
Program Verification
Using Separation Logic

Cristiano Calcagno
Adapted from material by Dino Distefano

Lecture 1

Goal of the course

Study Separation Logic having
automatic verification in mind

Learn how some notions of
mathematical logic can be very helpful
in reasoning about real world programs

A piece of a windows
device driver.

Is this correct?

Or at least: does
it have basic

properties like it
won’t crash or leak

memory?

Today’s plan

Motivation for Separation Logic

Assertion language

Mathematical model

Data structures

Motivations...

Safe commands:

S::= skip | x:=E | x:=new(E1,...,En)

Heap accessing commands:

A(E) ::= dispose(E) | x:=[E] | [E]:=F

where E is an expression x, y, nil, etc.

Command:

C::= S | A | C1;C2 | if B { C1 } else {C2} |
while B do { C }

where B boolean guard E=E, E!=E, etc.

Simple Imperative Language

Example Program:
List Reversal

p:=nil;
while (c !=nil) do {
t:=p;
p:=c;
c:=[c];
[p]:=t;

}

Example Program:
List Reversal

p:=nil;
while (c !=nil) do {
t:=p;
p:=c;
c:=[c];
[p]:=t;

}

nil1 2 3

c

Example Program:
List Reversal

p:=nil;
while (c !=nil) do {
t:=p;
p:=c;
c:=[c];
[p]:=t;

}

nil1 2 3

c

nil3 2 1

p

Example Program:
List Reversal

p:=nil;
while (c !=nil) do {
t:=p;
p:=c;
c:=[c];
[p]:=t;

}

Does the program preserve
acyclicity/cyclicity?
Does it core-dump?
Does it create garbage?

Some properties
we would like to prove:

nil1 2 3

c

nil3 2 1

p

x = new(3,3);
y = new(4,4);
[x+1] = y;
[y+1] = x;
y = x+1;
dispose x;
y = [y];

Example Program

Stackx y
Heap

We are interested in pointer manipulating programs

x = new(3,3);
y = new(4,4);
[x+1] = y;
[y+1] = x;
y = x+1;
dispose x;
y = [y];

Example Program

Stackx y
Heap

33

We are interested in pointer manipulating programs

x = new(3,3);
y = new(4,4);
[x+1] = y;
[y+1] = x;
y = x+1;
dispose x;
y = [y];

Example Program

Stackx y
Heap

33

We are interested in pointer manipulating programs

4 4

x = new(3,3);
y = new(4,4);
[x+1] = y;
[y+1] = x;
y = x+1;
dispose x;
y = [y];

Example Program

Stackx y
Heap

3

We are interested in pointer manipulating programs

4 4

x = new(3,3);
y = new(4,4);
[x+1] = y;
[y+1] = x;
y = x+1;
dispose x;
y = [y];

Example Program

Stackx y
Heap

3

We are interested in pointer manipulating programs

4

x = new(3,3);
y = new(4,4);
[x+1] = y;
[y+1] = x;
y = x+1;
dispose x;
y = [y];

Example Program

Stackx y
Heap

3

We are interested in pointer manipulating programs

4

x = new(3,3);
y = new(4,4);
[x+1] = y;
[y+1] = x;
y = x+1;
dispose x;
y = [y];

Example Program

Stackx y
Heap

We are interested in pointer manipulating programs

4

x = new(3,3);
y = new(4,4);
[x+1] = y;
[y+1] = x;
y = x+1;
dispose x;
y = [y];

Example Program

Stackx y
Heap

We are interested in pointer manipulating programs

4

Why Separation Logic?

[y] = 4;
[z] = 5;

Consider this code:

Guarantee([y] != [z])

We need to know that things are different. How?

Why Separation Logic?

[y] = 4;
[z] = 5;

Consider this code:

Guarantee([y] != [z])

We need to know that things are different. How?

 Assume(y != z) Add assertion?

Why Separation Logic?

[y] = 4;
[z] = 5;

Consider this code:

Guarantee([y] != [z])

We need to know that things are different. How?

 Assume(y != z) Add assertion?

We need to know that things stay the same. How?

