Program Verification Using Separation Logic

Cristiano Calcagno

Adapted from material by Dino Distefano

Lecture 1

Goal of the course

Study Separation Logic having automatic verification in mind

Learn how some notions of
mathematical logic can be very helpful in reasoning about real world programs

```
void t1394Diag_CancelIrp(PDEVICE_OBJECT DeviceObject, PIRP Irp)
KIRQL
    BUS_RESET_IRP
    PDEVICE_EXTENSION
```

Irql, CancelIrql;
*BusResetIrp, *temp;
deviceExtension;

```
deviceExtension = DeviceObject->DeviceExtension;
KeAcquireSpinLock(\&deviceExtension->ResetSpinLock, \&Irql);
temp \(=\) (PBUS_RESET_IRP)deviceExtension;
BusResetIrp = (PBUS_RESET_IRP)deviceExtension->Flink2;
while (BusResetIrp) \{
if (BusResetIrp->Irp == Irp) temp->Flink2 = BusResetIrp->Flink2; free(BusResetIrp);
break;
\}
else if (BusResetIrp->Flink2 == (PBUS_RESET_IRP)deviceExtension) \{ break;
\}
else \{
temp = BusResetIrp;
BusResetIrp = (PBUS_RESET_IRP)BusResetIrp->Flink2;
\}
\}
KeReleaseSpinLock(\&deviceExtension->ResetSpinLock, Irql);
IoReleaseCancelSpinLock(Irp->CancelIrql);
Irp->IoStatus.Status = STATUS_CANCELLED;
IoCompleteRequest(Irp, IO_NO_INCREMENT);
t1394Diag_CancelIrp
```


A piece of a windows

 device driver.
Is this correct?

Or at least: does
it have basic properties like it won't crash or leak memory?

Today's plan

- Motivation for Separation Logic
- Assertion language
- Mathematical model
- Data structures

Motivations...

Simple Imperative Language

- Safe commands:

$$
\text { (6) S::= skip | } x:=E \mid x:=n e w(E 1, \ldots, E n)
$$

- Heap accessing commands:

where E is an expression x, y, nil, etc.
- Command:

$$
\begin{aligned}
& \text { - } C::=S|A| C 1 ; C 2 \mid \text { if } B\{C 1\} \text { else }\{C 2\} \mid \\
& \text { while } B \text { do }\{C\}
\end{aligned}
$$

where B boolean guard $E=E, E!=E$, etc.

Example Program: List Reversal

p:=nil;

while (c !=nil) do \{
t:=p;
p:=c;
c:=[c];
[p](=%E2%80%A0;): $=$ +;
\}

Example Program: List Reversal

```
p:=nil;
while (c !=nil) do {
    t:=p;
    p:=c;
    c:=[c];
    [p]:=†;
}
```


Example Program: List Reversal

p:=nil;

while (c !=nil) do \{

$$
t:=p ;
$$

$$
p:=c ;
$$

$$
\mathrm{c}:=[\mathrm{c}] ;
$$

\}

Example Program: List Reversal

p:=nil;
while (c !=nil) do \{
t:=p;
$\mathrm{p}:=\mathrm{c}$;
c:=[c];
[p](=%E2%80%A0;):=†;

Some properties

we would like to prove:
Does the program preserve acyclicity/cyclicity?
Does it core-dump?
Does it create garbage?
\}

Example Program

We are interested in pointer manipulating programs

$$
\begin{aligned}
& x=\operatorname{new}(3,3) ; \\
& y=\operatorname{new}(4,4) ; \\
& {[x+1]=y ;} \\
& {[y+1]=x ;} \\
& y=x+1 ; \\
& \text { dispose } x ; \\
& y=[y] ;
\end{aligned}
$$

Example Program

We are interested in pointer manipulating programs

$$
\begin{aligned}
& x=\operatorname{new}(3,3) ; \\
& y=\operatorname{new}(4,4) ; \\
& {[x+1]=y ;} \\
& {[y+1]=x ;} \\
& y=x+1 ; \\
& \text { dispose } x ; \\
& y=[y] ;
\end{aligned}
$$

Example Program

We are interested in pointer manipulating programs

$$
\begin{aligned}
& x=\operatorname{new}(3,3) ; \\
& y=\operatorname{new}(4,4) ; \\
& {[x+1]=y ;} \\
& {[y+1]=x ;} \\
& y=x+1 ; \\
& \text { dispose } x ; \\
& y=[y] ;
\end{aligned}
$$

Example Program

We are interested in pointer manipulating programs

$$
\begin{aligned}
& x=\operatorname{new}(3,3) ; \\
& y=\operatorname{new}(4,4) ; \\
& {[x+1]=y ;} \\
& {[y+1]=x ;} \\
& y=x+1 ; \\
& \text { dispose } x ; \\
& y=[y] ;
\end{aligned}
$$

Example Program

We are interested in pointer manipulating programs

$$
\begin{aligned}
& x=\operatorname{new}(3,3) ; \\
& y=\operatorname{new}(4,4) ; \\
& {[x+1]=y ;} \\
& {[y+1]=x ;} \\
& y=x+1 ;
\end{aligned}
$$

dispose $X ;$
$y=[y] ;$

Example Program

We are interested in pointer manipulating programs

$$
\begin{aligned}
& x=\operatorname{new}(3,3) ; \\
& y=\operatorname{new}(4,4) ; \\
& {[x+1]=y ;} \\
& {[y+1]=x ;} \\
& y=x+1 ;
\end{aligned}
$$

Example Program

We are interested in pointer manipulating programs

$$
\begin{aligned}
& x=\operatorname{new}(3,3) ; \\
& y=\operatorname{new}(4,4) ; \\
& {[x+1]=y ;} \\
& {[y+1]=x ;} \\
& y=x+1 ;
\end{aligned}
$$

dispose X;
$\Longrightarrow y=[y]$;

Example Program

We are interested in pointer manipulating programs

$$
\begin{aligned}
& x=\operatorname{new}(3,3) ; \\
& y=\operatorname{new}(4,4) ; \\
& {[x+1]=y ;} \\
& {[y+1]=x ;} \\
& y=x+1 ;
\end{aligned}
$$

dispose X;
$y=[y] ;$

Why Separation Logic?

