Program Verification Using Separation Logic

Cristiano Calcagno

Adapted from material by Dino Distefano

Lecture 1

Goal of the course

Study Separation Logic having automatic verification in mind

Learn how some notions of mathematical logic can be very helpful in reasoning about real world programs

```
void t1394Diag_CancelIrp(PDEVICE_OBJECT DeviceObject, PIRP Irp)
```

```
KIRQL
BUS_RESET_IRP
PDEVICE_EXTENSION
```

Irql, CancelIrql; *BusResetIrp, *temp; deviceExtension;

deviceExtension = DeviceObject->DeviceExtension;

```
KeAcquireSpinLock(&deviceExtension->ResetSpinLock, &Irql);
```

```
temp = (PBUS_RESET_IRP)deviceExtension;
BusResetIrp = (PBUS_RESET_IRP)deviceExtension->Flink2;
```

```
while (BusResetIrp) {
```

```
if (BusResetIrp->Irp == Irp) {
    temp->Flink2 = BusResetIrp->Flink2;
    free(BusResetIrp);
    break;
    else if (BusResetIrp->Flink2 == (PBUS_RESET_IRP)deviceExtension) {
        break;
    }
    else {
        temp = BusResetIrp;
        BusResetIrp = (PBUS_RESET_IRP)BusResetIrp->Flink2;
    }
}
KeReleaseSpinLock(&deviceExtension->ResetSpinLock, Irql);
```

IoReleaseCancelSpinLock(Irp->CancelIrql); Irp->IoStatus.Status = STATUS_CANCELLED; IoCompleteRequest(Irp, I0_N0_INCREMENT); // t1394Diag_CancelIrp A piece of a windows device driver.

Is this correct? Or at least: does it have basic properties like it won't crash or leak memory?

Today's plan

Motivation for Separation Logic
Assertion language
Mathematical model
Data structures

Motivations...

Simple Imperative Language Safe commands: S::= skip | x:=E | x:=new(E1,...,En) Heap accessing commands: where E is an expression x, y, nil, etc. Ommand: © C::= S | A | C1;C2 | if B { C1 } else {C2} | while $B do \{ C \}$ where B boolean guard E=E, E!=E, etc.

p:=nil; while (c !=nil) do { t:=p; p:=c; c:=[c]; [p]:=t;

nil

p:=nil; while (c !=nil) do { t:=p; p:=c; c:=[c]; [p]:=t; } 2 3

p:=nil; while (c !=nil) do { **†:=p;** p:=c; c:=[c]; [p]:=t; } nil 2 3

p:=nil; while (c !=nil) do { t:=p; p:=c; c:=[c]; [p]:=t;

3

nil

}

Some properties we would like to prove: Does the program preserve acyclicity/cyclicity? Does it core-dump? Does it create garbage?

2

3

We are interested in pointer manipulating programs

Consider this code:

[y] = 4; [z] = 5; Guarantee([y] != [z])

We need to know that things are different. How?

Consider this code:

Assume(y != z) [y] = 4; [z] = 5; Guarantee([y] != [z])

Add assertion?

We need to know that things are different. How?

Consider this code:

Assume(y != z) [y] = 4; [z] = 5; Guarantee([y] != [z])

Add assertion?

We need to know that things are different. How? We need to know that things stay the same. How?

Consider this code:

Assume([x] = 3) Assume(y != z) [y] = 4; [z] = 5; Guarantee([y] != [z]) Guarantee([x] = 3)

Add assertion?

We need to know that things are different. How? We need to know that things stay the same. How?

Add assertion?

Consider this code:

Assume([x] = 3 && x!=y && x!=z)

 $Assume(y \mid = z)$ Add assertion? [y] = 4;[z] = 5; Guarantee([y] != [z]) Guarantee([x] = 3)We need to know that things are different. How? We need to know that things stay the same. How?