Why Separation Logic?

[y] = 4;
[z] = 5;

Consider this code:

Guarantee([y] != [z])

We need to know that things are different. How?

 Assume(y != z) Add assertion?
 Assume([x] = 3)

Guarantee([x] = 3)

We need to know that things stay the same. How?

Why Separation Logic?

[y] = 4;
[z] = 5;

Consider this code:

Guarantee([y] != [z])

We need to know that things are different. How?

 Assume(y != z) Add assertion?

Guarantee([x] = 3)

We need to know that things stay the same. How?

Add assertion? Assume([x] = 3 && x!=y && x!=z)

Framing
We want a general concept of things not being affected.

What are the conditions on C and R?
Hard to define if reasoning about a heap and aliasing

{P} C {Q}
{R && P } C {Q && R }

Framing
We want a general concept of things not being affected.

What are the conditions on C and R?
Hard to define if reasoning about a heap and aliasing

{P} C {Q}
{R && P } C {Q && R }

This is where separation logic comes in

Introduces new connective * used to separate state.

{P} C {Q}
{R * P } C {Q * R }

The Logic

Storage Model

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Storage Model

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Storage Model

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Storage Model

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Storage Model

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Storage Model

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Storage Model

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Storage Model

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Stack
x
y

7

42

Storage Model

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Stack
x
y

7

42

Heap 7 9 42
0 11 9

Storage Model

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Stack
x
y

7

42

Heap 7 9 42
0 11 9

Mathematical Structure of Heap

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Integers

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E ::= x | n | E+E | −E | . . .

P ::= E �→E | emp | P ∗ P | P−∗P
| true | P ∧ P | ¬P | ∀x. P

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h1) |= Q) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Integers. (s[x�→v], h) |= P)

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Integers

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E ::= x | n | E+E | −E | . . .

P ::= E �→E | emp | P ∗ P | P−∗P
| true | P ∧ P | ¬P | ∀x. P

“Meaning of P” ⊆ States

y=0;
while (x!=0) {
t=x;
*x=y;
x=*t;

}

(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h1) |= Q) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Integers. (s[x�→v], h) |= P)

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Integers

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E ::= x | n | E+E | −E | . . .

P ::= E �→E | emp | P ∗ P | P−∗P
| true | P ∧ P | ¬P | ∀x. P

“Meaning of P” ⊆ States

y=0;
while (x!=0) {
t=x;
*x=y;
x=*t;

}

(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h1) |= Q) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Integers. (s[x�→v], h) |= P)

Mathematical Structure of Heap

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Integers

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E ::= x | n | E+E | −E | . . .

P ::= E �→E | emp | P ∗ P | P−∗P
| true | P ∧ P | ¬P | ∀x. P

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h1) |= Q) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Integers. (s[x�→v], h) |= P)

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Integers

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E ::= x | n | E+E | −E | . . .

P ::= E �→E | emp | P ∗ P | P−∗P
| true | P ∧ P | ¬P | ∀x. P

“Meaning of P” ⊆ States

y=0;
while (x!=0) {
t=x;
*x=y;
x=*t;

}

(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h1) |= Q) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Integers. (s[x�→v], h) |= P)

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Integers

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E ::= x | n | E+E | −E | . . .

P ::= E �→E | emp | P ∗ P | P−∗P
| true | P ∧ P | ¬P | ∀x. P

“Meaning of P” ⊆ States

y=0;
while (x!=0) {
t=x;
*x=y;
x=*t;

}

(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h1) |= Q) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Integers. (s[x�→v], h) |= P)

1) * has a unit
2) * is associative and commutative
3) (Heap,*,{}) is a partial commutative monoid

Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {
t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Informal Meaning

Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {
t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Informal Meaning

Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {
t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Informal Meaning Heap

Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {
t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Informal Meaning Heap

Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {
t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Informal Meaning Heap

Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {
t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Informal Meaning Heap

F
E

Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {
t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Informal Meaning Heap

Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {
t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Informal Meaning Heap

Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {
t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h0) |= P) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Informal Meaning Heap

