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CSP: Origin

Communicating Sequential Processes: C.A.R. Hoare

1978 paper, based in part on ideas of E.W. Dijkstra
(guarded commands, 1978 paper and “A Discipline of 
Programming” book)

Revised with help of S. D. Brooks and A.W. Roscoe
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Revised with help of S. D. Brooks and A.W. Roscoe

1985 book, revised 2004

Complete reference: The Theory and Practice of 
Concurrency, A. W. Roscoe, Prentice Hall 1997 (2005) 
(used extensively in the present slides)



CSP purpose

Concurrency formalism
Ø Expresses many concurrent situations elegantly
Ø Influenced design of several concurrent 

programming languages, in particular Occam
(Transputer)

Calculus
Formally specified: laws
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Ø Formally specified: laws
Ø Makes it possible to prove properties of systems



Traces

A trace is a sequence of events, for example
<coin, coffee, coin, coffee>

Many traces of interest are infinite, for example
<coin, coffee, coin, coffee, …>
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(Can be defined formally, e.g by regular expressions, but 
such traces definition are not part of CSP; they are 
descriptions of CSP process properties.)

Events come from an alphabet. The alphabet of all possible 
events is written ∑ in the following.



Processes and their traces

A CSP process is characterized (although not necessarily 
defined fully) by the set of its traces. For example a 
process may have the trace set

{<>,
<coin, coffee>,
<coin, tea>}
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The special process STOP has a trace set consisting of a 
single, empty trace:

{<>}



Basic CSP syntax

P ::=

STOP | -- Does not engage in any events

a � Q | -- Engages in a, then acts like Q

Q Π R | -- Internal choice
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Q o R | -- External choice 

Q || R | -- Concurrency  (E: subset of alphabet)

Q || R | -- Lock-step concurrency (same as Q || R)

Q \ E | -- Hiding

µQ l f (Q) -- Recursion

E

∑



Generalization of � notation 

Basic:
a  � P

Generalization:
x: E  � P (x)

Accepts any event from E, then executes P (x) where x is 
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Accepts any event from E, then executes P (x) where x is 
that event

Also written
? x: E  � P (x)

Note that if E is empty then x: E  � P (x) is STOP for any P



Some laws of concurrency

1. P || Q  =  Q || P
2. (P || (Q || R))  =  ((P || Q) || R)

3. P || STOP = STOP 

4. (c � P) || (c � Q)  =  (c � (P || Q))
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4. (c � P) || (c � Q)  =  (c � (P || Q))
5. (c � P) || (d � Q)  = STOP -- If c ≠ d

6. (x: A � P (x)) || (y: B � Q (y)) =
(z: (A ∩ B) � (P (z) || Q (z))



Basic notions

Processes engage in events
Example of basic notation:

CVM = (coin � coffee � coin � coffee � STOP)

Right associativity: the above is an abbreviation for
CVM = (coin � (coffee � (coin � (coffee � STOP))))
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CVM = (coin � (coffee � (coin � (coffee � STOP))))

Trace set of CVM: {<coin, coffee, coin, coffee>}

The events of a process are taken from its alphabet:
α(CVM) = {coin, coffee} 

STOP can engage in no events



Traces

traces (e � P) = {<e> + s | s ∈ traces (P)}
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Exercises: determine traces

P ::=

STOP | -- Does not engage in any events

a � Q | -- Engages in a, then acts like Q

Q Π R | -- Internal choice
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Q o R | -- External choice

Q || R | -- Concurrency  (E: subset of alphabet)

Q || R | -- Lock-step concurrency (same as Q || R)

Q \ E | -- Hiding

µQ l f (Q) -- Recursion

E

∑



Recursion

CLOCK = (tick � CLOCK)

This is an abbreviation for
CLOCK = µP l (tick � P)
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A recursive definition is a fixpoint equation. The µ notation 
denotes the fixpoint



Accepting one of a set of events; channels

Basic notation:
? x: A  � P (x)

Accepts any event from A, then executes P (x) where x is 
that event

Example: 

Channel 
names

Channel 
names
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? y: c.A � d.y’
(where c.A denotes {c.x | x ∈ A} and y’ denotes y deprived 
of its initial channel name, e.g. (c.a)’ = a)
More convenient notation for such cases involving 
channels:

c? x: A  � d!x



A simple buffer

COPY = c? x: A  � d!x � COPY
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External choice