Framing

We want a general concept of things not being affected. $\{P\} \in \{Q\}$

{R && P } C {Q && R }

What are the conditions on C and R? Hard to define if reasoning about a heap and aliasing

Framing

We want a general concept of things not being affected. {P} C {Q} {R && P } C {Q && R }

What are the conditions on C and R? Hard to define if reasoning about a heap and aliasing

This is where separation logic comes in {P} C {Q} {R * P } C {Q * R } <u>Introduces new connective * used to separate state.</u>

The Logic

Vars $\stackrel{def}{=} \{x, y, z, \ldots\}$ Locs $\stackrel{def}{=} \{1, 2, 3, 4, \ldots\}$ Vals \supseteq Locs Heaps $\stackrel{def}{=}$ Locs \rightarrow_{fin} Vals Stacks $\stackrel{def}{=}$ Vars \rightarrow Vals States $\stackrel{def}{=}$ Stacks \times Heaps

 $\begin{array}{l} \mathsf{Vars} \stackrel{def}{=} \{x, y, z, \ldots\} \\ \mathsf{Locs} \stackrel{def}{=} \{1, 2, 3, 4, \ldots\} \quad \mathsf{Vals} \supseteq \mathsf{Locs} \\ & \mathsf{Heaps} \stackrel{def}{=} \mathsf{Locs} \rightarrow_{\mathsf{fin}} \mathsf{Vals} \\ & \mathsf{Stacks} \stackrel{def}{=} \mathsf{Vars} \rightarrow \mathsf{Vals} \\ & \mathsf{States} \stackrel{def}{=} \mathsf{Stacks} \times \mathsf{Heaps} \end{array}$

Vars $\stackrel{def}{=} \{x, y, z, \ldots\}$ Locs $\stackrel{def}{=} \{1, 2, 3, 4, \ldots\}$ Vals \supseteq Locs Heaps $\stackrel{def}{=}$ Locs \rightarrow_{fin} Vals Stacks $\stackrel{def}{=}$ Vars \rightarrow Vals States $\stackrel{def}{=}$ Stacks \times Heaps

Vars
$$\stackrel{def}{=} \{x, y, z, \ldots\}$$

Locs $\stackrel{def}{=} \{1, 2, 3, 4, \ldots\}$ Vals \supseteq Locs
Heaps $\stackrel{def}{=}$ Locs \rightarrow_{fin} Vals
Stacks $\stackrel{def}{=}$ Vars \rightarrow Vals
States $\stackrel{def}{=}$ Stacks \times Heaps

Vars $\stackrel{def}{=} \{x, y, z, \ldots\}$ Locs $\stackrel{def}{=} \{1, 2, 3, 4, \ldots\}$ Vals \supseteq Locs Heaps $\stackrel{def}{=}$ Locs \rightarrow_{fin} Vals Stacks $\stackrel{def}{=}$ Vars \rightarrow Vals States $\stackrel{def}{=}$ Stacks \times Heaps

Vars
$$\stackrel{def}{=} \{x, y, z, \ldots\}$$

Locs $\stackrel{def}{=} \{1, 2, 3, 4, \ldots\}$ Vals \supseteq Locs
Heaps $\stackrel{def}{=}$ Locs \rightarrow_{fin} Vals
Stacks $\stackrel{def}{=}$ Vars \rightarrow Vals
States $\stackrel{def}{=}$ Stacks \times Heaps

Vars $\stackrel{def}{=} \{x, y, z, \ldots\}$ Locs $\stackrel{def}{=} \{1, 2, 3, 4, \ldots\}$ Vals \supseteq Locs Heaps $\stackrel{def}{=}$ Locs \rightarrow_{fin} Vals Stacks $\stackrel{def}{=}$ Vars \rightarrow Vals States $\stackrel{def}{=}$ Stacks \times Heaps

Vars $\stackrel{def}{=} \{x, y, z, ...\}$ Locs $\stackrel{def}{=} \{1, 2, 3, 4, ...\}$ Vals \supseteq Locs Heaps $\stackrel{def}{=}$ Locs \rightarrow_{fin} Vals Stacks $\stackrel{def}{=}$ Vars \rightarrow Vals States $\stackrel{def}{=}$ Stacks \times Heaps