P Q

x

Examples

Stack x y

y

z

zHeap

Formula: emp

x

Examples

x|->y

Stack x y

y

z

zHeap

Formula: emp*

x

Examples

x|->y

Stack x y

y y

z

zHeap

Formula: emp*

x

Examples

x|->y

Stack x y

y y

z

zHeap

Formula:

x

Examples

x|->y * y|->z

Stack x y

y y

z

zHeap

Formula:

x

Examples

x|->y * y|->z

Stack x y

y y

z

zz
Heap

Formula:

x

Examples

x|->y * y|->z * z|->x

Stack x y

y y

z

zz
Heap

Formula:

x

Examples

x|->y * y|->z * z|->x

Stack x y

y y

z

zz x
Heap

Formula:

Expressions mean maps from stacks to integers.

Semantics of assertions given by satisfaction relation
between states and assertions.

Semantics of Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Locations
def
= {1, 2, 3, 4, . . .} Variables

def
= {x, y, z, . . . , xk}

Heaps
def
= Locations →fin Integers

Stacks
def
= Variables → Integers

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇔ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E ::= x | n | E+E | −E | . . .

P ::= E �→E | emp | P ∗ P | P−∗P
| true | P ∧ P | ¬P | ∀x. P

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h1) |= Q) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Integers. (s[x�→v], h) |= P)

[[E]] : Stacks → Integers

(s, h) |= P

[[E]] : Stacks → Vals

(s, h) |= P

(x �→ 0) ∗ (y �→ 0) (x �→ y) ∗ (y �→ x)
∃x�. (x �→ x�) ∗ (x� �→ 0) ∃x�x��. (x �→ x�) ∗ (x� �→ x��)
(x �→ 0)−∗(x �→ 0 ∗ y �→ 0)

E �→− def= ∃x�. E �→x�

E �→E0, . . . , En
def= E �→E0 ∗ E+1 �→E1 ∗ . . . ∗ E+n �→En

ls α (E,F) ⇐⇒ (α = [] ∧ E = F ∧ emp) ∨
(∃x�α�. α = E::α� ∧ (E �→ x�) ∗ ls α� (x�, F))

E.g. 1 �→ 0, x �→ 2, x + 1 �→ y

E.g. 1 �→ 0 ∗ 2 �→ 0, 1 �→ 0 ∗ 1 �→ 0,
x �→ 0 ∗ y �→ 1, x �→ y ∗ y �→ x

E.g. (1 �→ 0) −∗ (1 �→ 0 ∗ 2 �→ 0),
(x �→ 0) −∗ (1 �→ 0 ∗ 2 �→ 0)

(x �→ 0) ∨ ∃x�.(x �→ x�) ∗ (x �→ 0).

E.g. 1 �→ 0 ∗ 1 �→ 0, x �→ y ∗ y �→ x,
(x �→ 0) −∗ (1 �→ 0 ∗ 2 �→ 0),
(x �→ 0) ∨ ∃x�.(x �→ x�) ∗ (x �→ 0).

E, F ::= x | 0
Π ::= E = F | E �= F | true | Π ∧Π �

Σ ::= emp | (E �→ F) | nels (E,F) | true | Σ ∗Σ�

P,Q ::= ∃�x. Π ∧Σ

y = z ∧ nels (x, 0) ∗ nels (y, 0)
∃v�w�. nels (x, v�) ∗ y �→ v� ∗ v� �→ w�

P |= Q ⇐⇒ ∀(s, h). if (s, h) |= P, then (s, h) |= Q.

P |= P

nels (z, F) ∗Σ |= Σ�[z/y�] Σ |= Σ�[z/F]
nels (x, F) ∗Σ |= (∃y�. x�→y� ∗Σ�)

(Π ∧Σ) |=
�
Π �[�E/�y�] ∧Π ��� ∧

�
Σ�[�E/�y�] ∗ Σ���

(∃�x�.Π ∧Σ) |= (∃�y�.Π � ∧Σ�)?

(∃�x�.Π ∧Σ), (∃�y�.Π � ∧Σ�)

�E, Π ��, Σ��

�E

2

Expressions mean maps from stacks to integers.

