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I Motivation

I ¢ S0 we'd want a system that:

|s portable

Provides high level abstractions

Provides flexibility in communication

Can take advantage of the architecture of special
parallel machines

Performs well
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I What is Charm++7?

¢ specifically aimed for highly scalable parallel

applications
¢ portable to many types of parallel machines (late 80s —

burst of parallel machine technology)

I ¢ C++ extension & runtime system

Philosophy : 'Aid the programmer in the design of
parallel algorithms (language), leave the resource
management to the system (runtime)"



I Features

from the 90s)

¢ How Is Charm++ different? (from similar work
I ¢ Supports both message passing AND shared memory

¢ Optimizations for performance (load balancing,
message scheduling)

¢ Object oriented paradigm — modularity, reusability

¢ Data abstractions specifically aimed at concurrency -
programmer productivity



I How does Charm++ work?

¢ New type of parallel object — chare

¢ Message objects

¢ Shared objects — basically abstractions of commonly
used patterns in parallelism (shared counters etc)

I ¢ C++ Extensions

®Restrictions
¢ All of C++ functionality as we know it
¢ Some restrictions on global variables — replaced by
shared objects
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Chares

¢Chare : The parallel building block

¢ A Class that is defined as 'chare’
¢ Chare object created -~ process spawned by the
runtime

¢ 'mailboxes' to receive messages (Entry Points)
¢ Special functions with the expected message type as the
argument

¢ Capabilities:
¢ sends messages to another chare's Entry Points
¢ receives messages in the EntryPoints
¢ asynchronous creation/message

passing — performance
11



Message Objects

®Message: basically a C-struct which Is
labeled as 'message’

¢ Sent asynchronously

12



Shared Objects

¢Basically abstractions of patterns
commonly used in parallel applications

¢ Read-only objects
®\\rite-once objects
¢ Accumulators (shared counters)

¢ Monotonic objects (for branch-and-bound) ,,



Example Program: Primes

¢ \We want to count prime numbers
from O to N

¢ \We will recursively divide the range in half
until range < 100

¢ \When the range is small - sequential
computation

¢ Code made more abstract for readability ,,



Example Program: Our Objects

Primes Chare: parallel process

Entry Points:

StartComputing
[ Functions:

SequentialPrimeCount

updates

accepts

Range Message class

Int start

int finish

Accumulator class (shared

Functions:

add

getValue

counter)
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Example Program: Primes (main)

Accumulator * total;
//special shared object,
visible to all chares

main() {

total = new

Accumulator(0); PrimesChare - class of cre-
ated chare
newChare (PrimesChare, StartComputing - entry
StartComputing, new point function called upon
RangeMessage(0,N)); creation of chare
} RangeMessage — the mes-

sage sent to the StartCom-
puting EP 16



Example Program: The
PrimesChare class

chare class PrimesChare

entryPoint:
StartComputing(RangeMessage m)

if(m.finish — m.start > 100) //if range is > 100, split
int middle = m.finish — m.start /2; //the work to
//two processes
newChare (PrimesChare, StartComputing,
new RangeMessage(m.start,middle));

newChare (PrimesChare, StartComputing,
new RangelMessage(middle+l,m.finish)); }

else //else, do the work
int count = sequentialPrimeCount
(m.start,m.finish);
total->add(count); 17
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Example Program: The
PrimesChare class

chare class PrimesChare
entryPoint:
StartComputing(RangeMessage m)

if(m.finish — m.start > 100) //if range is > 100, split
int middle = m.finish — m.start /2; //the work to
//two processes
newChare (PrimesChare, StartComputing,
new RangeMessage(m.start,middle));

asynchronous

newChare (PrimesChare, StartComputing,j

new RangeMessage(middle+1l,m.finish)); }

else //else, do the work
int count = sequentialPrimeCount
(m.start,m.finish);

total->add(count); ¢ shared (global)
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Load Balancing Strategies

¢ Random
¢Central Manager
¢ Adaptive

¢ Token-based

¢ Greatly enhanced over time

20



Performance Results

¢nCUBE/2 (Intel, late 80s)

Processors
1

16

64

256

Speed Up
TSP Primes
1 1

12 8

21.7 31
21.8 146

Jacobi
1

9

35

130
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I Performance Results
¢®Sequent Symmetry (Intel, 1987)
I ¢ shared memory
¢ up to 30 processors (66 MHz)
Speed Up

Processors TSP Primes Jacobi
1 1 1 1
4 4 4 3.7
9 8.7 8.9 7.5
16 15.1 15.8 12
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Applications

¢ OpenAtom (quantum chemistry modeling)
¢®NAMD (molecular dynamics simulation)
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Applications

®ChaNGa

¢ collisionless N-body simulation
¢ hydrodynamics

¢ Charm++ chosen for
¢ support for massive parallelism
¢ dynamic load balancing schemes

¢ Scales to up to 20,000 processors on an IBM
Bluegene/L
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Evolution

®Charm ++ v 6.4.0 released this March

Syntax has been refined

Multiple value parameters as entry point arguments
Vastly enhanced load balancing

More platforms supported

Talks, tutorials, active research
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Conclusions

¢®Charm++ Is a system suited for massively
parallel applications

¢ Very active for almost two decades
¢ Has scientific applications
¢ Portable, highly optimized and modular
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Conclusions

¢\Would | use i1t?

¢ Overhead/Learning Curve (-)
¢ A language | already know (+)
¢ Depends on the task

¢ Questions/Criticism
¢ Results are compared to the sequential version
¢ How exactly are the shared objects managed?
¢ Few implementation details
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Extra Example Program: Primes
(main)

Accumulator * total; //special shared object, visible to
all chares

main(){

int start = 0;
int finish = N;
total = new Accumulator(0);

newChare (PrimesChare, StartComputing,
Message(start,finish));

}

Quiescence(){ //executed when all chares have finished
int result = total->getValue();
print(result);

} 28



Extra Example Program: Primes
(main)
Accumulator * total;
//special shared object,
visible to all chares

main(){

int start = 0;
int finish = N;

total = new PrimesChare — class of cre-
Accumulator(0); ated chare
StartComputing — entry
newChare (PrimesChare, point function called upon
StartComputing, creation of chare
Message(start,finish)); Message — the message sent
}

to the StartComputing EP
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I Extra: Parallel Machines from the

I Past
¢®Ncube/2
I ¢ Non shared memory machine
¢ Processors — Vvertices of hypercube

¢ Connections between processors — edges of hyper-
cube

¢Sequent Symmetry (Intel, 1987)

¢ shared memory
¢ up to 30 processors (66 MHz)
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Extra: Adaptive MPI

¢ Adaptive MPI (2001)

¢ Implementation of the MPI standard on top of Charm++
¢ MPI takes advantage of the Charm++ runtime
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