Consider this code:

$$
\begin{aligned}
& {[y]=4 ;} \\
& {[z]=5 ;}
\end{aligned}
$$

Guarantee([y] != [z])

We need to know that things are different. How?

Why Separation Logic?

Consider this code:

Assume(y != z)
Add assertion?

$$
\begin{aligned}
& {[y]=4 ;} \\
& {[z]=5 ;}
\end{aligned}
$$

Guarantee([y] != [z])

We need to know that things are different. How?

Why Separation Logic?

Consider this code:

Assume(y != z)
Add assertion?

$$
\begin{aligned}
& {[y]=4 ;} \\
& {[z]=5 ;}
\end{aligned}
$$

Guarantee([y] != [z])

We need to know that things are different. How? We need to know that things stay the same. How?

Why Separation Logic?

Consider this code:
Assume $([x]=3)$
Assume(y != z)
Add assertion?

$$
\begin{aligned}
& {[y]=4 ;} \\
& {[z]=5 ;}
\end{aligned}
$$

Guarantee([y] != [z])
Guarantee($[x]=3)$
We need to know that things are different. How? We need to know that things stay the same. How?

Why Separation Logic?

Consider this code:

Assume($[x]=3$ \&\& $x!=y ~ \& \& x!=z)$
Assume (y != z)

$$
\begin{aligned}
& {[y]=4 ;} \\
& {[z]=5 ;}
\end{aligned}
$$

Guarantee ([y] != [z])
Guarantee($[x]=3)$
We need to know that things are different. How? We need to know that things stay the same. How?

Framing

We want a general concept of things not being affected.

$$
\frac{\{P\} \subset\{Q\}}{\{R \& \& P\} \subset\{Q \& \& R\}}
$$

What are the conditions on C and R ?
Hard to define if reasoning about a heap and aliasing

Framing

We want a general concept of things not being affected.

$$
\frac{\{P\} \subset\{Q\}}{\{R \& \& P\} \subset\{Q \& \& R\}}
$$

What are the conditions on C and R ?
Hard to define if reasoning about a heap and aliasing
This is where separation logic comes in

$$
\frac{\{P\} \subset\{Q\}}{\left\{R^{*} P\right\} C\{Q * R\}}
$$

Introduces new connective * used to separate state.

The Logic

Storage Model

$$
\begin{gathered}
\text { Vars } \stackrel{\text { def }}{=}\{x, y, z, \ldots\} \\
\stackrel{\text { def }}{=}\{1,2,3,4, \ldots\} \quad \text { Vals } \supseteq \text { Locs } \\
\text { Heaps } \xlongequal{\stackrel{\text { def }}{=} \text { Locs } \rightarrow \text { fin Vals }} \\
\text { Stacks } \xlongequal{\text { def }} \text { Vars } \rightarrow \text { Vals } \\
\text { States } \stackrel{\text { def }}{=} \text { Stacks } \times \text { Heaps }
\end{gathered}
$$

Storage Model

$$
\begin{aligned}
& \text { Vars } \stackrel{\text { def }}{=}\{x, y, z, \ldots\} \\
& \text { Locs } \stackrel{\text { def }}{=}\{1,2,3,4, \ldots\} \quad \text { Vals } \supseteq \text { Locs } \\
& \text { Heaps } \stackrel{\text { def }}{=} \text { Locs } \rightarrow \text { fin Vals } \\
& \text { Stacks } \stackrel{\text { def }}{=} \text { Vars } \rightarrow \text { Vals } \\
& \text { States } \stackrel{\text { def }}{=} \text { Stacks } \times \text { Heaps }
\end{aligned}
$$

Storage Model

$$
\begin{gathered}
\text { Vars } \stackrel{\text { def }}{=}\{x, y, z, \ldots\} \\
\stackrel{\text { def }}{=}\{1,2,3,4, \ldots\} \quad \text { Vals } \supseteq \text { Locs } \\
\text { Heaps } \xlongequal{\stackrel{\text { def }}{=} \text { Locs } \rightarrow \text { fin Vals }} \\
\text { Stacks } \xlongequal{\text { def }} \text { Vars } \rightarrow \text { Vals } \\
\text { States } \stackrel{\text { def }}{=} \text { Stacks } \times \text { Heaps }
\end{gathered}
$$

Storage Model

$$
\begin{gathered}
\text { Vars } \stackrel{\text { def }}{=}\{x, y, z, \ldots\} \\
\text { Locs }\{1,2,3,4, \ldots\} \quad \text { Vals } \supseteq \text { Locs } \\
\text { Heaps } \stackrel{\text { def }}{=} \text { Locs } \rightarrow \text { fin Vals } \\
\text { Stacks } \stackrel{\text { def }}{=} \text { Vars } \rightarrow \text { Vals } \\
\text { States } \stackrel{\text { def }}{=} \text { Stacks } \times \text { Heaps }
\end{gathered}
$$

Storage Model

$$
\begin{gathered}
\text { Vars } \stackrel{\text { def }}{=}\{x, y, z, \ldots\} \\
\stackrel{\text { def }}{=}\{1,2,3,4, \ldots\} \quad \text { Vals } \supseteq \text { Locs } \\
\text { Heaps } \xlongequal{\stackrel{\text { def }}{=} \text { Locs } \rightarrow \text { fin Vals }} \\
\text { Stacks } \xlongequal{\text { def }} \text { Vars } \rightarrow \text { Vals } \\
\text { States } \stackrel{\text { def }}{=} \text { Stacks } \times \text { Heaps }
\end{gathered}
$$

Storage Model

$$
\text { Locs } \stackrel{\text { def }}{ } \stackrel{\text { Vars }}{=}\{1,2,3,4, \ldots\} \quad \text { def }\{x, y, z, \ldots\}) \text { Locs } \supseteq \text { Locs }
$$

$$
\text { Heaps } \stackrel{\text { def }}{=} \text { Locs } \rightarrow \text { fin } V \text { Vals }
$$

$$
\text { Stacks } \stackrel{\text { def }}{=} \text { Vars } \rightarrow \text { Vals }
$$

$$
\text { States } \stackrel{\text { def }}{=} \text { Stacks } \times \text { Heaps }
$$