Vars $\stackrel{def}{=} \{x, y, z, \ldots\}$ Locs $\stackrel{def}{=} \{1, 2, 3, 4, \ldots\}$ Vals \supseteq Locs Heaps $\stackrel{def}{=}$ Locs \rightarrow_{fin} Vals Stacks $\stackrel{def}{=}$ Vars \rightarrow Vals States $\stackrel{def}{=}$ Stacks \times Heaps

Vars $\stackrel{def}{=} \{x, y, z, ...\}$ Locs $\stackrel{def}{=} \{1, 2, 3, 4, ...\}$ Vals \supseteq Locs Heaps $\stackrel{def}{=}$ Locs \rightarrow_{fin} Vals Stacks $\stackrel{def}{=}$ Vars \rightarrow Vals States $\stackrel{def}{=}$ Stacks \times Heaps

Stack		Heap	7	9	42
X	7		→ 0	11 ←	9
У	<mark>42</mark> —				
Mathematical Structure of Heap

Heaps $\stackrel{def}{=}$ Locs \rightarrow_{fin} Vals $h_1 \# h_2 \quad \stackrel{def}{\iff} \quad \operatorname{dom}(h_1) \cap \operatorname{dom}(h_2) = \emptyset$ $h_1 * h_2 \quad \stackrel{def}{=} \quad \begin{cases} h_1 \cup h_2 & \text{if } h_1 \# h_2 \\ \text{undefined otherwise} \end{cases}$

Mathematical Structure of Heap

 $\begin{array}{lll} \mathsf{Heaps} \stackrel{def}{=} \mathsf{Locs} \to_{\mathsf{fin}} \mathsf{Vals} \\ h_1 \# h_2 & \stackrel{def}{\longleftrightarrow} & \mathsf{dom}(h_1) \cap \mathsf{dom}(h_2) = \emptyset \\ h_1 * h_2 & \stackrel{def}{=} & \begin{cases} h_1 \cup h_2 & \text{if } h_1 \# h_2 \\ \text{undefined otherwise} \end{cases} \end{array}$

1) * has a unit
 2) * is associative and commutative
 3) (Heap,*,{}) is a partial commutative monoid

Heap-independent Exprs Atomic Predicates Separating Connectives Classical Logic

Heap-independent Exprs Atomic Predicates Separating Connectives Classical Logic

Heap-independent Exprs Atomic Predicates Separating Connectives Classical Logic

Heap-independent Exprs Atomic Predicates Separating Connectives Classical Logic

Heap

Heap-independent Exprs Atomic Predicates Separating Connectives Classical Logic

Heap-independent Exprs Atomic Predicates Separating Connectives Classical Logic

Heap-independent Exprs Atomic Predicates Separating Connectives Classical Logic

Heap-independent Exprs Atomic Predicates Separating Connectives Classical Logic

Heap-independent Exprs Atomic Predicates Separating Connectives Classical Logic

Informal Meaning Heap P

Formula: emp*x|->y

Formula: emp*x|->y

Formula:

xl->y

x|->y * y|->z

x|->y * y|->z

Formula:

x|->y * y|->z * z|->x

Formula:

x|->y * y|->z * z|->x

Second Expressions mean maps from stacks to integers.

 $\llbracket E \rrbracket$: Stacks \rightarrow Vals

Semantics of assertions given by satisfaction relation between states and assertions.

$$(s,h) \models P$$

Second Expressions mean maps from stacks to integers.

 $\llbracket E \rrbracket$: Stacks \rightarrow Vals

Semantics of assertions given by satisfaction relation between states and assertions.

$$(s,h) \models P$$

Stack

Second Expressions mean maps from stacks to integers.

