
1

Strong specifications for API design

Nadia Polikarpova

Software Architecture, Spring 2011

Chair of Software Engineering

API design principles* 2

Document state space very carefully

* Joshua Bloch, “How to Design a Good API and Why it Matters”

 Informal principles

 Easy to state, (sometimes) hard to follow

 Can strong formal specifications help?

Chair of Software Engineering

EiffelBase

 The most widely used Eiffel library

 More than 2300 features in 125 data structure
classes

 Large and complex inheritance hierarchy

 What can we learn from the design of EiffelBase?

3

Chair of Software Engineering

Example: COLLECTION

deferred class COLLECTION [G] inherit CONTAINER [G]

extendible: BOOLEAN -- May new items be added?

prunable: BOOLEAN -- May items be removed?

is_inserted (v: G): BOOLEAN
-- Has `v' been inserted by the most recent insertion?

put (v: G) -- Ensure that structure includes `v'.
require extendible
ensure is_inserted (v)

prune (v: G) -- Remove one occurrence of `v' if any.
require prunable

wipe_out -- Remove all items.
require prunable
ensure is_empty

end

4

Chair of Software Engineering

The put with a thousand faces (1) 5

SET

DISPENSERSEQUENCE

COUNTABLE_

SEQUENCE

TABLE

put (v)

require extendible

ensure is_inserted (v)

inapplicable

extendible = False

bag_put (v) inapplicable
put (k, v)

c: COLLECTION [CHARACTER]
...
c := “I‟m a string”
c.put („!‟) -- ?nothing happens!

Chair of Software Engineering

The put with a thousand faces (2) 6

put (k, v)

require valid_key (k)

INTEGER_

INTERVAL

put (v)

ensure not old has (v) implies count = old count + 1

t: TABLE [INTEGER, INTEGER]
...
create {INTEGER_INTERVAL} t.make (1, 10)
t.put (20, 5) -- ?postcondition violation!

Chair of Software Engineering

The put with a thousand faces (3) 7

TABLE

put (v)

require extendible

STRING ARRAY ARRAYED_LIST

HASH_TABLE

replace value at index k with v

insert key-value pair (k, v)

if key k is not present

put (k, v)

require valid_key (k)

Chair of Software Engineering

The prune with a thousand faces 8

prune (v)

require prunable

STRING

SEQUENCE

DYNAMIC_LIST

COUNTABLE_

SEQUENCE

ARRAY

INTEGER_

INTERVAL

FILE

remove the first occurrence of v

after the cursor position

inapplicable

prunable = False
remove the first occurrence of v

inapplicable

prunable = False

inapplicable

prunable = False
inapplicable

prunable = False

remove the first occurrence of v

wipe_out also inapplicable

since requires prunable

Chair of Software Engineering

EiffelBase: observations

 Deferred classes have vague semantics

 about 1/3 features in class LIST have no
postcondition or related invariant clause

 often “placeholders” like extendible and
prunable

 Many features of ancestors are inapplicable in
descendants

 31 features in EiffelBase.structures are explicitly
marked “Inapplicable”

 even more with precondition False

 The semantics is often inconsistent among
descendants

9

Chair of Software Engineering

API with no contracts 10

class A [G]

q1: G

q2: BOOLEAN

c1 (x: G)

c2

c3

Queries Commands

a: A [INTEGER]
...
print (a.q1)

Chair of Software Engineering

11

class A [G]

q1: G
require q1_able

q2: BOOLEAN

c1 (x: G)

c2
require c2_able

c3

Queries Commands

q1_able: BOOLEAN

c2_able: BOOLEAN

a: A [INTEGER]
...
if a.q1_able then

print (a.q1)
else

-- ?
end

API with vague contracts

Chair of Software Engineering

12

class A [G]

q1: G
require not s.is_empty
ensure Result = s.last

q2: BOOLEAN
ensure Result = s.is_empty

c1 (x: G)
ensure

s = old s.extended (x)

c2
require

not s.is_empty
ensure

s = old s.but_last

c3
ensure s.is_empty

Queries

Commands

API with model-based contracts

Abstract state

s: SEQUENCE [G]

q1: G
require not s.is_empty
ensure Result = s.last

c1 (x: G)
ensure

s = old s.extended (x)

Chair of Software Engineering

13API with model-based contracts

class STACK [G]

top: G
require not s.is_empty
ensure Result = s.last

is_empty: BOOLEAN
ensure Result = s.is_empty

push (x: G)
ensure

s = old s.extended (x)

pop
require

not s.is_empty
ensure

s = old s.but_last

wipe_out
ensure s.is_empty

Queries

CommandsAbstract state

s: SEQUENCE [G]