Storage Model

$$
\begin{gathered}
\text { Vars } \stackrel{\text { def }}{=}\{x, y, z, \ldots\} \\
\stackrel{\text { def }}{=}\{1,2,3,4, \ldots\} \quad \text { Vals } \supseteq \text { Locs } \\
\text { Heaps } \xlongequal{\stackrel{\text { def }}{=} \text { Locs } \rightarrow \text { fin Vals }} \\
\text { Stacks } \xlongequal{\text { def }} \text { Vars } \rightarrow \text { Vals } \\
\text { States } \stackrel{\text { def }}{=} \text { Stacks } \times \text { Heaps }
\end{gathered}
$$

Storage Model

$$
\begin{gathered}
\text { Vars } \stackrel{\text { def }}{=}\{x, y, z, \ldots\} \\
\text { Locs } \xlongequal[=]{\text { def }}\{1,2,3,4, \ldots\} \quad \text { Vals } \supseteq \text { Locs } \\
\text { Heaps } \stackrel{\text { def }}{\text { docs } \rightarrow \text { fin } \text { Vals }} \\
\text { Stacks } \xlongequal{\text { def }} \text { Vars } \rightarrow \text { Vals } \\
\text { States } \stackrel{\text { def }}{=} \text { Stacks } \times \text { Heaps }
\end{gathered}
$$

Stack

$$
\begin{aligned}
& x=7 \\
& y \\
& y \\
& \hline 42
\end{aligned}
$$

Storage Model

$$
\begin{gathered}
\text { Vars } \stackrel{\text { def }}{=}\{x, y, z, \ldots\} \\
\text { Locs } \stackrel{\text { def }}{=}\{1,2,3,4, \ldots\} \quad \text { Vals } \supseteq \text { Locs } \\
\text { Heaps } \stackrel{\text { def }}{ } \text { Locs } \rightarrow \text { fin Vals } \\
\text { Stacks } \xlongequal[\text { def }]{=} \text { Vars } \rightarrow \text { Vals } \\
\text { States } \stackrel{\text { def }}{=} \text { Stacks } \times \text { Heaps }
\end{gathered}
$$

Stack

$$
\begin{aligned}
& x \\
& y \\
& y \\
& \hline
\end{aligned}
$$

Heap

$$
\begin{array}{ccc}
7 & 9 & 42 \\
0 & 11 & 9 \\
\hline
\end{array}
$$

Storage Model

$$
\begin{gathered}
\text { Vars } \stackrel{\text { def }}{=}\{x, y, z, \ldots\} \\
\text { Locs }\{1,2,3,4, \ldots\} \quad \text { Vals } \supseteq \text { Locs } \\
\text { Heaps } \stackrel{\text { def }}{\text { decs } \rightarrow \text { fin } \text { Vals }} \\
\text { Stacks } \stackrel{\text { def }}{=} \text { Vars } \rightarrow \text { Vals } \\
\text { States } \stackrel{\text { def }}{=} \text { Stacks } \times \text { Heaps }
\end{gathered}
$$

Stack

Mathematical Structure of Heap

Heaps $\stackrel{\text { def }}{=}$ Locs \rightarrow fin Vals

$h_{1} \# h_{2} \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad \operatorname{dom}\left(h_{1}\right) \cap \operatorname{dom}\left(h_{2}\right)=\emptyset$
$h_{1} * h_{2} \stackrel{\text { def }}{=} \quad \begin{cases}h_{1} \cup h_{2} & \text { if } h_{1} \# h_{2} \\ \text { undefined } & \text { otherwise }\end{cases}$

Mathematical Structure of Heap

$$
\begin{aligned}
\text { Heaps } & \stackrel{\text { def }}{=} \text { Locs } \rightarrow \text { fin Vals } \\
h_{1} \# h_{2} & \stackrel{\text { def }}{\Longleftrightarrow} \operatorname{dom}\left(h_{1}\right) \cap \operatorname{dom}\left(h_{2}\right)=\emptyset \\
h_{1} * h_{2} & \stackrel{\text { def }}{=} \quad \begin{cases}h_{1} \cup h_{2} & \text { if } h_{1} \# h_{2} \\
\text { undefined } & \text { otherwise }\end{cases}
\end{aligned}
$$

1) * has a unit
2) * is associative and commutative
3) (Heap,*,\{\}) is a partial commutative monoid

Assertions

$$
\begin{array}{rlll}
E, F & ::=x|n| E+F|-E| \ldots & \text { Heap-independent Exprs } \\
P, Q & ::= & E=F|E \geq F| E \mapsto F & \\
& \text { Atomic Predicates } \\
& \text { emp } \mid P * Q & & \text { Separating Connectives } \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P & & \text { Classical Logic }
\end{array}
$$

Informal Meaning

Assertions

$$
\begin{array}{rlll}
E, F & ::=x|n| E+F|-E| \ldots & \text { Heap-independent Exprs } \\
P, Q & ::=E=F|E \geq F| E \mapsto F & \text { Atomic Predicates } \\
& \left\lvert\, \begin{array}{ll}
\text { emp } \mid P * Q & \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P
\end{array}\right. & \text { Classical Logic }
\end{array}
$$

Informal Meaning

Assertions

$$
\begin{array}{rlll}
E, F & ::=x|n| E+F|-E| \ldots & \text { Heap-independent Exprs } \\
P, Q & ::=E=F|E \geq F| E \mapsto F & \text { Atomic Predicates } \\
& \left\lvert\, \begin{array}{ll}
\text { emp } \mid P * Q & \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P
\end{array}\right. & \text { Classical Logic }
\end{array}
$$

Assertions

$$
\begin{array}{rlll}
E, F & ::=x|n| E+F|-E| \ldots & & \text { Heap-independent Exprs } \\
P, Q & ::= & E=F|E \geq F| E \mapsto F & \\
\text { Atomic Predicates } \\
& \text { emp } \mid P * Q & & \text { Separating Connectives } \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P & \text { Classical Logic }
\end{array}
$$