COPYBIT = (in.0 � out.0 � COPYBIT 
o

in.1 � out.1 � COPYBIT)
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External choice

COPY1 = in? x: A  � out1!x � COPY1

COPY2 = in? x: B  � out2!x � COPY2

COPY3  = COPY1 o COPY2
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External choice

Consider

CHM1 = (in1f � out50rp � out20rp � out20rp � out10rp)
CHM2 = (in1f � out50rp � out50rp)
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CHM = CHM1 o CHM2



Lock-step concurrency

Consider
P =   ?x: A � P’
Q =   ?x: B � Q’

Then
P || Q = ? x �

Ø (P’ || Q’) if x ∈ A ∩ B
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Ø (P’ || Q’) if x ∈ A ∩ B

Ø STOP otherwise

(to be generalized soon)



More examples

VMC =
(in2f �

((large � VMC) o
(small � out1f � VMC))

o

(in1f �
((small� VMC) o
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((small� VMC) o
(in1f � large � VMC))

FOOLCUST = (in2f � large � FOOLCUST  o
in1f � large � FOOLCUST)

FV = FOOLCUST || VMC = 
µP l (in2f �large � P o in1f � STOP)



Hiding

Consider

P = a � b � Q

Assuming Q does not involve b, then
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P  \ {b} = a � Q

More generally:
(a � P) \ E = 

Ø P \ E              if a ∈ E
Ø a � (P\ E)     if a ∉ E



Hiding introduces internal non-determinism

Consider

R  =   (a � P)  o (b � Q)

Then
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R \ {a, b}  =   P  П Q



Internal non-deterministic choice

CH1F = (in1f �
((out20rp � out20rp �

out20rp �out20rp �out20rp � CH1F)
П

(out50rp � out50rp � CH1F)))
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Non-deterministic internal choice: another application 

TRANSMIT (x) =   in?x � LOSSY (x)

LOSSY (x) =  
out!x � TRANSMIT (x)

П out!x � LOSSY (x)
П TRANSMIT (x)
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П TRANSMIT (x)



The general concurrency operator

Consider
P =   ?x: A � P’
Q =   ?x: B � Q’

Then
P || Q = ? x �

Ø P’ || Q’ if x ∈ E ∩ A ∩ BE
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Ø P’ || Q’ if x ∈ E ∩ A ∩ B

Ø P’ || Q                    if x ∈ A-B-E

Ø P || Q’                    if x ∈ B-A-E

Ø (P’ || Q) П (P || Q’)    if x ∈ (A ∩ B) – E

E

E

E E

E

E



Special cases of concurrency

Lock-step concurrency:

P || Q =  P || Q

Interleaving:

∑
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Interleaving:

P ||| Q =  P || Q
∅



Lock-step concurrency (reminder)

Consider
P =   ?x: A � P’
Q =   ?x: B � Q’

Then
P || Q = ? x �

Ø (P’ || Q’) if x ∈ E ∩ A ∩ B
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Ø (P’ || Q’) if x ∈ E ∩ A ∩ B

Ø STOP otherwise



Laws of non-deterministic internal choice

P П P = P
P П Q = Q П P
P П (Q П R) = (P П Q) П R
x � (P П Q) = (x � P) П (x �Q)

P || (Q П R) = (P || Q) П (P || R)
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P || (Q П R) = (P || Q) П (P || R)
(P П Q) || R = (P || R) П (Q || R)

The recursion operator is not distributive; consider:

P  = µX l ((a � X) П (b � X))
Q = (µX l (a � X)) П (µX l (b � X))



Note on external choice

From previous slide:
x � (P П Q) = (x � P) П (x �Q)

The question was asked in class of whether a similar 
property also applies to external choice o
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The conjectured property is 
x � (P o Q) = (x � P) o (x �Q)

It does not hold, since
(x � P) o (x �Q) = x � (P П Q)

(As a consequence of rule on next page)



General property of external choice

(?x: A � P) o (?x: B � Q) =

?x: A ∪ B �

Ø P if x ∈ A-B

Ø Q if x ∈ B-A
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Ø Q if x ∈ B-A

Ø P П Q if x ∈ A ∩ B



Traces

traces (e � P) = {<e> + s | s ∈ traces (P)}
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Exercise: determine traces

P ::=

STOP | -- Does not engage in any events

a � Q | -- Engages in a, then acts like Q

Q П R | -- Internal choice
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Q o R | -- External choice

