help?

Chair of Software Engineering

fidgentrsivch Tochrische Hochichuly Biridh

@ EiffelBase 3

= The most widely used Eiffel library =

= More than 2300 features in 125 data stn:,lcvture
~ classes

= Large and’corﬁplex“ibrjih_eritance hierarchy
= What can we learn from the design of EiffelBase?

Chair of Software Engineering St St ANy SIS RO

() Example: COLLECTION 4

deferred class COLLECTION [G] inherit CONTAINER [G]
extendible: BOOLEAN -- May new items be added?
prunable: BOOLEAN -- May items be removed?

is_inserted (v: G): BOOLEAN
-- Has "v' been inserted by the most recent insertion?

put (v: G) -- Ensure that structure includes "v'.
require extendible
ensure is_inserted (v)

prune (v: G) -- Remove one occurrence of " V' if any.
require prunable

wipe_out -- Remove all items.
require prunable
ensure is_empty
end

Chair of Software Engineering St St ANy SIS RO

@ The put with a thousand faces (1) :

put (v)
@ require extendible

ensure is_inserted (v)

inapplicable
., extendible = False
HASH_TABLE
Cc: COLLECTION [CHARACTER]

INTEGER _ G
INTERVAL . |c:="I'm a string”
c.put (*!") -- nothing happens!

Chair of Software Engineering e Fedart oo o1 Vehociogs e

@ The put with a thousand faces (2) 6

put (v) @
ensurenoteldhas (v) implies count=-otd—couat + 1
put (K, v) “
reguire vatid<key (k)
TABLE
COUNTABLE_
INDEXABLE HASH_TABLE SEQUENCE

T e t: TABLE [INTEGER, INTEGER]
INTEGER_ ER
INTERVAL e
create {INTEGER INTERVALY t.make (1. 10)
t.put (20, 5) -- postcondition violation!
ETH

Chair of Software Engineering St St ANy SIS RO

@ The put with a thousand faces (3) ’

put (v)
@ require extendible

require valid
COUNTABLE
INDEXABLE SEQUENCE

insert key-value pair (k, v)

if key k is not present
INTEGER_ YSERIEN Pr _._PENSER
INTERVAL _/

replace value at index k with v

r/ |

Chair of Software Engineering e Fedart oo o1 Vehociogs e

@ The prune with a thousand faces 8

prune (V)
require prunable

iInapplicable

nriinahla — Calen

remove the first occurrence of v

INDEXABLE
’remove the first occurrence of v

wipe_out also inapplicable .
since requires prunable after the cursor position
- remove the first occurrence ofV'

Inappiicanie Inapplicable
Chair of Software Engineering prunable — False prunable - False g T bl 2

inapplicable
prunable = Fal

@ EiffelBase: observations 9

= Deferred classes have vague semantics

= about 1/3 features in class LIST have no
postcondition or related invariant clause

= often “placeholders” like extendible and
prunable

= Many features of ancestors are inapplicable in
descendants

= 31 features in EiffelBase.structures are explicitly
marked “Inapplicable”

= even more with precondition False

= The semantics is often inconsistent among
descendants

Chair of Software Engineering St St ANy SIS RO

@ API with no contracts ‘

class A [G]

Queries Commands

I

g2: BOOLEAN c2

c3

a: A [INTEGER]

print (a.ql)

Chair of Software Engineering St St ANy SIS RO

@ API with vague contracts

11

class A [G]

Queries Commands

ql: G cl (x: G)
require ql_able >
C

g2: BOOLEAN require c2_able

q1_able: BOOLEAN c3

c2_able: BOOLEAN

a: A [INTEGER]

ii."a.ql_able then
print (a.ql)
else
-- 7

end

Chair of Software Engineering

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

@ API with model-based contracts -

class A [G]

Abstract state Commands

EEEEE B i 06 6

ensure

s: SEQUENCE [G] s = old s.extended (x)

c2
Queries require

not s.is_empty
ensure
s = old s.but_last

ql: G
require not s.is_empty
ensure Result = s.last

doi SO9LEAT ;isure S.is_empt
ensure Result = s.is_empty >_CHDLY

Chair of Software Engineering

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

@ API with model-based contracts -

class STACK [G]

Abstract state Commands

EEEEEEN push (c:)

ensure

s: SEQUENCE [G] s = old s.extended (x)

pop
Queries require

not s.is_empty
ensure
s = old s.but_last

top: G
require not s.is_empty
ensure Result = s.last

is_empty: BOOLEAN wipe_out
: ensure s.is_empty
ensure Result = s.is_empty

Chair of Software Engineering S Rederal iniitute of Tochnsiegy urich

@ Model-based contracts (MBC)

14

note model: sequence
class STACK[G]
sequence: MML_SEQUENCE [G]
-- Sequence of elements.
is_empty: BOOLEAN
-- Is the stack empty?
ensure Result = sequence.is_empty
top: G
-- Top of the stack.
require not sequence.is_empty
ensure Result = sequence.last
push (v: G)
-- Push " v’ on the stack.