Assertions

$$
\begin{array}{rlll}
E, F & ::=x|n| E+F|-E| \ldots & \text { Heap-independent Exprs } \\
P, Q & ::=E=F|E \geq F| E \mapsto F & \text { Atomic Predicates } \\
& \mid \text { emp } \mid P * Q & & \text { Separating Connectives } \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P & \text { Classical Logic }
\end{array}
$$

Assertions

$$
\begin{array}{rlll}
E, F & ::=x|n| E+F|-E| \ldots & \text { Heap-independent Exprs } \\
P, Q & ::= & E=F|E \geq F| E \mapsto F & \\
& \text { Atomic Predicates } \\
& \text { emp } \mid P * Q & & \text { Separating Connectives } \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P & \text { Classical Logic }
\end{array}
$$

Heap

Assertions

$$
\begin{array}{rlll}
E, F & ::=x|n| E+F|-E| \ldots & & \text { Heap-independent Exprs } \\
P, Q & ::= & E=F|E \geq F| E \mapsto F & \\
\text { Atomic Predicates } \\
& \text { emp } \mid P * Q & & \text { Separating Connectives } \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P & \text { Classical Logic }
\end{array}
$$

Assertions

$$
\begin{array}{rlrl}
E, F & ::=x|n| E+F|-E| \ldots & & \text { Heap-independent Exprs } \\
P, Q & := & E=F|E \geq F| E \mapsto F & \\
\text { Atomic Predicates } \\
& \text { emp } \mid P * Q & & \\
& \text { Separating Connectives } \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P & & \text { Classical Logic }
\end{array}
$$

Assertions

$$
\begin{array}{rlll}
E, F & ::=x|n| E+F|-E| \ldots & & \text { Heap-independent Exprs } \\
P, Q & :=E=F|E \geq F| E \mapsto F & & \text { Atomic Predicates } \\
& & \text { emp } \mid P * Q & \\
& & \text { Separating Connectives } \\
& \text { true }|P \wedge Q| \neg P \mid \forall x . P & & \text { Classical Logic }
\end{array}
$$

Heap

Examples

Formula: emp

Examples

Formula: $\quad e m p^{*} x \mid->y$

Examples

Formula: $\quad e m p^{*} x \mid->y$

Examples

Formula:
$x \mid->y$

Examples

Formula:

$$
x|->y * y|->z
$$

Examples

Formula:

$$
x|->y * y|->z
$$

Examples

Formula:

$$
x\left|->y{ }^{*} y\right|->z^{*} z \mid->x
$$

Examples

Formula:

$$
x\left|->y{ }^{*} y\right|->z^{*} z \mid->x
$$

Semantics of Assertions

- Expressions mean maps from stacks to integers.

$$
\llbracket E \rrbracket: ~ S t a c k s \rightarrow \text { Vals }
$$

- Semantics of assertions given by satisfaction relation between states and assertions.

$$
(s, h) \models P
$$

Semantics of Assertions

- Expressions mean maps from stacks to integers.

$$
\llbracket E \rrbracket: ~ S t a c k s \rightarrow \text { Vals }
$$

- Semantics of assertions given by satisfaction relation between states and assertions.

Semantics of Assertions

- Expressions mean maps from stacks to integers.

$$
\llbracket E \rrbracket: ~ S t a c k s \rightarrow \text { Vals }
$$

- Semantics of assertions given by satisfaction relation between states and assertions.

Semantics of Assertions

$$
\begin{array}{lll}
(s, h) \models E \geq F & \text { iff } & \llbracket E \rrbracket s, \llbracket F \rrbracket s \in \operatorname{Integers} \text { and } \llbracket E \rrbracket s \geq \llbracket F \rrbracket s \\
(s, h) \models E \mapsto F & \text { iff } & \operatorname{dom}(h)=\{\llbracket E \rrbracket s\} \text { and } h(\llbracket E \rrbracket s)=\llbracket F \rrbracket s \\
(s, h) \models \text { emp } & \text { iff } & h=[](\text { i.e., } \operatorname{dom}(h)=\emptyset) \\
(s, h) \models P * Q & \text { iff } & \exists h_{0} h_{1} \cdot h_{0} * h_{1}=h, \quad\left(s, h_{0}\right) \models P \text { and }\left(s, h_{1}\right) \models Q \\
(s, h) \models \text { true } & & \quad \text { always } \\
(s, h) \models P \wedge Q & \text { iff } & (s, h) \models P \text { and }(s, h) \models Q \\
(s, h) \models \neg P & \text { iff } & \text { not }((s, h) \models P) \\
(s, h) \models \forall x . P & \text { iff } & \forall v \in \operatorname{Vals.~}(s[x \mapsto v], h) \models P)
\end{array}
$$

Semantics of Assertions

$$
\begin{array}{lll}
(s, h) \models E \geq F & \text { iff } & \llbracket E \rrbracket s, \llbracket F \rrbracket s \in \operatorname{Integers} \text { and } \llbracket E \rrbracket s \geq \llbracket F \rrbracket s \\
(s, h) \models E \mapsto F & \text { iff } & \operatorname{dom}(h)=\{\llbracket E \rrbracket s\} \text { and } h(\llbracket E \rrbracket s)=\llbracket F \rrbracket s \\
(s, h) \models \text { emp } & \text { iff } & h=[] \quad(\text { i.e., } \operatorname{dom}(h)=\emptyset) \\
(s, h) \models P * Q & \text { iff } & \exists h_{0} h_{1} \cdot h_{0} * h_{1}=h, \quad\left(s, h_{0}\right) \models P \text { and }\left(s, h_{1}\right) \models Q \\
(s, h) \models \text { true } & & \text { always } \\
(s, h) \models P \wedge Q & \text { iff } & (s, h) \models P \text { and }(s, h) \models Q \\
(s, h) \models \neg P & \text { iff } & \text { not }((s, h) \models P) \\
(s, h) \models \forall x . P & \text { iff } & \forall v \in \operatorname{Vals.~}(s[x \mapsto v], h) \models P)
\end{array}
$$