Semantics of assertions given by satisfaction relation
between states and assertions.

Semantics of Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Locations
def
= {1, 2, 3, 4, . . .} Variables

def
= {x, y, z, . . . , xk}

Heaps
def
= Locations →fin Integers

Stacks
def
= Variables → Integers

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇔ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E ::= x | n | E+E | −E | . . .

P ::= E �→E | emp | P ∗ P | P−∗P
| true | P ∧ P | ¬P | ∀x. P

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h1) |= Q) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Integers. (s[x�→v], h) |= P)

[[E]] : Stacks → Integers

(s, h) |= P

Stack

[[E]] : Stacks → Vals

(s, h) |= P

(x �→ 0) ∗ (y �→ 0) (x �→ y) ∗ (y �→ x)
∃x�. (x �→ x�) ∗ (x� �→ 0) ∃x�x��. (x �→ x�) ∗ (x� �→ x��)
(x �→ 0)−∗(x �→ 0 ∗ y �→ 0)

E �→− def= ∃x�. E �→x�

E �→E0, . . . , En
def= E �→E0 ∗ E+1 �→E1 ∗ . . . ∗ E+n �→En

ls α (E,F) ⇐⇒ (α = [] ∧ E = F ∧ emp) ∨
(∃x�α�. α = E::α� ∧ (E �→ x�) ∗ ls α� (x�, F))

E.g. 1 �→ 0, x �→ 2, x + 1 �→ y

E.g. 1 �→ 0 ∗ 2 �→ 0, 1 �→ 0 ∗ 1 �→ 0,
x �→ 0 ∗ y �→ 1, x �→ y ∗ y �→ x

E.g. (1 �→ 0) −∗ (1 �→ 0 ∗ 2 �→ 0),
(x �→ 0) −∗ (1 �→ 0 ∗ 2 �→ 0)

(x �→ 0) ∨ ∃x�.(x �→ x�) ∗ (x �→ 0).

E.g. 1 �→ 0 ∗ 1 �→ 0, x �→ y ∗ y �→ x,
(x �→ 0) −∗ (1 �→ 0 ∗ 2 �→ 0),
(x �→ 0) ∨ ∃x�.(x �→ x�) ∗ (x �→ 0).

E, F ::= x | 0
Π ::= E = F | E �= F | true | Π ∧Π �

Σ ::= emp | (E �→ F) | nels (E,F) | true | Σ ∗Σ�

P,Q ::= ∃�x. Π ∧Σ

y = z ∧ nels (x, 0) ∗ nels (y, 0)
∃v�w�. nels (x, v�) ∗ y �→ v� ∗ v� �→ w�

P |= Q ⇐⇒ ∀(s, h). if (s, h) |= P, then (s, h) |= Q.

P |= P

nels (z, F) ∗Σ |= Σ�[z/y�] Σ |= Σ�[z/F]
nels (x, F) ∗Σ |= (∃y�. x�→y� ∗Σ�)

(Π ∧Σ) |=
�
Π �[�E/�y�] ∧Π ��� ∧

�
Σ�[�E/�y�] ∗ Σ���

(∃�x�.Π ∧Σ) |= (∃�y�.Π � ∧Σ�)?

(∃�x�.Π ∧Σ), (∃�y�.Π � ∧Σ�)

�E, Π ��, Σ��

�E

2

Expressions mean maps from stacks to integers.

Semantics of assertions given by satisfaction relation
between states and assertions.

Semantics of Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Locations
def
= {1, 2, 3, 4, . . .} Variables

def
= {x, y, z, . . . , xk}

Heaps
def
= Locations →fin Integers

Stacks
def
= Variables → Integers

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇔ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E ::= x | n | E+E | −E | . . .