 $\llbracket E \rrbracket$: Stacks \rightarrow Vals

Semantics of assertions given by satisfaction relation between states and assertions.

$$(s,h) \models P$$

Stack Heap

$\begin{array}{c} (s,h) \models E \ge F \\ (s,h) \models E \mapsto F \end{array}$	iff iff	$\llbracket E \rrbracket s, \llbracket F \rrbracket s \in Integers \text{ and } \llbracket E \rrbracket s \ge \llbracket F \rrbracket s$ $dom(h) = \{\llbracket E \rrbracket s\} \text{ and } h(\llbracket E \rrbracket s) = \llbracket F \rrbracket s$
$\begin{array}{l} (s,h) \models emp \\ (s,h) \models P \ast Q \end{array}$	iff iff	$h = [] \text{ (i.e., } \operatorname{dom}(h) = \emptyset)$ $\exists h_0 h_1. h_0 * h_1 = h, \ (s, h_0) \models P \text{ and } (s, h_1)$
$\begin{array}{l} (s,h) \models true \\ (s,h) \models P \land Q \\ (s,h) \models \neg P \\ (s,h) \models \forall x. P \end{array}$	iff iff iff	always $(s,h) \models P$ and $(s,h) \models Q$ not $((s,h) \models P)$ $\forall v \in Vals. (s[x \mapsto v], h) \models P)$

()

$(s,h) \models E \ge F$	iff	$\llbracket E \rrbracket s, \llbracket F \rrbracket s \in Integers \text{ and } \llbracket E \rrbracket s \ge \llbracket F \rrbracket s$
$(s,h) \models E \mapsto F$	iff	$dom(h) = \{ \llbracket E \rrbracket s \} \text{ and } h(\llbracket E \rrbracket s) = \llbracket F \rrbracket s$
$\begin{array}{l} (s,h) \models emp \\ (s,h) \models P \ast Q \end{array}$	iff iff	$h = [] \text{ (i.e., } \operatorname{dom}(h) = \emptyset)$ $\exists h_0 h_1. h_0 * h_1 = h, \ (s, h_0) \models P \text{ and } (s, h_1) \models Q$
$\begin{array}{l} (s,h) \models true \\ (s,h) \models P \land Q \\ (s,h) \models \neg P \\ (s,h) \models \forall x. P \end{array}$	iff iff iff	always $(s,h) \models P$ and $(s,h) \models Q$ not $((s,h) \models P)$ $\forall v \in Vals. (s[x \mapsto v], h) \models P)$

$(s,h) \models E \ge F$	iff	$\llbracket E rbracket s, \llbracket F rbracket s \in Integers \text{ and } \llbracket E rbracket s \geq \llbracket F rbracket s$
$(s,h) \models E \mapsto F$	iff	$dom(h) = \{\llbracket E \rrbracket s\} \text{ and } h(\llbracket E \rrbracket s) = \llbracket F \rrbracket s$
$\begin{array}{l} (s,h) \models emp \\ (s,h) \models P \ast Q \end{array}$	iff iff	$h = [] \text{ (i.e., } \operatorname{dom}(h) = \emptyset)$ $\exists h_0 h_1. h_0 * h_1 = h, \ (s, h_0) \models P \text{ and } (s, h_1) \models Q$
$\begin{array}{l} (s,h) \models true \\ (s,h) \models P \land Q \\ (s,h) \models \neg P \\ (s,h) \models \forall x. P \end{array}$	iff iff iff	always $(s,h) \models P$ and $(s,h) \models Q$ not $((s,h) \models P)$ $\forall v \in Vals. (s[x \mapsto v], h) \models P)$

$(s,h) \models E \ge F$	iff	$\llbracket E \rrbracket s, \llbracket F \rrbracket s \in Integers \text{ and } \llbracket E \rrbracket s \geq \llbracket F \rrbracket s$
$(s,h) \models E \mapsto F$	iff	$dom(h) = \{\llbracket E \rrbracket s\} \text{ and } h(\llbracket E \rrbracket s) = \llbracket F \rrbracket s$
$(s,h) \models emp$	iff	$h = [] $ (i.e., dom $(h) = \emptyset$)
$(s,h) \models P * Q$	iff	$\exists h_0 h_1. \ h_0 * h_1 = h, \ (s, h_0) \models P \text{ and } (s, h_1) \models Q$
$(s,h) \models true$		always
$(s,h) \models P \land Q$	iff	$(s,h) \models P \text{ and } (s,h) \models Q$
$(s,h) \models \neg P$	iff	not $((s,h) \models P)$
$(s,h) \models \forall x.P$	iff	$\forall v \in Vals.\ (s[x \mapsto v], h) \models P)$