Semantics of Assertions

$$
\begin{array}{lll}
(s, h) \models E \geq F & \text { iff } & \llbracket E \rrbracket s, \llbracket F \rrbracket s \in \operatorname{lntegers} \text { and } \llbracket E \rrbracket s \geq \llbracket F \rrbracket s \\
\hline(s, h) \models E \mapsto F & \text { iff } & \operatorname{dom}(h)=\{\llbracket E \rrbracket s\} \text { and } h(\llbracket E \rrbracket s)=\llbracket F \rrbracket s \\
(s, h) \models \text { emp } & \text { iff } & h=[] \quad(\text { i.e. }, \operatorname{dom}(h)=\emptyset) \\
(s, h) \models P * Q & \text { iff } & \exists h_{0} h_{1} \cdot h_{0} * h_{1}=h, \quad\left(s, h_{0}\right) \models P \text { and }\left(s, h_{1}\right) \models Q \\
(s, h) \models \text { true } & & \text { always } \\
(s, h) \models P \wedge Q & \text { iff } & (s, h) \models P \text { and }(s, h) \models Q \\
(s, h) \models \neg P & \text { iff } & \text { not }((s, h) \models P) \\
(s, h) \models \forall x . P & \text { iff } & \forall v \in \operatorname{Vals.~}(s[x \mapsto v], h) \models P)
\end{array}
$$

Semantics of Assertions

$$
\begin{array}{lll}
(s, h) \models E \geq F & \text { iff } & \llbracket E \rrbracket s, \llbracket F \rrbracket s \in \operatorname{Integers} \text { and } \llbracket E \rrbracket s \geq \llbracket F \rrbracket s \\
(s, h) \models E \mapsto F & \text { iff } & \operatorname{dom}(h)=\{\llbracket E \rrbracket s\} \text { and } h(\llbracket E \rrbracket s)=\llbracket F \rrbracket s \\
(s, h) \models \text { emp } & \text { iff } & h=[](\text { i.e. } \operatorname{dom}(h)=\emptyset) \\
(s, h) \models P * Q & \text { iff } & \exists h_{0} h_{1} \cdot h_{0} * h_{1}=h, \quad\left(s, h_{0}\right) \models P \text { and }\left(s, h_{1}\right) \models Q \\
(s, h) \models \text { true } & & \text { always } \\
(s, h) \models P \wedge Q & \text { iff } & (s, h) \models P \text { and }(s, h) \models Q \\
(s, h) \models \neg P & \text { iff } & \text { not }((s, h) \models P) \\
(s, h) \models \forall x . P & \text { iff } & \forall v \in \text { Vals. }(s[x \mapsto v], h) \models P)
\end{array}
$$

Semantics of Assertions

$$
\begin{array}{lll}
(s, h) \models E \geq F & \text { iff } & \llbracket E \rrbracket s, \llbracket F \rrbracket s \in \operatorname{Integers} \text { and } \llbracket E \rrbracket s \geq \llbracket F \rrbracket s \\
(s, h) \models E \mapsto F & \text { iff } & \operatorname{dom}(h)=\{\llbracket E \rrbracket s\} \text { and } h(\llbracket E \rrbracket s)=\llbracket F \rrbracket s \\
(s, h) \models \text { emp } & \text { iff } & h=\llbracket\rceil \text { (i.e.. } \operatorname{dom}(h)=\emptyset) \\
(s, h) \models P * Q & \text { iff } & \exists h_{0} h_{1} \cdot h_{0} * h_{1}=h, \quad\left(s, h_{0}\right) \models P \text { and }\left(s, h_{1}\right) \models Q \\
(s, h) \models \text { true } & & \text { always } \\
(s, h) \models P \wedge Q & \text { iff } & (s, h) \models P \text { and }(s, h) \models Q \\
(s, h) \models \neg P & \text { iff } & \text { not }((s, h) \models P) \\
(s, h) \models \forall x . P & \text { iff } & \forall v \in \text { Vals. }(s[x \mapsto v], h) \models P)
\end{array}
$$

Semantics of Assertions

$$
\begin{array}{lll}
(s, h) \models E \geq F & \text { iff } & \llbracket E \rrbracket s, \llbracket F \rrbracket s \in \operatorname{Integers} \text { and } \llbracket E \rrbracket s \geq \llbracket F \rrbracket s \\
(s, h) \models E \mapsto F & \text { iff } & \operatorname{dom}(h)=\{\llbracket E \rrbracket s\} \text { and } h(\llbracket E \rrbracket s)=\llbracket F \rrbracket s \\
(s, h) \models \text { emp } & \text { iff } & h=[] \quad(\text { i.e., } \operatorname{dom}(h)=\emptyset) \\
(s, h) \models P * Q & \text { iff } & \exists h_{0} h_{1} \cdot h_{0} * h_{1}=h, \quad\left(s, h_{0}\right) \models P \text { and }\left(s, h_{1}\right) \models Q \\
(s, h) \models \text { true } & & \text { always } \\
(s, h) \models P \wedge Q & \text { iff } & (s, h) \models P \text { and }(s, h) \models Q \\
(s, h) \models \neg P & \text { iff } & \text { not }((s, h) \models P) \\
(s, h) \models \forall x . P & \text { iff } & \forall v \in \operatorname{Vals.~}(s[x \mapsto v], h) \models P)
\end{array}
$$

Semantics of Assertions

$$
\begin{array}{lll}
(s, h) \models E \geq F & \text { iff } & \llbracket E \rrbracket s, \llbracket F \rrbracket s \in \operatorname{Integers} \text { and } \llbracket E \rrbracket s \geq \llbracket F \rrbracket s \\
(s, h) \models E \mapsto F & \text { iff } & \operatorname{dom}(h)=\{\llbracket E \rrbracket s\} \text { and } h(\llbracket E \rrbracket s)=\llbracket F \rrbracket s \\
(s, h) \models \text { emp } & \text { iff } & h=[] \quad(\text { i.e. }, \operatorname{dom}(h)=\emptyset) \\
(s, h) \models P * Q & \text { iff } & \exists h_{0} h_{1} \cdot h_{0} * h_{1}=h, \quad\left(s, h_{0}\right) \models P \text { and }\left(s, h_{1}\right) \models Q \\
(s, h) \models \text { true } & & \text { alwavs } \\
(s, h) \models P \wedge Q & \text { iff } & (s, h) \models P \text { and }(s, h) \models Q \\
(s, h) \models \neg P & \text { iff } & \text { not }((s, h) \models P) \\
(s, h) \models \forall x . P & \text { iff } & \forall v \in \operatorname{Vals.~}(s[x \mapsto v], h) \models P)
\end{array}
$$