P ::= E �→E | emp | P ∗ P | P−∗P
| true | P ∧ P | ¬P | ∀x. P

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q
(s, h) |= P−∗Q iff ∀h0. (h0#h and (s, h1) |= Q) =⇒ (s, h0 ∗ h) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Integers. (s[x�→v], h) |= P)

[[E]] : Stacks → Integers

(s, h) |= P

Stack Heap

[[E]] : Stacks → Vals

(s, h) |= P

(x �→ 0) ∗ (y �→ 0) (x �→ y) ∗ (y �→ x)
∃x�. (x �→ x�) ∗ (x� �→ 0) ∃x�x��. (x �→ x�) ∗ (x� �→ x��)
(x �→ 0)−∗(x �→ 0 ∗ y �→ 0)

E �→− def= ∃x�. E �→x�

E �→E0, . . . , En
def= E �→E0 ∗ E+1 �→E1 ∗ . . . ∗ E+n �→En

ls α (E,F) ⇐⇒ (α = [] ∧ E = F ∧ emp) ∨
(∃x�α�. α = E::α� ∧ (E �→ x�) ∗ ls α� (x�, F))

E.g. 1 �→ 0, x �→ 2, x + 1 �→ y

E.g. 1 �→ 0 ∗ 2 �→ 0, 1 �→ 0 ∗ 1 �→ 0,
x �→ 0 ∗ y �→ 1, x �→ y ∗ y �→ x

E.g. (1 �→ 0) −∗ (1 �→ 0 ∗ 2 �→ 0),
(x �→ 0) −∗ (1 �→ 0 ∗ 2 �→ 0)

(x �→ 0) ∨ ∃x�.(x �→ x�) ∗ (x �→ 0).

E.g. 1 �→ 0 ∗ 1 �→ 0, x �→ y ∗ y �→ x,
(x �→ 0) −∗ (1 �→ 0 ∗ 2 �→ 0),
(x �→ 0) ∨ ∃x�.(x �→ x�) ∗ (x �→ 0).

E, F ::= x | 0
Π ::= E = F | E �= F | true | Π ∧Π �

Σ ::= emp | (E �→ F) | nels (E,F) | true | Σ ∗Σ�

P,Q ::= ∃�x. Π ∧Σ

y = z ∧ nels (x, 0) ∗ nels (y, 0)
∃v�w�. nels (x, v�) ∗ y �→ v� ∗ v� �→ w�

P |= Q ⇐⇒ ∀(s, h). if (s, h) |= P, then (s, h) |= Q.

P |= P

nels (z, F) ∗Σ |= Σ�[z/y�] Σ |= Σ�[z/F]
nels (x, F) ∗Σ |= (∃y�. x�→y� ∗Σ�)

(Π ∧Σ) |=
�
Π �[�E/�y�] ∧Π ��� ∧

�
Σ�[�E/�y�] ∗ Σ���

(∃�x�.Π ∧Σ) |= (∃�y�.Π � ∧Σ�)?

(∃�x�.Π ∧Σ), (∃�y�.Π � ∧Σ�)

�E, Π ��, Σ��

�E

2

Semantics of Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Semantics of Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Semantics of Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Semantics of Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Semantics of Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Semantics of Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Semantics of Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Semantics of Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Semantics of Assertions

Formulas in Lecture 1

Hongseok Yang

Queen Mary, University of London

1 Formulas

Vars
def
= {x, y, z, . . .}

Locs
def
= {1, 2, 3, 4, . . .} Vals ⊇ Locs

Heaps
def
= Locs →fin Vals

Stacks
def
= Vars → Vals

States
def
= Stacks× Heaps

Heaps
def
= Locations →fin Integers

h1#h2
def⇐⇒ dom(h1) ∩ dom(h2) = ∅

h1 ∗ h2
def
=

�
h1 ∪ h2 if h1#h2

undefined otherwise

E,F ::= x | n | E+F | −E | . . . Heap-independent Exprs

P,Q ::= E = F | E ≥ F | E �→F Atomic Predicates

| emp | P ∗Q Separating Connectives

| true | P ∧Q | ¬P | ∀x. P Classical Logic

“Meaning of P” ⊆ States

y=0;
while (x!=0) {

t=x;
*x=y;
x=*t;

}

(s, h) |= E ≥ F iff [[E]]s, [[F]]s ∈ Integers and [[E]]s ≥ [[F]]s
(s, h) |= E �→ F iff dom(h) = {[[E]]s} and h([[E]]s) = [[F]]s