$\begin{array}{c} (s,h) \models E \ge F \\ (s,h) \models E \mapsto F \end{array}$	iff iff	$\llbracket E \rrbracket s, \llbracket F \rrbracket s \in Integers \text{ and } \llbracket E \rrbracket s \ge \llbracket F \rrbracket s$ $dom(h) = \{ \llbracket E \rrbracket s \} \text{ and } h(\llbracket E \rrbracket s) = \llbracket F \rrbracket s$
$(s,h) \models emp$	iff	$h = []$ (i.e., dom $(h) = \emptyset$)
$(s,h) \models P \ast Q$	iff	$\exists h_0 h_1. \ h_0 * h_1 = h, \ (s, h_0) \models P \text{ and } (s, h_1) \models Q$
$(s,h) \models true$ $(s,h) \models P \land Q$ $(s,h) \models \neg P$ $(s,h) \models \forall x. P$	iff iff iff	always $(s,h) \models P$ and $(s,h) \models Q$ not $((s,h) \models P)$ $\forall v \in Vals. (s[x \mapsto v], h) \models P)$

$(s,h) \models E \ge F$	iff	$\llbracket E \rrbracket s, \llbracket F \rrbracket s \in Integers and \llbracket E \rrbracket s \geq \llbracket F \rrbracket s$
$(s,h) \models E \mapsto F$	iff	$dom(h) = \{\llbracket E \rrbracket s\} \text{ and } h(\llbracket E \rrbracket s) = \llbracket F \rrbracket s$
$(s,h) \models emp$	iff	$h = [] $ (i.e., dom $(h) = \emptyset$)
$(s,h) \models P * Q$	iff	$\exists h_0 h_1. \ h_0 * h_1 = h, \ (s, h_0) \models P \text{ and } (s, h_1) \models Q$
$(s,h) \models true$		always
$(s,h) \models true$ $(s,h) \models P \land Q$	iff	always $(s,h) \models P$ and $(s,h) \models Q$
$(s,h) \models true$ $(s,h) \models P \land Q$ $(s,h) \models \neg P$	iff iff	always $(s,h) \models P$ and $(s,h) \models Q$ not $((s,h) \models P)$

$(s,h) \models E \ge F$ $(s,h) \models E \mapsto F$	iff iff	$\llbracket E \rrbracket s, \llbracket F \rrbracket s \in Integers \text{ and } \llbracket E \rrbracket s \ge \llbracket F \rrbracket s$ $dom(h) = \{ \llbracket E \rrbracket s \} \text{ and } h(\llbracket E \rrbracket s) = \llbracket F \rrbracket s$
$(s,h) \models emp$ $(s,h) \models P * Q$	iff iff	$h = [] \text{ (i.e., } \operatorname{dom}(h) = \emptyset)$ $\exists h_0 h_1. \ h_0 * h_1 = h, \ (s, h_0) \models P \text{ and } (s, h_1) \models Q$
$(s,h) \models true$		always
$(s,h) \models true$ $(s,h) \models P \land Q$	iff	always $(s,h) \models P$ and $(s,h) \models Q$
$(s,h) \models true$ $(s,h) \models P \land Q$ $(s,h) \models \neg P$	iff iff	always $(s,h) \models P$ and $(s,h) \models Q$ not $((s,h) \models P)$

