Charm++: A Portable Concurrent Object Ori-
ented System Based on C++

Laxmikant V. Kale Sanjeev Krishnan
University of lllinois
1993

Speaker: Ariadni-Karolina Alexiou

I Motivation

¢ Yet another concurrent programming
I system

¢\Why not just
use threads?

I Motivation

¢ Yet another concurrent programming
I system

¢\Why not just

use threads?
¢ 0OS-dependent

I Motivation

¢ Yet another concurrent programming
I system

¢\Why not just

use threads?

¢ 0OS-dependent
¢ Low level

I Motivation

¢ Yet another concurrent programming
I system

¢\Why not just

use threads?

¢ 0OS-dependent
¢ Low level
¢ Difficult communication

I Motivation

¢ Yet another concurrent programming
I system

¢\Why not just

use threads?
OS-dependent

Low level

Difficult communication
Not taking advantage of
special architectures

L 2 2K 2 2

I Motivation

I ¢ S0 we'd want a system that:

|s portable

Provides high level abstractions

Provides flexibility in communication

Can take advantage of the architecture of special
parallel machines

Performs well

L 2 2R 2R 2

4

I What is Charm++7?

¢ specifically aimed for highly scalable parallel

applications
¢ portable to many types of parallel machines (late 80s —

burst of parallel machine technology)

I ¢ C++ extension & runtime system

Philosophy : 'Aid the programmer in the design of
parallel algorithms (language), leave the resource
management to the system (runtime)"

I Features

from the 90s)

¢ How Is Charm++ different? (from similar work
I ¢ Supports both message passing AND shared memory

¢ Optimizations for performance (load balancing,
message scheduling)

¢ Object oriented paradigm — modularity, reusability

¢ Data abstractions specifically aimed at concurrency -
programmer productivity

I How does Charm++ work?

¢ New type of parallel object — chare

¢ Message objects

¢ Shared objects — basically abstractions of commonly
used patterns in parallelism (shared counters etc)

I ¢ C++ Extensions

®Restrictions
¢ All of C++ functionality as we know it
¢ Some restrictions on global variables — replaced by
shared objects

10

Chares

¢Chare : The parallel building block

¢ A Class that is defined as 'chare’
¢ Chare object created -~ process spawned by the
runtime

¢ 'mailboxes' to receive messages (Entry Points)
¢ Special functions with the expected message type as the
argument

¢ Capabilities:
¢ sends messages to another chare's Entry Points
¢ receives messages in the EntryPoints
¢ asynchronous creation/message

passing — performance
11

Message Objects

®Message: basically a C-struct which Is
labeled as 'message’

¢ Sent asynchronously

12

Shared Objects

¢Basically abstractions of patterns
commonly used in parallel applications

¢ Read-only objects
®\\rite-once objects
¢ Accumulators (shared counters)

¢ Monotonic objects (for branch-and-bound) ,,

Example Program: Primes

¢ \We want to count prime numbers
from O to N

¢ \We will recursively divide the range in half
until range < 100

¢ \When the range is small - sequential
computation

¢ Code made more abstract for readability ,,

Example Program: Our Objects

Primes Chare: parallel process

Entry Points:

StartComputing
[Functions:

SequentialPrimeCount

updates

accepts

Range Message class

Int start

int finish

Accumulator class (shared

Functions:

add

getValue

counter)

15

Example Program: Primes (main)

Accumulator * total;
//special shared object,
visible to all chares

main() {

total = new

Accumulator(0); PrimesChare - class of cre-
ated chare
newChare (PrimesChare, StartComputing - entry
StartComputing, new point function called upon
RangeMessage(0,N)); creation of chare
} RangeMessage — the mes-

sage sent to the StartCom-
puting EP 16

Example Program: The
PrimesChare class

chare class PrimesChare

entryPoint:
StartComputing(RangeMessage m)

if(m.finish — m.start > 100) //if range is > 100, split
int middle = m.finish — m.start /2; //the work to
//two processes
newChare (PrimesChare, StartComputing,
new RangeMessage(m.start,middle));

newChare (PrimesChare, StartComputing,
new RangelMessage(middle+l,m.finish)); }

else //else, do the work
int count = sequentialPrimeCount
(m.start,m.finish);
total->add(count); 17