(s, h) |= emp iff h = [] (i.e., dom(h) = ∅)
(s, h) |= P ∗Q iff ∃h0h1. h0 ∗ h1 = h, (s, h0) |= P and (s, h1) |= Q

(s, h) |= true always

(s, h) |= P ∧Q iff (s, h) |= P and (s, h) |= Q
(s, h) |= ¬P iff not ((s, h) |= P)

(s, h) |= ∀x. P iff ∀v ∈ Vals. (s[x�→v], h) |= P)

Abbreviations

E �→ − � ∃x�.E �→ x�

E �→ F � E �→ F ∗ true

The address E is active:

where x’ not free in E

E points to F somewhere in the heap:

E points to a record of several fields:

E �→ E1, . . . , En � E �→ E1 ∗ · · · ∗E + n− 1 �→ En

x

Example

Stack
x y

x
3Heap y

x+1
3
y y+1

x

Example

Stack
x y

x
3Heap

x �→ 3, y

y
x+1

3
y y+1

x

Example

Stack
x y

x
3Heap

x �→ 3, y

y
x+1

3
y y+1

x

Example

Stack
x y

x
3Heap

x �→ 3, y

y �→ 3, x

y
x+1

3
y y+1

x

Example

Stack
x y

x
3Heap

x �→ 3, y

y �→ 3, x

y
x+1

3
y y+1

x

Example

Stack
x y

x
3Heap

x �→ 3, y

y �→ 3, x

x �→ 3, y ∗ y �→ 3, x

y
x+1

3
y y+1

x

Example

Stack
x y

x
3Heap

x �→ 3, y

y �→ 3, x

x �→ 3, y ∗ y �→ 3, x

y
x+1

3
y y+1

x

Example

Stack
x y

x
3Heap

x �→ 3, y

y �→ 3, x

x �→ 3, y ∗ y �→ 3, x

x �→ 3, y ∧ y �→ 3, x y
x+1

3
y y+1

x

Example

Stack
x y

x
3Heap

x �→ 3, y

y �→ 3, x

x �→ 3, y ∗ y �→ 3, x

x �→ 3, y ∧ y �→ 3, x

x+1
3
y y+1

x

Example

Stack
x y

x
3Heap

x �→ 3, y

y �→ 3, x

x �→ 3, y ∗ y �→ 3, x

x �→ 3, y ∧ y �→ 3, x

x �→ 3, y ∧ y �→ 3, x
x+1

3
y y+1

An inconsistency

What’s wrong with the following formula?

10|->3 * 10|->3

An inconsistency

What’s wrong with the following formula?

10|->3 * 10|->3

10 10
Try to be in two places

at the same time

Small details
E=F is completely heap independent.

Small details
E=F is completely heap independent.

(E=F) *P

Small details
E=F is completely heap independent.

(E=F) *P where is it true?

Small details
E=F is completely heap independent.

(E=F) *P where is it true?

In a state where E=F hold in the store and P holds for
the same store and a heap contained in the current one

Small details
E=F is completely heap independent.

(E=F) *P where is it true?

In a state where E=F hold in the store and P holds for
the same store and a heap contained in the current one

Example: x=y * z|->0

Small details
E=F is completely heap independent.

(E=F) *P where is it true?

In a state where E=F hold in the store and P holds for
the same store and a heap contained in the current one

Example: x=y * z|->0 (s,h1)holds in

Small details
E=F is completely heap independent.

(E=F) *P where is it true?

In a state where E=F hold in the store and P holds for
the same store and a heap contained in the current one

Example: x=y * z|->0
s(x)=s(y) s(z)=10

dom(h1)={10, 15} h1(10)=0 h1(15)=37

(s,h1)holds in

Small details
E=F is completely heap independent.

(E=F) *P where is it true?

In a state where E=F hold in the store and P holds for
the same store and a heap contained in the current one

Example: x=y * z|->0
s(x)=s(y) s(z)=10

dom(h1)={10, 15} h1(10)=0 h1(15)=37
dom(h2)={10, 42, 73} h2(10)=0 h2(42)=11 h2(73)=0

(s,h2)(s,h1)holds in

...but
E=F is completely heap independent.

