A CSP Model for
Java Multithreading

Paper by Peter H. Welch and Jeremy M.R. Martin

Why Java needs a CSP model

* Many Java programs using threads seem to work correctly,
but

Data races might be hidden
Deadlocks might not yet be detected

* How can we be sure that data races and deadlocks in fact
cannot occur?

Why Java needs a CSP model

* Solution: Model Java‘s synchronization facility in CSP

Allows us to reason in a formal way about its correct usage in
Java programs

* Synchronization primitives of Java‘s client interface that are
modelled:

synchronized
wait (), notify (), notifyAll ()

Java Monitors in CSP

* We model synchronized by the following CSP processes [1:
STARTSYNC(o, me) = claim.o.me => SKIP
ENDSYNC(o0, me) =release.o.me=> SKIP

Java Monitors in CSP

* wait (), notify (), notifyAll () are modelled by

the following CSP processes 1:
WAIT(o, me) = waita.o.me = release.o.me =
waitb.o.me =2 claim.o.me => SKIP

NOTIFY(o0, me) = notify.0.me = SKIP
NOTIFYALL(o, me) = notifyAll.o.me = SKIP

Java Monitors in CSP

* Java’‘s internal monitor facility for an object o

is modelled by 1I:
MONITOR(0) = MLOCK(o) || MWAIT(o, {})

MLOCK(o) = claim.0o?t = MLOCKED(o, t)
MLOCKED(o, t) = release.o.t = MLOCK(0)
O notify.o.t = MLOCKED(o, t)
O notifyall.o.t = MLOCKED(o, t)
O waita.o.t = MLOCKED(o, t)

Java Monitors in CSP

» MWAIT (using RELEASE) is defined as follows 1I:
MWAIT(o, ws) = (waita.o?t =>MWAIT(o, ws U {t}))
O (notify.o?t => if (|ws| > 0) then

[1 waitb.ols > MWAIT(o0, ws—{s})
S € WS

else
MWATIT(o, {}))
O (notifyall.o?t = RELEASE(o, ws))

RELEASE(o, ws) = if (|ws]| > 0) then

[1 waitb.olt > RELEASE(o, ws — {t})
t € ws

else
MWAIT(o, {})

Case Study

CSP model of One20neChannel

* So far we have set up our CSP model of Java‘s synchronization
facility

* Let’s apply our CSP model to an example: The One20neChannel
of JCSP

Case Study

CSP model of One20neChannel

Allows exactly two threads to communicate with each other

* Communication complies with rendez-vous pattern
Reading thread and writing thread meet at some point in time

Internal attributes:

Object channel_ hold: Data being transmitted via the
channel

boolean channel_ empty : Indicates whether channel is
empty

Methods:
public Object synchronized read()

public synchronized void write(Object mess)

Case Study

CSP model of One20neChannel

* Variables (restricted to boolean values) are managed by the
VARIABLE process as follows 1

VARIABLE(o, v) = VAR2(o, v, TRUE)

VAR2(o0,v,d) = O getvar.o.v.t!d =2 VARZ2(o, v, d))
t € Threads

O (O setvar.o.v.t?x = VARZ2(o, v, X))
t € Threads

VARIABLES(0)=VARIABLE(o, channel _empty)
|| VARIABLE(o, channel_hold)

Case Study

CSP model of One20neChannel

Java Code CSP Model

public synchronized Object read()
throws InterruptedException{
if (channel_empty) {
channel_empty = false;
wait();
notify();
lelse{
channel_empty = true;
notify();

}

return channel_hold;

}

Java code and CSP model as in [1]

Case Study

CSP model of One20neChannel

return channel_hold;

}

I
Java Code I CSP Model
|
public synchronized Object read() : READ(o, t) =
throws InterruptedException{ | ready.o.t => claim.o.t => release.o.t =
if (channel_empty) { : READ(o, t)
channel_empty = false; :
wait(); I
notify(); :
lelse{ :
channel_empty = true; |
notify(); :
} I
|
|
|
|
|
|

Java code and CSP model as in [1]

Case Study

CSP model of One20neChannel

Java Code CSP Model

public synchronized Object read() ! READ(o, t) =
ready.o.t = claim.o.t =
getvar.o.channel_empty.t?c = (
if (c = TRUE) then
else

