Software Verification
Exercise Session 1 Solution

We present proof in outline form - you can also use explicit lists of theorems or proof trees.
e 03

{x=a A\ y=Db}

{x+y=a+b N x=a}
t:=Xx

{x+y=a+b N t=a}
X =X+Yy

{x=a+b N t=a}
y:=t

{x=a+b N\ y=a}

* 96

1)

{z*x” = K}

{(z*x)*x"! =K}
Z = 7%X

{z#x¥! =K}

2)

{z*x” = K}

{(z*x)*x"" = K}
y:=y-1

{(z*x)*x” =K}
Z:=7*X

{z*x” = K}

3)
{yeven N\ z*x” =K} // With integer arithmetic, we cannot assume 2(y/2) =y for all y.
{ z5(x)"” =K}

y:=y/2
(z#(x")’ =K}
X=X

{z*x” = K}



4) Here is the inference rule for guarded commands of the form if... [] g : ¢; [] ... end:
P => (Vici.n &) viel.n. {g\P}c{Q}

{P}if...[]1gi:ci[]..end {Q}

Notice that the following implications hold (i.e. they are valid/tautologies):

i) (z*x) =K)=>(yodd V yeven), and

ii) (yodd A z*x’ =K)=> (z*x) = K),

Now we can apply the rule of Consequence with the triple from part 2 and the valid
implication ii to obtain the triple:

{yodd A z*x* =K} y:=y-1;z:=z*x {z*x’ =K}

This triple, the triple from part 3 and the valid implication 1 fulfill all the premises of the
rule. We can therefore infer the triple:

{z#xY =K} if yodd:y:=y-1;z:=z*x [[yeven:y:=y/2;x :=x"end {z*x’ = K}

In proof outline form:
{z*x) =K} // Remember that here is an implicit implication of the V of the guards!
if
y odd :
{yodd N\ z*x¥ =K}
{z*x” = K}
()" =K}
y:=y-1
{z*x)*x” = K}
7 :=7%X
{z*x’ = K}
[l
y even :
{yeven N\ z*x’ =K}
{z*(x")" =K)

y:=y/2
{z*(x’) =K}
X =X’
{z*x’ =K}
end
{z*x” = K}
e 07

Recall the proof rule for from..until commands, where I is the loop invariant:
{P}e {1} {IN=b}e, {1}

{P} from c; until b loop c, end {I A\ b}

It should be clear that z*x” = K is an invariant of the loop.



With the usual backward assertion propatation, we can easily prove the initialization
triple {m"=K}x:=m;y:=n;z:=1 {z*x)=K}.

By the rule of Consequence and the triple from 9.6.4, we also know:

{z*x) =K A=(y=0)} if yodd:y:=y-1;z:=z*x[]yeven:y:=y/2 ;X := x> end {z*x"
= K}.

Hence {m" = K} from...end {z*x’ = K /\ y =0} by the inference rule above, and with
another application of Consequence, we know:

{m" =K} from...end {z = K}

Now since the from...end command did not modify m, n or K, we know that m" = K
still holds afterwards. Formally, we can apply the rule of Constancy:

{PAR}c{QAR}
provided ¢ does not modify (i.e. assign to) any of the free variables of R.

In this case, the R will be m" = K, so we know:

{m"=K AN m"=K} from...end {z=K N m"=K}

By the rule of Consequence, we again simplify and get:

{m" =K} from...end {z =m"}

Next, we can apply the Auxiliary Variable Elimination rule to get rid of K. The rule is:

{P}c{Q}
{3v. P}c{3Av. Q}
provided v does not occur free in c.

So now we have {dK. m" = K} from...end {3K. z = m"}, and we can simplify it with
the rule of Consequence to get:

{true} from...end {z = m"}

We can now strengthen the precondition with the rule of Consequence to get:

{m>0 A\ n>0} from...end {z =m"}

Hence, we have proven that the program computes m" and stores the result in the
variable z. The n>0 is important only for termination, which we have not proven.

Note: in a proof outline, an application of Constancy or Auxiliary Variable Elimination
will be denoted by a level of indentation. For example, the application of Constancy
above would be written:

{m"=K A m"=K}

{m"=K}
from...end
{z=K}

{z=K A m"=K}



9.9

One can imagine several sound axioms of various strength. However, the following one
is known to be equivalent to the well-known backward rule {P[e/x]}x := e{P}:

{P}x :=e{dx". P[x'/x] \ x = e[x'/x]}, where X' is fresh, i.e. it does not occur free in P or
e, and it is not the same variable as x.

In the postcondition, the variable x' can be understood as recording what x used to be.
So we can read the triple informally as: after executing x := e, we remember that there
used to be something (let's call it x') such that P[x'/x] holds. Furthermore, the value of x
1s now updated to e where we are careful to replace occurrences of x in e by its old value

X'

9.14

repeat suntilb = s; while =b do s end
So we can propose the rule:

{P}S{I} {IN-b}S{I}

{P}repeat s until b{I A b}

To see that the rule is sound (i.e. correct), notice that we can derive it as follows:
{IN-b}s{I}

{I}while =b do s end{I \ =—b}
--------------------------------------- Consequence
{P}s{I} {I} while =b do s end{I \ b}
———————————————————————————————————————————————————— Sequential Composition
{P}s ; while -b do s end{I A\ b}