...but
E=F is completely heap independent.

(E=F) /\ P

...but
E=F is completely heap independent.

(E=F) /\ P where is it true?

...but
E=F is completely heap independent.

(E=F) /\ P where is it true?

In a state where E=F hold in the store and P holds for
the same store and exactly the current heap.

...but
E=F is completely heap independent.

(E=F) /\ P where is it true?

In a state where E=F hold in the store and P holds for
the same store and exactly the current heap.

In other words: P determines the heap

...but
E=F is completely heap independent.

(E=F) /\ P where is it true?

In a state where E=F hold in the store and P holds for
the same store and exactly the current heap.

In other words: P determines the heap

Example: x=y /\ z|->0
holds in any state (s,h) such that

...but
E=F is completely heap independent.

(E=F) /\ P where is it true?

In a state where E=F hold in the store and P holds for
the same store and exactly the current heap.

In other words: P determines the heap

Example: x=y /\ z|->0
s(x)=s(y)holds in any state (s,h) such that

...but
E=F is completely heap independent.

(E=F) /\ P where is it true?

In a state where E=F hold in the store and P holds for
the same store and exactly the current heap.

In other words: P determines the heap

Example: x=y /\ z|->0
s(x)=s(y)

dom(h)={s(z)} h(s(z))=0

holds in any state (s,h) such that

...but
E=F is completely heap independent.

(E=F) /\ P where is it true?

In a state where E=F hold in the store and P holds for
the same store and exactly the current heap.

In other words: P determines the heap

Example: x=y /\ z|->0
s(x)=s(y)

dom(h)={s(z)} h(s(z))=0

holds in any state (s,h) such that

so many stores but the shape of the heap is fixed

Exercise
h1={(s(x),1)}
h2={(s(y),2)}
with s(x)!=s(y)

what is h such that s,h|= p

Exercise
h1={(s(x),1)}
h2={(s(y),2)}
with s(x)!=s(y)

what is h such that s,h|= p

x|->1

Exercise
h1={(s(x),1)}
h2={(s(y),2)}
with s(x)!=s(y)

what is h such that s,h|= p

x|->1 h=h1

Exercise
h1={(s(x),1)}
h2={(s(y),2)}
with s(x)!=s(y)

what is h such that s,h|= p

x|->1 h=h1
y|->2

Exercise
h1={(s(x),1)}
h2={(s(y),2)}
with s(x)!=s(y)

what is h such that s,h|= p

x|->1 h=h1
y|->2 h=h2

Exercise
h1={(s(x),1)}
h2={(s(y),2)}
with s(x)!=s(y)

what is h such that s,h|= p

x|->1 h=h1
y|->2 h=h2

x|->1 * y|->2

Exercise
h1={(s(x),1)}
h2={(s(y),2)}
with s(x)!=s(y)

what is h such that s,h|= p

x|->1 h=h1
y|->2 h=h2

x|->1 * y|->2 h=h1 * h2

Exercise
h1={(s(x),1)}
h2={(s(y),2)}
with s(x)!=s(y)

what is h such that s,h|= p

x|->1 h=h1
y|->2 h=h2

x|->1 * y|->2 h=h1 * h2
x|->1 * true

Exercise
h1={(s(x),1)}
h2={(s(y),2)}
with s(x)!=s(y)

what is h such that s,h|= p

x|->1 h=h1
y|->2 h=h2

x|->1 * y|->2 h=h1 * h2
x|->1 * true h1 contained in h

Exercise
h1={(s(x),1)}
h2={(s(y),2)}
with s(x)!=s(y)

what is h such that s,h|= p

x|->1 h=h1
y|->2 h=h2

x|->1 * y|->2 h=h1 * h2
x|->1 * true h1 contained in h

x|->1 * y|->2 * (x|->1 \/ y|->2)

Exercise
h1={(s(x),1)}
h2={(s(y),2)}
with s(x)!=s(y)

what is h such that s,h|= p

x|->1 h=h1
y|->2 h=h2

x|->1 * y|->2 h=h1 * h2
x|->1 * true h1 contained in h

x|->1 * y|->2 * (x|->1 \/ y|->2) Homework!