$(s,h) \models E \ge F$	iff	$\llbracket E \rrbracket s, \llbracket F \rrbracket s \in Integers \text{ and } \llbracket E \rrbracket s \geq \llbracket F \rrbracket s$
$(s,h) \models E \mapsto F$	iff	$dom(h) = \{\llbracket E \rrbracket s\} \text{ and } h(\llbracket E \rrbracket s) = \llbracket F \rrbracket s$
$(s,h)\modelsemp$	iff	$h = [] $ (i.e., dom $(h) = \emptyset$)
$(s,h) \models P * Q$	iff	$\exists h_0 h_1. \ h_0 * h_1 = h, \ (s, h_0) \models P \text{ and } (s, h_1) \models Q$
$(s,h) \models true$		always
$(s,h) \models true$ $(s,h) \models P \land O$	iff	always $(s, h) \models P$ and $(s, h) \models Q$
$(s,h) \models true$ $(s,h) \models P \land Q$ $(s,h) \models \neg P$	iff iff	always $(s,h) \models P$ and $(s,h) \models Q$ not $((s,h) \models P)$

$\begin{array}{l} (s,h) \models E \ge F \\ (s,h) \models E \mapsto F \end{array}$	iff iff	$\llbracket E \rrbracket s, \llbracket F \rrbracket s \in Integers \text{ and } \llbracket E \rrbracket s \ge \llbracket F \rrbracket s$ $dom(h) = \{ \llbracket E \rrbracket s \} \text{ and } h(\llbracket E \rrbracket s) = \llbracket F \rrbracket s$
$\begin{array}{l} (s,h) \models emp \\ (s,h) \models P \ast Q \end{array}$	iff iff	$h = [] \text{ (i.e., } \operatorname{dom}(h) = \emptyset)$ $\exists h_0 h_1. h_0 * h_1 = h, \ (s, h_0) \models P \text{ and } (s, h_1) \models Q$
$(s,h) \models true$ $(s,h) \models P \land Q$ $(s,h) \models \neg P$	iff iff	always $(s,h) \models P$ and $(s,h) \models Q$ not $((s,h) \models P)$
$(s,h) \models \forall x.P$	iff	$\forall v \in Vals. \ (s[x \mapsto v], h) \models P)$

Abbreviations

The address E is active:

where x' not free in E

E points to F somewhere in the heap:

 $E \hookrightarrow F \triangleq E \mapsto F * \mathsf{true}$

E points to a record of several fields: $E \mapsto E_1, \ldots, E_n \triangleq E \mapsto E_1 * \cdots * E + n - 1 \mapsto E_n$

Heap

$$x \mapsto 3, y$$

 $y \mapsto 3, x$
 $x \mapsto 3, y * y \mapsto 3, x$

$$x \mapsto 3, y$$

 $y \mapsto 3, x$
 $x \mapsto 3, y * y \mapsto 3, x$

$$egin{aligned} & x\mapsto 3,y\ & y\mapsto 3,x\ & x\mapsto 3,y*y\mapsto 3,x\ & x\mapsto 3,y\wedge y\mapsto 3,x \end{aligned}$$

Stack

Heap

$$\begin{array}{l} x\mapsto 3,y\ y\mapsto 3,x\ x\mapsto 3,y*y\mapsto 3,x\ x\mapsto 3,y\wedge y\mapsto 3,x \end{array}$$

Stack x yHeap 3 yy y+1

$$egin{aligned} & x\mapsto 3,y\ & y\mapsto 3,x\ & x\mapsto 3,y*y\mapsto 3,x\ & x\mapsto 3,y\wedge y\mapsto 3,x\ & x\mapsto 3,y\wedge y\mapsto 3,x \end{aligned}$$

Stack x y Heap y y+1

An inconsistency

What's wrong with the following formula?
10|->3 * 10|->3

An inconsistency

What's wrong with the following formula? 10|->3 * 10|->3

Try to be in two places at the same time

(E=F) *P where is it true?

Some states is completely heap independent.

(E=F) *P where is it true?

In a state where E=F hold in the store and P holds for the same store and a heap contained in the current one

Some states is completely heap independent.

(E=F) *P where is it true?