ensure sequence = old sequence.extended (v)

pop
-- Pop the rop of the stack.
require not sequence.is_empty
ensure sequence = old sequence.but_first

Chair of Software Engineering

oﬁ\\)\e‘e
C

nnnnnnnnnnnnnnnnnnn

Hochschule Birich

@ MBC for reusable components :

= Models make the abstract state space of the class
explicit
= give clients and developers intuition “how to
think” about the class

= using standard mathematical objects as models
improves understanding

= Completeness can be defined and analyzed for
model-based contracts

= violation of completeness are a hint for the
developer

= complete contracts prevent inconsistencies in
inheritance hierarchies

Chair of Software Engineering Sidgenbiphohe Technlche Hochichule Zarich

Swiss Federal inutitute af Technslegy 2urich

() Example: TABLE.put :

note
model: map
deferred class TABLE [K, V]
put (k: K; v: V)
-- Associate value "v' with key "k'.
require map.domain.has (k)
ensure map = old map.replaced (k, v)

map: MML_MAP [K, V]
-- Map of keys to values. e
end

Being abstract is something profoundly different from
being vague... The purpose of abstraction is not to be
vague, but to create a new semantic level in which one
can be absolutely precise. >

E. Dijkstra

Chair of Software Engineering St St ANy SIS RO

() Example: SEQUENCE.prune

17

note
model: sequence, index
deferred class SEQUENCE [G]
prune (v: G)
-- Remove the first occurrence of "Vv'.
ensure
sequence = old (sequence.removed_at
(sequence.index_of (v)))
index = old (sequence.index_of (v))
sequence: MML_SEQUENCE [G]
-- Sequence of elements.
end l

Chair of Software Engineering

Eadganbrtliche Technliche Hochichule 0k
Swiss Federal Institute af Technalegy Turich

@ Testing experiment ;

= Added MBC to a subset of EiffelBase
7 flattened classes, 254 public methods, 5750 LOC
= Debugging revealed 3 faults in the implementation

= Automatic random testing against MBC for 30
minutes revealed 1 more fault (shown next)

= All 4 failing test cases would not violate original
contracts

A larger class of faults is testable against complete
model-based contracts

Chair of Software Engineering Sidgenbiphohe Technlche Hochichule Zarich

Swiss Federal inutitute af Technslegy 2urich

@ Fault example (1) 19

merge_right (other: LINKED_LIST [G])
-- Merge " other' into current structure after cursor
-- position. Do not move cursor. Empty " other'.
require not after first active last

-

other.first other.last

ensure
new_count: count = old count + old other.count
same_index: index = old index
other_is_empty: other.is_empty
sequence_effect: sequence = old (sequence.front (index) +
other.sequence + sequence.tail (index + 1)))
end

Chair of Software Engineering St St ANy SIS RO

@ Fault example (2) 2°

merge_right (other: LINKED_LIST [G])
-- Merge " other' into current structure after cursor
-- position. Do not move cursor. Empty " other".
require not after
do ...
if active = Void then
first := other.first
active := first
else ... end
count := count + other.count

first

l

active

l

l

other.first

ensure
new_count: count = old count + old other.count
same_index: index = old index
other_is_empty: other.is_empty
sequence_effect: sequence = old (sequence.front (index) +
other.sequence + sequence.tail (index + 1)))
end

Chair of Software Engineering St St ANy SIS RO

@ EiffelBase2: goals and results :

= Verifiability
¥ Simple and consistent hierarchy: avoid
“overabstraction” and “taxomania”

v Complete model-based contracts

| EiffelBase2 EiffelBase

Classes 57 125
Features 537 2300
hidden by descendants 0 31
with incomplete contract 5% (LIST) 65%
with no contract 0% (LIST) 30%

Chair of Software Engineering St St ANy SIS RO

@ EiffelBase?2: try it! "

http://eiffelbase2.origo.ethz.ch

Chair of Software Engineering St St ANy SIS RO

@ Conclusions "

= Reusable components need strong specifications
even on high levels of abstraction

= Model-based contracts is an effective approach to
writing strong specifications in Eiffel

= Definition of completeness can be used to reason
whether model-based contracts are strong enough

= Complete contracts prevent behavioral
inconsistencies in class hierarchies

= EiffelBase2 case study has shown that writing
strong model-based contracts is feasible

= Testing against stronger contracts reveals more
faults

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Chair of Software Engineering S Rederal i itute of Techeiogy Zurlch

@ API design principles revisited

24

API| should do oné thing and do it WE
perate on a single model

All features O

Implementation should not impact AP
S

emantics of all features in terms of abstract state

Document state space very carefully

Model documents abstract state space formally
d its client

act between method an

ontr e
Document © and postconditions

Complete pre-

Subclass only where it makes sense

Complete contracts prevent from subclassing when
feature semantics is inconsistent

User of API should not be surprised by behavior
User relies on complete contracts

Chair of Software Engineering e A B S A Bt