Validity
P is valid if, for all s,h, s,h|=P

Examples:

E|->3 => E>0

E|-> - * E|-> -

E|-> - * F |-> - => E != F

E |-> 3 /\ F |-> 3 => E=F

E|->3 * F |->3 => E|->3 /\ F |->3

Validity
P is valid if, for all s,h, s,h|=P

Examples:

E|->3 => E>0

E|-> - * E|-> -

E|-> - * F |-> - => E != F

E |-> 3 /\ F |-> 3 => E=F

E|->3 * F |->3 => E|->3 /\ F |->3

Valid!

Validity
P is valid if, for all s,h, s,h|=P

Examples:

E|->3 => E>0

E|-> - * E|-> -

E|-> - * F |-> - => E != F

E |-> 3 /\ F |-> 3 => E=F

E|->3 * F |->3 => E|->3 /\ F |->3

Valid!
Invalid!

Validity
P is valid if, for all s,h, s,h|=P

Examples:

E|->3 => E>0

E|-> - * E|-> -

E|-> - * F |-> - => E != F

E |-> 3 /\ F |-> 3 => E=F

E|->3 * F |->3 => E|->3 /\ F |->3

Valid!

Valid!

Invalid!

Validity
P is valid if, for all s,h, s,h|=P

Examples:

E|->3 => E>0

E|-> - * E|-> -

E|-> - * F |-> - => E != F

E |-> 3 /\ F |-> 3 => E=F

E|->3 * F |->3 => E|->3 /\ F |->3

Valid!

Valid!
Valid!

Invalid!

Validity
P is valid if, for all s,h, s,h|=P

Examples:

E|->3 => E>0

E|-> - * E|-> -

E|-> - * F |-> - => E != F

E |-> 3 /\ F |-> 3 => E=F

E|->3 * F |->3 => E|->3 /\ F |->3

Valid!

Valid!
Valid!

Invalid!

Invalid!

Some Laws and
inference rules

p1 =⇒ p2 q1 =⇒ q2

p1 ∗ q1 =⇒ p2 ∗ q2

Monotonicity

p1 ∗ p2 ⇐⇒ p2 ∗ p1

(p1 ∗ p2) ∗ p3 ⇐⇒ p1 ∗ (p2 ∗ p3)

p ∗ emp ⇐⇒ p

(p1 ∨ p2) ∗ q ⇐⇒ (p1 ∗ q) ∨ (p2 ∗ q)

(∃x.p1) ∗ p2 ⇐⇒ ∃x.(p1 ∗ p2) when x not in p2

(∀x.p1) ∗ p2 ⇐⇒ ∀x.(p1 ∗ p2) when x not in p2

Substructural logic
Separation logic is a substructural logic:

Examples:

A � A ∗ A

10 �→ 3 � 10 �→ 3 ∗ 10 �→ 3

A ∗ B � A

10 �→ 3 ∗ 42 �→ 7 � 42 �→ 7

No Weakening

No Contraction

Lists

list [] i = emp /\ i=nil
list (s::S) i = exists j. i|->s,j * list S j

A non circular list can be defined with
the following inductive predicate:

.....s sns3s2
nil

s4i

List segment

lseg(x,y) = (emp /\ x=y) OR
exists j. x|->j * lseg(j,y)

.....
y

x

Possibly empty list segment

lseg(x,y) = x!=y /\
((x|->y) OR exists j. x|->j * lseg(j,y))

Non-empty non-circular list segment

Trees

tree [] i = emp /\ i=nil
tree (t1,a,t2) i = exists j,k.

i|->j,a,k * (tree t1 j) * (tree t2 k)

A tree can be defined with this inductive
definition:

a
j

i
k

References

•J.C. Reynolds. Separation Logic: A logic for shared
mutable data structures. LICS 2002

• S. Ishtiaq and P.W. O’Hearn. BI as an assertion
language for mutable data structures. POPL 2001.