In a state where E=F hold in the store and P holds for the same store and a heap contained in the current one

Example: x=y * z ->0

Some states is completely heap independent.

(E=F) *P where is it true?

In a state where E=F hold in the store and P holds for the same store and a heap contained in the current one

Example: x=y * z ->0 holds in (s,h1)

Some series is completely heap independent. (E=F) *P where is it true? In a state where E=F hold in the store and P holds for the same store and a heap contained in the current one Example: x=y * z ->0 holds in (s,h1) $s(x)=s(y) \quad s(z)=10$ $dom(h1) = \{10, 15\}$ h1(10) = 0 h1(15) = 37

Some states is completely heap independent. (E=F) *P where is it true? In a state where E=F hold in the store and P holds for the same store and a heap contained in the current one Example: x=y * z >0 holds in (s,h1) (s,h2) $s(x)=s(y) \quad s(z)=10$ $dom(h1)=\{10, 15\}$ h1(10)=0 h1(15)=37 $dom(h2)=\{10, 42, 73\}$ h2(10)=0 h2(42)=11 h2(73)=0

E = F is completely heap independent. (E = F) / P

$\bigotimes E = F$ is completely heap independent. (E=F) /\ P where is it true?

E=F is completely heap independent. (E=F) /\ P where is it true? In a state where E=F hold in the store and P holds for the same store and exactly the current heap.

E=F is completely heap independent. (E=F) / P where is it true? In a state where E=F hold in the store and P holds for the same store and exactly the current heap. In other words: P determines the heap

Is completely heap independent. (E=F) / P where is it true? In a state where **E**=**F** hold in the store and **P** holds for the same store and exactly the current heap. In other words: P determines the heap Example: $x=y / |z| \rightarrow 0$ holds in any state (s,h) such that

Is completely heap independent. (E=F) / P where is it true? In a state where **E**=**F** hold in the store and **P** holds for the same store and exactly the current heap. In other words: P determines the heap Example: $x=y / |z| \rightarrow 0$ holds in any state (s,h) such that s(x)=s(y)

Is completely heap independent. (E=F) / P where is it true? In a state where **E**=**F** hold in the store and **P** holds for the same store and exactly the current heap. In other words: P determines the heap Example: $x=y / |z| \rightarrow 0$ holds in any state (s,h) such that s(x)=s(y) $dom(h) = \{s(z)\} h(s(z)) = 0$

Is completely heap independent. (E=F) / P where is it true? In a state where **E**=**F** hold in the store and **P** holds for the same store and exactly the current heap. In other words: P determines the heap Example: $x=y / |z| \rightarrow 0$ holds in any state (s,h) such that s(x)=s(y) $dom(h) = \{s(z)\} h(s(z)) = 0$ so many stores but the shape of the heap is fixed

what is h such that s,h|= p

what is h such that s,h|= p

what is h such that s,h|=px|->1 h=h1

what is h such that s,h|= p x|->1 y|->2

what is h such that s,h|= p x|->1 y|->2

what is h such that s,h|= p x|->1 h=h1 y|->2 h=h2 x|->1 * y|->2

what is h such that s,h|= p x|->1 h=h1 y|->2 h=h2 x|->1 * y|->2 h=h1 * h2

what is h such that s,h|= p x|->1 h=h1 y|->2 h=h2 x|->1 * y|->2 h=h1 * h2 x|->1 * true

what is h such that s,h|= p h1= h2: x|->1 h=h1 w y|->2 h=h2 x|->1 * y|->2 h=h1 * h2 x|->1 * true h1 contained in h

what is h such that s,h = p $h1=\{(s(x),1)\}$ $h2=\{(s(y),2)\}$ ×|->1 h=h1 with s(x)!=s(y)y|->2 h=h2x|->1 * y|->2 h=h1 * h2 x|->1 * trueh1 contained in h $x|->1 * y|->2 * (x|->1 \/ y|->2)$

what is h such that s,h = p $h1=\{(s(x),1)\}$ $h2=\{(s(y),2)\}$ ×|->1 h=h1 with s(x)!=s(y)y|->2 h=h2x|->1 * y|->2 h=h1 * h2 x|->1 * trueh1 contained in h $x|->1 * y|->2 * (x|->1 \/ y|->2)$ Homework!
P is valid if, for all s,h, s,h=P Searching Examples: @ E|->3 => E>O @ E|-> - * F |-> - => E != F @ E |-> 3 /\ F |-> 3 => E=F