Example Program: The
PrimesChare class

chare class PrimesChare
entryPoint:
StartComputing(RangeMessage m)

if(m.finish — m.start > 100) //if range is > 100, split
int middle = m.finish — m.start /2; //the work to
//two processes
newChare (PrimesChare, StartComputing,
new RangeMessage(m.start,middle));

asynchronous

newChare (PrimesChare, StartComputing,j

new RangeMessage(middle+1l,m.finish)); }

else //else, do the work
int count = sequentialPrimeCount
(m.start,m.finish);
total->add(count); 18

Example Program: The
PrimesChare class

chare class PrimesChare
entryPoint:
StartComputing(RangeMessage m)

if(m.finish — m.start > 100) //if range is > 100, split
int middle = m.finish — m.start /2; //the work to
//two processes
newChare (PrimesChare, StartComputing,
new RangeMessage(m.start,middle));

asynchronous

newChare (PrimesChare, StartComputing,j

new RangeMessage(middle+1l,m.finish)); }

else //else, do the work
int count = sequentialPrimeCount
(m.start,m.finish);

total->add(count); ¢ shared (global)

19

Load Balancing Strategies

¢ Random
¢Central Manager
¢ Adaptive

¢ Token-based

¢ Greatly enhanced over time

20

Performance Results

¢nCUBE/2 (Intel, late 80s)

Processors
1

16

64

256

Speed Up
TSP Primes
1 1

12 8

21.7 31
21.8 146

Jacobi
1

9

35

130

21

I Performance Results
¢®Sequent Symmetry (Intel, 1987)
I ¢ shared memory
¢ up to 30 processors (66 MHz)
Speed Up

Processors TSP Primes Jacobi
1 1 1 1
4 4 4 3.7
9 8.7 8.9 7.5
16 15.1 15.8 12

22

Applications

¢ OpenAtom (quantum chemistry modeling)
¢®NAMD (molecular dynamics simulation)

23

Applications

®ChaNGa

¢ collisionless N-body simulation
¢ hydrodynamics

¢ Charm++ chosen for
¢ support for massive parallelism
¢ dynamic load balancing schemes

¢ Scales to up to 20,000 processors on an IBM
Bluegene/L

24

Evolution

®Charm ++ v 6.4.0 released this March

Syntax has been refined

Multiple value parameters as entry point arguments
Vastly enhanced load balancing

More platforms supported

Talks, tutorials, active research

L 2 2B 2B 2R 2

25

Conclusions

¢®Charm++ Is a system suited for massively
parallel applications

¢ Very active for almost two decades
¢ Has scientific applications
¢ Portable, highly optimized and modular

26

Conclusions

¢\Would | use i1t?

¢ Overhead/Learning Curve (-)
¢ A language | already know (+)
¢ Depends on the task

¢ Questions/Criticism
¢ Results are compared to the sequential version
¢ How exactly are the shared objects managed?
¢ Few implementation details

27

Extra Example Program: Primes
(main)

Accumulator * total; //special shared object, visible to
all chares

main(){

int start = 0;
int finish = N;
total = new Accumulator(0);

newChare (PrimesChare, StartComputing,
Message(start,finish));

}

Quiescence(){ //executed when all chares have finished
int result = total->getValue();
print(result);

} 28

Extra Example Program: Primes
(main)
Accumulator * total;
//special shared object,
visible to all chares

main(){

int start = 0;
int finish = N;

total = new PrimesChare — class of cre-
Accumulator(0); ated chare
StartComputing — entry
newChare (PrimesChare, point function called upon
StartComputing, creation of chare
Message(start,finish)); Message — the message sent
}

to the StartComputing EP
29

I Extra: Parallel Machines from the

I Past
¢®Ncube/2
I ¢ Non shared memory machine
¢ Processors — Vvertices of hypercube

¢ Connections between processors — edges of hyper-
cube

¢Sequent Symmetry (Intel, 1987)

¢ shared memory
¢ up to 30 processors (66 MHz)

30

Extra: Adaptive MPI

¢ Adaptive MPI (2001)

¢ Implementation of the MPI standard on top of Charm++
¢ MPI takes advantage of the Charm++ runtime

31

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