Chair of Software Engineering

Model-based contracts (MBC)

note model: sequence
class STACK[G]

sequence: MML_SEQUENCE [G]
-- Sequence of elements.

is_empty: BOOLEAN
-- Is the stack empty?

ensure Result = sequence.is_empty
top: G

-- Top of the stack.
require not sequence.is_empty
ensure Result = sequence.last

push (v: G)
-- Push `v‟ on the stack.

ensure sequence = old sequence.extended (v)
pop

-- Pop the rop of the stack.
require not sequence.is_empty
ensure sequence = old sequence.but_first

14

Chair of Software Engineering

MBC for reusable components

 Models make the abstract state space of the class
explicit

 give clients and developers intuition “how to
think” about the class

 using standard mathematical objects as models
improves understanding

 Completeness can be defined and analyzed for
model-based contracts

 violation of completeness are a hint for the
developer

 complete contracts prevent inconsistencies in
inheritance hierarchies

15

Chair of Software Engineering

Example: TABLE.put

note
model: map

deferred class TABLE [K, V]
put (k: K; v: V)

-- Associate value `v' with key `k'.
require map.domain.has (k)
ensure map = old map.replaced (k, v)

...
map: MML_MAP [K, V]

-- Map of keys to values.
end

16

Being abstract is something profoundly different from
being vague... The purpose of abstraction is not to be
vague, but to create a new semantic level in which one

can be absolutely precise.
E. Dijkstra

Chair of Software Engineering

Example: SEQUENCE.prune

note
model: sequence, index

deferred class SEQUENCE [G]
prune (v: G)

-- Remove the first occurrence of `v‟.
ensure

sequence = old (sequence.removed_at
(sequence.index_of (v)))

index = old (sequence.index_of (v))
...
sequence: MML_SEQUENCE [G]

-- Sequence of elements.
end

17

Chair of Software Engineering

Testing experiment

 Added MBC to a subset of EiffelBase

7 flattened classes, 254 public methods, 5750 LOC

 Debugging revealed 3 faults in the implementation

 Automatic random testing against MBC for 30
minutes revealed 1 more fault (shown next)

 All 4 failing test cases would not violate original
contracts

A larger class of faults is testable against complete
model-based contracts

18

Chair of Software Engineering

Fault example (1)

merge_right (other: LINKED_LIST [G])
-- Merge `other' into current structure after cursor
-- position. Do not move cursor. Empty `other'.

require not after

ensure
new_count: count = old count + old other.count
same_index: index = old index
other_is_empty: other.is_empty
sequence_effect: sequence = old (sequence.front (index) +

other.sequence + sequence.tail (index + 1)))
end

19

first

other.first

last

other.last

active

Chair of Software Engineering

Fault example (2)

merge_right (other: LINKED_LIST [G])
-- Merge `other' into current structure after cursor
-- position. Do not move cursor. Empty `other'.

require not after
do ...
if active = Void then
first := other.first
active := first

else ... end
count := count + other.count
...

ensure
new_count: count = old count + old other.count
same_index: index = old index
other_is_empty: other.is_empty
sequence_effect: sequence = old (sequence.front (index) +

other.sequence + sequence.tail (index + 1)))
end

20

active first

other.first

Chair of Software Engineering

EiffelBase2: goals and results

 Verifiability

 Simple and consistent hierarchy: avoid
“overabstraction” and “taxomania”

 Complete model-based contracts

21

EiffelBase2 EiffelBase

Classes 57 125

Features 537 2300

hidden by descendants 0 31

with incomplete contract 5% (LIST) 65%

with no contract 0% (LIST) 30%

Chair of Software Engineering

EiffelBase2: try it!

http://eiffelbase2.origo.ethz.ch

22

Chair of Software Engineering

Conclusions

 Reusable components need strong specifications
even on high levels of abstraction

 Model-based contracts is an effective approach to
writing strong specifications in Eiffel

 Definition of completeness can be used to reason
whether model-based contracts are strong enough

 Complete contracts prevent behavioral
inconsistencies in class hierarchies

 EiffelBase2 case study has shown that writing
strong model-based contracts is feasible

 Testing against stronger contracts reveals more
faults

23

Chair of Software Engineering

API design principles revisited 24

Document state space very carefully
Model documents abstract state space formally