P is valid if, for all s,h, s,h=P Searching Examples: @ E ->3 => E>0 \aligned @ E|-> - * F |-> - => E != F @ E |-> 3 /\ F |-> 3 => E=F

P is valid if, for all s,h, s,h=P

Seamples:

○ E|->3 => E>0 Valid!
○ E|-> - * E|-> - Invalid!
○ E|-> - * F |-> - => E != F
○ E |-> 3 /\ F |-> 3 => E=F
○ E|->3 * F |->3 => E|->3 /\ F |->3

P is valid if, for all s,h, s,h=P

Second Examples:

○ E|->3 => E>0 Valid!
○ E|-> - * E|-> - Invalid!
○ E|-> - * F |-> - => E != F Valid!
○ E |-> 3 /\ F |-> 3 => E=F
○ E|->3 * F |->3 => E|->3 /\ F |->3

P is valid if, for all s,h, s,h=P

Sexamples:

○ E|->3 => E>0 Valid!
○ E|-> - * E|-> - Invalid!
○ E|-> - * F |-> - => E != F Valid!
○ E |-> 3 /\ F |-> 3 => E=F Valid!
○ E|->3 * F |->3 => E|->3 /\ F |->3

P is valid if, for all s,h, s,h=P

Searching

⊘ E|->3 => E>0 Valid!
⊘ E|-> - * E|-> - Invalid!
⊘ E|-> - * F |-> - => E != F Valid!
⊘ E |-> 3 /\ F |-> 3 => E=F Valid!
⊘ E|->3 * F |->3 => E|->3 /\ F |->3 Invalid!

Some Laws and inference rules

 $p_{1} * p_{2} \iff p_{2} * p_{1}$ $(p_{1} * p_{2}) * p_{3} \iff p_{1} * (p_{2} * p_{3})$ $p * emp \iff p$ $(p_{1} \lor p_{2}) * q \iff (p_{1} * q) \lor (p_{2} * q)$ $(\exists x.p_{1}) * p_{2} \iff \exists x.(p_{1} * p_{2}) \text{ when } x \text{ not in } p_{2}$ $(\forall x.p_{1}) * p_{2} \iff \forall x.(p_{1} * p_{2}) \text{ when } x \text{ not in } p_{2}$

$$\frac{p_1 \implies p_2 \qquad q_1 \implies q_2}{p_1 * q_1 \implies p_2 * q_2} \text{ Monotonicity}$$

Substructural logic

Separation logic is a substructural logic:

No Contraction $A \nvDash A * A$ No Weakening $A * B \nvDash A$ Examples: $10 \mapsto 3 \nvDash 10 \mapsto 3 * 10 \mapsto 3$ $10 \mapsto 3 * 42 \mapsto 7 \nvDash 42 \mapsto 7$

Lists

A non circular list can be defined with the following inductive predicate:

list [] i = emp // i=nil list (s::5) i = exists j. i|->s,j * list S j

List segment

Possibly empty list segment lseg(x,y) = (emp / x=y) ORexists j. x|->j * lseg(j,y) Non-empty non-circular list segment lseg(x,y) = x!=y /((x|->y) OR exists j. x|->j * lseg(j,y))

Trees

A tree can be defined with this inductive definition:

۵

tree [] i = emp /\ i=nil tree (t1,a,t2) i = exists j,k. i|->j,a,k * (tree t1 j) * (tree t2 k)

References

J.C. Reynolds. Separation Logic: A logic for shared mutable data structures. LICS 2002
S. Ishtiaq and P.W. O'Hearn. BI as an assertion language for mutable data structures. POPL 2001.