Q || R | -- Concurrency  (E: subset of alphabet)

Q || R | -- Lock-step concurrency (same as Q || R)

Q \ E | -- Hiding

µQ l f (Q) -- Recursion

E

∑



Refinement

Process Q refines (specifically, trace-refines) process P if

traces (Q) ⊆ traces (P)

For example: 
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P refines P П Q



The trace model is not enough

The traces of and are the same:
traces (P o Q) = traces (P)  ∪ traces (Q)
traces (P П Q) = traces (P)  ∪ traces (Q)

But the processes can behave differently if for example:
P =  a � b � STOP
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P =  a � b � STOP
Q =  b � a � STOP

Traces define what a process may do, not what it may 
refuse to do



Refusals

For a process P and a trace t of P:
Ø An event set es ∈ P (∑) is a refusal set if P can forever 

refuse all events in es
Ø Refusals (P) is the set of P’s refusal sets
Ø Convention: keep only maximal refusal sets

(if X is a refusal set and Y ⊆ X, then Y is a refusal set)
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This also leads to a notion of “failure”:
Ø Failures (P, t) is Refusals (P / t)

where P/t is P after t  : 
traces (P / t) = {u | t + u ∈ traces (P))



Comparing failures

Compare
Ø P  =  a � STOP o b � STOP
Ø Q  =  a � STOP  П b � STOP

Same traces, but:
Ø Refusals (P) = ∅
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Ø Refusals (P) = ∅

Ø Refusals (Q) = {{a}, {b}}



Refusal sets (from labeled transition diagram)

τ τ

∑ = { a, b, c}

{{a, c}, {b, c}}{{ c}}

a b
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a b

({b, c}} {{a, c}}

{∑}

a � STOP П b � STOP

{∑}

{∑} {∑}

a � STOP o b � STOP



A more complete notion of refinement

Process Q failures-refines process P if both

traces (Q) ⊆ traces (P)
failures (Q) ⊆ failures (P)
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Makes it possible to distinguish between o and П



Divergence

A process diverges if it is not refusing all events but not 
communicating with the environment

This happens if a process can engage in an infinite 
sequence of τ transitions

An example of diverging process:
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An example of diverging process:

(µ p.a → p) \ a



The divergence model (Brookes, Roscoe)

CSP semantics is often expressed through a failures set
A failure is of the form

[s, X]
where s is a trace (sequence of events) and X a finite set 
of events
A failure set must satisfy the following properties:
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Ø [<>, ∅] ∈ F
Ø [s + t, ∅] ∈ F   ⇒ [s, ∅] ∈ F
Ø [s, X] ∈ F ∧ Y ⊆ X   ⇒ [s, Y] ∈ F
Ø [s, X] ∈ F ∧ [s + <c>, ∅] ∉ F ⇒ [s, X ∪ {c}] ∈ F



Basic CSP syntax

P ::=

STOP | -- Does not engage in any events

a � Q | -- Engages in a, then acts like Q

Q Π R | -- Internal choice
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Q o R | -- External choice 

Q || R | -- Concurrency  (E: subset of alphabet)

Q || R | -- Lock-step concurrency (same as Q || R)

Q \ E | -- Hiding

µQ l f (Q) -- Recursion

E

∑



CSP laws in the divergence model (1/2)
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(From: Brooks & Roscoe 85)



CSP laws (2/2)
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.



Some extensions

Non-timed:
Ø The � event (not in ∑): successful termination
Ø Skip : successfully terminates
Ø Sequential composition: P ; Q
Ø ⊥ : diverging process

Timed:
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⊥

Timed:
Ø P    Q: interrupt

Ø P    Q: timeout

Ø a   P: communicate immediately

Ø WAIT t: same as STOP    SKIP

t

�
t

�
t

!
�



Example (Ouaknine)

V1 = coin.in �
((coke � V1) o (fanta � V1))       (coin.out V1) �

60 !
�
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Some laws no longer hold

P || STOP = STOP if P ≠ ⊥
⊥ || STOP = ⊥

(a � P) \ b   =    a � (P \ b)   if a ≠ b
(a � P) \ a   = P \ a
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CSP: Summary

A calculus based on mathematical laws

Provides a general model of computation based on 
communication

Serves both as specification of concurrent systems and as 
a guide to implementation
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a guide to implementation

One of the most influential models for concurrency work