Semantics of Assertions

$$
\begin{array}{lll}
(s, h) \models E \geq F & \text { iff } & \llbracket E \rrbracket s, \llbracket F \rrbracket s \in \operatorname{Integers} \text { and } \llbracket E \rrbracket s \geq \llbracket F \rrbracket s \\
(s, h) \models E \mapsto F & \text { iff } & \operatorname{dom}(h)=\{\llbracket E \rrbracket s\} \text { and } h(\llbracket E \rrbracket s)=\llbracket F \rrbracket s \\
(s, h) \models \text { emp } & \text { iff } & h=[](\text { i.e. }, \operatorname{dom}(h)=\emptyset) \\
(s, h) \models P * Q & \text { iff } & \exists h_{0} h_{1} \cdot h_{0} * h_{1}=h, \quad\left(s, h_{0}\right) \models P \text { and }\left(s, h_{1}\right) \models Q \\
(s, h) \models \text { true } & & \text { always } \\
(s, h) \models P \wedge Q & \text { iff } & (s, h) \models P \text { and }(s, h) \models Q \\
(s, h) \models \neg P & \text { iff } & \text { not }((s, h) \models P) \\
(s, h) \models \forall x . P & \text { iff } & \forall v \in \operatorname{Vals.~}(s[x \mapsto v], h) \models P)
\end{array}
$$

Semantics of Assertions

$$
\begin{array}{lll}
(s, h) \models E \geq F & \text { iff } & \llbracket E \rrbracket s, \llbracket F \rrbracket s \in \operatorname{Integers} \text { and } \llbracket E \rrbracket s \geq \llbracket F \rrbracket s \\
(s, h) \models E \mapsto F & \text { iff } & \operatorname{dom}(h)=\{\llbracket E \rrbracket s\} \text { and } h(\llbracket E \rrbracket s)=\llbracket F \rrbracket s \\
(s, h) \models \text { emp } & \text { iff } & h=[] \quad(\text { i.e., } \operatorname{dom}(h)=\emptyset) \\
(s, h) \models P * Q & \text { iff } & \exists h_{0} h_{1} \cdot h_{0} * h_{1}=h, \quad\left(s, h_{0}\right) \models P \text { and }\left(s, h_{1}\right) \models Q \\
(s, h) \models \text { true } & & \text { always } \\
(s, h) \models P \wedge Q & \text { iff } & (s, h) \models P \text { and }(s, h) \models Q \\
(s, h) \models \neg P & \text { iff } & \text { not }((s, h) \models P) \\
(s, h) \models \forall x . P & \text { iff } & \forall v \in \operatorname{Vals.~}(s[x \mapsto v], h) \models P)
\end{array}
$$

Abbreviations

The address E is active:

where x^{\prime} not free in E

E points to F somewhere in the heap:

$$
E \hookrightarrow F \triangleq E \mapsto F * \text { true }
$$

E points to a record of several fields:
$E \mapsto E_{1}, \ldots, E_{n} \triangleq E \mapsto E_{1} * \cdots * E+n-1 \mapsto E_{n}$

Example

Example

$$
x \mapsto 3, y
$$

Example

$$
x \mapsto 3, y
$$

Example

$$
\begin{aligned}
& x \mapsto 3, y \\
& y \mapsto 3, x
\end{aligned}
$$

Example

$$
\begin{aligned}
& x \mapsto 3, y \\
& y \mapsto 3, x
\end{aligned}
$$

Example

$$
\begin{aligned}
x & \mapsto 3, y \\
y & \mapsto 3, x \\
x & \mapsto 3, y * y \mapsto 3, x
\end{aligned}
$$

Stack

Heap

Example

$$
\begin{aligned}
x & \mapsto 3, y \\
y & \mapsto 3, x \\
x & \mapsto 3, y * y \mapsto 3, x
\end{aligned}
$$

Stack

Heap

Example

$$
\begin{aligned}
x & \mapsto 3, y \\
y & \mapsto 3, x \\
x & \mapsto 3, y * y \mapsto 3, x \\
x & \mapsto 3, y \wedge y \mapsto 3, x
\end{aligned}
$$

Stack

Heap

Example

$$
\begin{aligned}
x & \mapsto 3, y \\
y & \mapsto 3, x \\
x & \mapsto 3, y * y \mapsto 3, x \\
x & \mapsto 3, y \wedge y \mapsto 3, x
\end{aligned}
$$

Stack

Heap

Example

$$
\begin{gathered}
x \mapsto 3, y \\
y \mapsto 3, x \\
x \mapsto 3, y * y \mapsto 3, x \\
x \mapsto 3, y \wedge y \mapsto 3, x \\
x \hookrightarrow 3, y \wedge y \hookrightarrow 3, x
\end{gathered}
$$

Stack

Heap

An inconsistency

- What's wrong with the following formula?

$$
\text { - } 10|->3 * 10|->3
$$

An inconsistency

- What's wrong with the following formula?
- $101->3$ * $10 \mid->3$

Try to be in two places at the same time

Small details

- E=F is completely heap independent.

Small details

- E=F is completely heap independent.
$(E=F) * P$

Small details

- E=F is completely heap independent.
$(E=F)$ *P where is it true?

Small details

- E=F is completely heap independent.

$(E=F)$ *P where is it true?

In a state where E=F hold in the store and P holds for the same store and a heap contained in the current one

Small details

- E=F is completely heap independent.

$(E=F)$ *P where is it true?

In a state where E=F hold in the store and P holds for the same store and a heap contained in the current one

Example: $\quad x=y^{*} z \mid->0$

Small details

- E=F is completely heap independent.

$(E=F)$ *P where is it true?

In a state where E=F hold in the store and P holds for the same store and a heap contained in the current one

Example: $\quad x=y^{*} z \mid \rightarrow 0$ holds in $(s, h 1)$

Small details

- E=F is completely heap independent.