); => release.o.t = READ(o, t)

throws InterruptedException{
if (channel_empty) {
channel_empty = false;
wait();
notify();
lelse{
channel_empty = true;
notify();

}

return channel_hold;

}

Java code and CSP model as in [1]

Case Study

CSP model of One20neChannel

Java Code CSP Model

public synchronized Object read() ! READ(o, t) =
ready.o.t = claim.o.t =
getvar.o.channel_empty.t?c = (
if (c = TRUE) then

setvar.o.channel _empty.t!FALSE

throws InterruptedException{
if (channel_empty) {
channel_empty = false;

wait(); else
notify(); setvar.o.channel_empty.t!TRUE
lelse{); getvar.o.channel_hold.t?mess =>
channel_empty = true; release.o.t = read.o.timess =
: READ(o, t)
notify();
}

return channel_hold;

}

Java code and CSP model as in [1]

Case Study

CSP model of One20neChannel

Java Code CSP Model

public synchronized Object read() ! READ(o, t) =
ready.o.t = claim.o.t =
getvar.o.channel_empty.t?c = (
if (c = TRUE) then

setvar.o.channel _empty.t!FALSE =>

throws InterruptedException{
if (channel_empty) {
channel_empty = false;

wait(); WAIT(o, t): NOTIFY(o, t)
notify(); else
telse{ setvar.o.channel_empty.t!/TRUE =>

NOTIFY(o, t)
); getvar.o.channel_hold.t?mess =>
release.o.t = read.o.t!mess =
READ(o, t)

channel_empty = true;
notify();
}

return channel_hold;

}

Java code and CSP model as in [1]

Case Study

CSP model of One20neChannel

Java Code CSP Model

public synchronized Object read() ! READ(o, t) =
ready.o.t = claim.o.t =
getvar.o.channel_empty.t?c = (
if (c = TRUE) then

setvar.o.channel _empty.t!FALSE =>

throws InterruptedException{
if (channel_empty) {
channel_empty = false;

wait(); WAIT(o, t): NOTIFY(o, t)
notify(); else
telse{ setvar.o.channel_empty.t!/TRUE =>

NOTIFY(o, t)
); getvar.o.channel_hold.t?mess =>
release.o.t = read.o.t!mess =
READ(o, t)

channel_empty = true;
notify();
}

return channel_hold;

}

Java code and CSP model as in [1]

Case Study

CSP model of One20neChannel

* CSP model of write method similar to that of read method

» The final JCSP One20neChannel is 11
JCSPCHANNEL(o, t,, t,) =READ(0, t,) | | WRITE(o, t,) ||
MONITOR(0) | | VARIABLES(0)

* It is still possible that a thread, for which the channel is not
destinated, tries to access the channel

Case Study

Simplified Model of One20neChannel

* The previous model of the One20neChannel is simplified such
that monitors are no longer needed

* The simplified model represents the One20neChannel by two
processes

LEFT process: Models ending to which input is written
RIGHT process: Models ending from which output is read

Case Study

Simplified Model of One20neChannel

 The simplified channel is defined as follows 1:
CHANNEL(o, t,, t,) = (LEFT(o0, t,) | | RIGHT(o, t,))
\ {transmit.o.m | m € Data}

LEFT(o, t;) = write.o.t,?mess => transmit.olmess =>
ack.o.t; > LEFT(o, t,)

RIGHT(o, t,) = ready.o.t, => transmit.o?mess =>
read.o.t,!mess =>» RIGHT(o, t,)

Case Study

Simplified Model of One20neChannel

* Equivalence of the simplified model and the original model
was verified using FDR

* From now on, we can therefore rely on the simplified model
instead of the more complex model of the One20neChannel

Makes reasoning about it easier

Conclusion

* CSP model of Java‘s synchronization facility can be
incorporated to build CSP models of Java programs

* Reasoning about absence of deadlocks as well as data races
possible using the CSP model

* Verifying equivalence of complex to simplified models
possible

References

[1] Peter H. Welch and Jeremy M. R. Martin. 2000. A CSP Model for
Java Muultithreading. International Symposium on Software
Engineering for Parallel and Distributed Systems (PDSE). 114-122.

Questions?