$(E=F){ }^{*} P$ where is it true?

In a state where E=F hold in the store and P holds for the same store and a heap contained in the current one

Example: $\quad x=y^{*} z \mid \rightarrow 0$ holds in $(s, h 1)$

$s(x)=s(y) \quad s(z)=10$
$\operatorname{dom}(h 1)=\{10,15\} \quad h 1(10)=0 \quad h 1(15)=37$

Small details

- E=F is completely heap independent.
$(E=F){ }^{*} P$ where is it true?
In a state where E=F hold in the store and P holds for the same store and a heap contained in the current one
Example:
holds in
(s,h1)
$(s, h 2)$
$s(x)=s(y) \quad s(z)=10$
$\operatorname{dom}(h 1)=\{10,15\} \quad h 1(10)=0 \quad h 1(15)=37$
$\operatorname{dom}(h 2)=\{10,42,73\} \quad h 2(10)=0 \quad$ h2(42)=11 h2(73)=0

...but

- E=F is completely heap independent.

...but

- E=F is completely heap independent.
$(E=F) / \backslash P$

...but

- E=F is completely heap independent. $(E=F) / \backslash P$ where is it true?

...but

- E=F is completely heap independent.
$(E=F) / \backslash P$ where is it true?
In a state where E=F hold in the store and P holds for the same store and exactly the current heap.

...but

- E=F is completely heap independent.
$(E=F) / \backslash P$ where is it true?
In a state where E=F hold in the store and P holds for the same store and exactly the current heap.

In other words: P determines the heap

- E=F is completely heap independent.
$(E=F) / \backslash P$ where is it true?
In a state where E=F hold in the store and P holds for the same store and exactly the current heap.

In other words: P determines the heap
Example: $x=y / \backslash z \mid \rightarrow 0$
holds in any state (s, h) such that

- E=F is completely heap independent.
$(E=F) / \backslash P$ where is it true?
In a state where E=F hold in the store and P holds for the same store and exactly the current heap.

In other words: P determines the heap
Example: $x=y / \backslash z \mid->0$
holds in any state (s, h) such that $s(x)=s(y)$

- E=F is completely heap independent.
$(E=F) / \backslash P$ where is it true?
In a state where E=F hold in the store and P holds for the same store and exactly the current heap.

In other words: P determines the heap

Example: $x=y / \backslash z \mid \rightarrow 0$

holds in any state (s, h) such that $s(x)=s(y)$ $\operatorname{dom}(\mathrm{h})=\{\mathrm{s}(\mathrm{z})\} \quad \mathrm{h}(\mathrm{s}(\mathrm{z}))=0$

- E=F is completely heap independent.
$(E=F) / \backslash P$ where is it true?
In a state where E=F hold in the store and P holds for the same store and exactly the current heap.

In other words: P determines the heap

Example: $x=y / \backslash z \mid \rightarrow 0$

holds in any state (s, h) such that $s(x)=s(y)$
$\operatorname{dom}(h)=\{s(z)\} \quad h(s(z))=0$
so many stores but the shape of the heap is fixed

Exercise

what is h such that $s, h /=p$
$h 1=\{(\mathrm{s}(\mathrm{x}), 1)\}$ $h 2=\{(s(y), 2)\}$ with $s(x)!=s(y)$

Exercise

what is h such that $s, h \mid=p$

$$
x \mid->1
$$

$h 1=\{(\mathrm{s}(\mathrm{x}), 1)\}$ h2 $\{\{(s(y), 2)\}$ with $s(x)!=s(y)$

Exercise

what is h such that $s, h \mid=p$

$$
x \mid->1
$$

$h 1=\{(s(x), 1)\}$ h2 $\{(s(y), 2)\}$ with $s(x)!=s(y)$

Exercise

what is h such that $s, h \mid=p$

$$
\begin{aligned}
& x \mid->1 \\
& y \mid->2
\end{aligned}
$$

$h 1=\{(s(x), 1)\}$ h 2 E\{s(s), , $)$ \}

$$
h=h 1
$$ with $s(x)=s(y)$

Exercise

what is h such that $s, h \mid=p$

$$
x \mid->1
$$

$h 1=\{(s(x), 1)\}$ h2 $\{(s(y), 2)\}$

$$
h=h 1
$$ with $s(x)=s(y)$

Exercise

what is h such that $s, h=p$

$$
\begin{aligned}
& x \mid->1 \\
& y \mid->2
\end{aligned}
$$

$$
x\left|\rightarrow 1^{*} y\right|->2
$$

$h 1=\{(s(x), 1)\}$ h2 $=\{(s(y), 2)\}$ with $s(x)=s(y)$

Exercise

what is h such that $s, h=p$

$$
\begin{aligned}
& x \mid->1 \\
& y \mid->2
\end{aligned}
$$

$$
x\left|\rightarrow 1^{*} y\right|->2
$$

$h 1=\{(s(x), 1)\}$ h2 $=\{(s(y), 2)\}$ with $s(x)=s(y)$

Exercise

what is h such that $s, h \mid=p$

$$
\begin{aligned}
& x \mid->1 \\
& y \mid->2
\end{aligned}
$$

$$
x\left|\rightarrow 1^{*} y\right|->2
$$

$h=h 2$
$h=h 1$ * ha

$$
x \mid \rightarrow 1^{*} \text { true }
$$

$h 1=\{(s(x), 1)\}$ he $=\{(s(y), 2)\}$ with $s(x)=s(y)$

Exercise

what is h such that $s, h=p$
$h 1=\{(s(x), 1)\}$
$x \mid->1$
$h=h 1$ $h 2=\{(s(y), 2)\}$ with $s(x)!=s(y)$
$y \mid->2$
$h=h 2$
$h=h 1^{*} h 2$
$x\left|->1^{*} y\right|->2$
$h 1$ contained in h

Exercise

what is h such that $s, h=p$
$h 1=\{(s(x), 1)\}$ $h 2=\{(s(y), 2)\}$

$$
x \mid->1
$$ with $s(x)!=s(y)$

$$
x\left|\rightarrow 1^{*} y\right| \rightarrow 2^{*}(x|->1 \backslash / y|->2)
$$

Exercise

what is h such that $s, h=p$
$h 1=\{(s(x), 1)\}$ $h 2=\{(s(y), 2)\}$

$$
\begin{align*}
& x \mid->1 \\
& y \mid->2
\end{align*}
$$ with $s(x)!=s(y)$

$h=h 2$
$h=h 1 * h 2$
$x\left|\rightarrow 1^{*} y\right| \rightarrow 2$
$x \mid->1^{*}$ true $h 1$ contained in h
$x\left|\rightarrow 1^{*} y\right| \rightarrow 2^{*}(x|->1 \backslash / y| \rightarrow 2) \quad$ Homework!

Validity

- P is valid if, for all $s, h, s, h \mid=P$
- Examples:
- El->3 \Rightarrow E>0
- $E \mid->$ - * $E \mid \rightarrow-$
- E|-> - * $F \mid->-\Rightarrow E!=F$
- $E|\rightarrow 3 / \backslash F| \rightarrow 3 \Rightarrow E=F$
- E|->3 * F |->3 \Rightarrow E $|->3 / \backslash \mathrm{F}|->3$

Validity

- P is valid if, for all $s, h, s, h \mid=P$
- Examples:
- E|->3 \Rightarrow E>0

Valid!

- E|-> - * $E \mid-$
- E|-> - * $F \mid->-\Rightarrow E!=F$
- $E|->3 / \backslash|->3 \Rightarrow E=F$
- E|->3 * F |->3 \Rightarrow E $|->3 / \backslash \mathrm{F}|->3$

Validity

- P is valid if, for all $s, h, s, h \mid=P$
- Examples:
- El->3 \Rightarrow E>0
- El-> - * El-> - Invalid!
- $E \mid->-$ * $F \mid->-\Rightarrow E!=F$
- $E|\rightarrow 3 / \backslash F| \rightarrow 3 \Rightarrow E=F$
- E|->3 * F |->3 \Rightarrow E $|->3 / \backslash \mathrm{F}|->3$

Validity

- P is valid if, for all $s, h, s, h \mid=P$
- Examples:
- El->3 \Rightarrow E>0
- El-> - * El-> - Invalid!
- E|-> - * $F \mid \rightarrow-\Rightarrow E!=F$ Valid!
- $E|\rightarrow 3 / \backslash F|->3 \Rightarrow E=F$
- $E\left|->3^{*} \mathrm{~F}\right|->3 \Rightarrow E|->3 / \backslash \mathrm{F}|->3$

Validity

- P is valid if, for all $s, h, s, h \mid=P$
- Examples:
- El->3 \Rightarrow E>0
- El-> - * El-> - Invalid!
- E|-> - * $F \mid->-\Rightarrow E!=F$
- $E|\rightarrow 3 / \backslash F| \rightarrow 3 \Rightarrow E=F$ Valid!
- $E \mid->3^{*}$ F $|->3 \Rightarrow E|->3 / \backslash F \mid->3$

Validity

- P is valid if, for all $s, h, s, h \mid=P$
- Examples:
- El->3 \Rightarrow E>0
- El-> - * El-> - Invalid!
- El-> - * F |-> - $\Rightarrow E$!= F Valid!

- E|->3* F $\mid \rightarrow>3$ = E|->3 / \mid F $\mid>3$ Invalid!

Some Laws and inference rules

$$
\begin{aligned}
p_{1} * p_{2} & \Longleftrightarrow p_{2} * p_{1} \\
\left(p_{1} * p_{2}\right) * p 3 & \Longleftrightarrow p_{1} *\left(p_{2} * p_{3}\right) \\
p * \mathrm{emp} & \Longleftrightarrow p \\
\left(p_{1} \vee p_{2}\right) * q & \Longleftrightarrow\left(p_{1} * q\right) \vee\left(p_{2} * q\right) \\
\left(\exists x \cdot p_{1}\right) * p_{2} & \Longleftrightarrow \exists x \cdot\left(p_{1} * p_{2}\right) \text { when } x \text { not in } p_{2} \\
\left(\forall x \cdot p_{1}\right) * p_{2} & \Longleftrightarrow \forall x \cdot\left(p_{1} * p_{2}\right) \text { when } x \text { not in } p_{2} \\
& \Longleftrightarrow p_{2} \quad q_{1} \Longrightarrow q_{2} \\
& \text { Monotonicity }
\end{aligned}
$$

Substructural logic

- Separation logic is a substructural logic:

No Contraction
No Weakening $A * B \nvdash A$
Examples:

$$
\begin{aligned}
& 10 \mapsto 3 \nvdash 10 \mapsto 3 * 10 \mapsto 3 \\
& 10 \mapsto 3 * 42 \mapsto 7 \nvdash 42 \mapsto 7
\end{aligned}
$$

Lists

A non circular list can be defined with the following inductive predicate:

$$
\begin{aligned}
\text { list }[] i & =\text { emp } \backslash \text { i }=\text { nil } \\
\text { list }(s:: S) \mathrm{S}) & =\text { exists j. il->s,j * list } \mathrm{S} j
\end{aligned}
$$

List segment

Possibly empty list segment

$$
\begin{aligned}
\operatorname{Iseg}(x, y)= & (\operatorname{emp} \backslash x=y) \text { OR } \\
& \text { exists } j . x \mid->j * \operatorname{lseg}(j, y)
\end{aligned}
$$

Non-empty non-circular list segment

$$
\begin{aligned}
& \operatorname{Iseg}(x, y)=x!=y / \backslash \\
& \quad\left((x \mid->y) \text { OR exists } j . x\left|->j^{*}\right| \operatorname{seg}(j, y)\right)
\end{aligned}
$$

Trees

A tree can be defined with this inductive definition:
tree [] i = emp /\i=nil
tree $(t 1, a, \nmid 2) \mathrm{i}=$ exists j, k. il->j, a,k * (tree t1 j) * (tree †2 k)

References

OJ.C. Reynolds. Separation Logic: A logic for shared mutable data structures. LICS 2002

- S. Ishtiaq and P.W. O'Hearn. BI as an assertion language for mutable data structures. POPL 2001.

