
Evaluating MapReduce for Multi-
core and Multiprocessor Systems

Colby Ranger, Ramanan Raghuraman, Arun Penmetsa,
Gary Bradski, Christos Kozyrakis

Computer Systems Laboratory
Stanford University

Presentation: Fabian Gremper

Structure

• Introduction
– MapReduce

• Phoenix

• Evaluation

• Conclusion

Introduction

MapReduce

Introduction
What is MapReduce?

• MapReduce
– Allows programmers to write functional style code

that is automatcally parallelized and scheduled in
a distributed system

– Practical. Avoid having to
• manage concurrency manually (threads/locks)

• deal with data locality

– Portable

Introduction
What does MapReduce do for you?

• MapReduce
– Specify concurrency and locality at a high level

– Efficient runtime system handles low-level
mapping, resource management and fault
management

Introduction
How does MapReduce work?

• Map
– Input: ???

– Output: Intermediate <key, value> pairs.

• Reduce
– Input: Intermediate <key, value> pairs with the

same key.

– Output: Zero or more output pairs, sorted by their
key.

Introduction
MapReduce Example

• Example: Word count

Map(void *input) {
for each word w in input
EmitIntermediate(w, 1);

}

Reduce(String key, Iterator values) {
int result = 0;
for each v in values
result += v;

Emit(w, result);
}

Introduction
Why MapReduce is awesome

• Why?
– Simplicity

– Programmer focuses on functionality

– Model provides enough high-level information for
parallelization

– Pretty widely applicable

Phoenix

(Stanford University)

Phoenix

• Implementation of MapReduce
– Multi-core and multi-processor systems

– Shared memory

• Includes a programming API

• Run-time system
– Thread creation

– Dynamic task scheduling

– Fault tolerance across processor nodes

Phoenix

Functions provided by the runtime

int phoenix_scheduler(scheduler_args_t *args)

• Initializes the runtime system.

• scheduler_args_t provides the needed functions and data pointers.

void emit_intermediate(void *key, void *val, int key_size)

• Used in Map to emite intermediate output.

void emit(void *key, void *val)

• Used in Reduce to emit a final output pair.

Phoenix
Functions defined by the user

int (*splitter_t)(void *, int, map_args_t *)
• Splits input across Map tasks.

– Arguments: input data pointer, unit size for each task, input buffer pointer for each Map task.

void (*map_t)(map_args_t *)
• The map function. Each Map tasks executes this function on its input.

int (*partition_t)(int, void *, int)
• Partitions intermediate pairs for Reduce task.

– Arguments: number of Reduce tasks, a pointer to the keys, and a size of the key. Default partitioning is based
on the key hashing.

void (*reduce_t)(void *, void **, int)
• Reduce function. Each reduce task executes this on its input.

– Arguments: pointer to a key, a pointer to the associated values, value count. Default is the identity function.

int (*key_cmp_t)(const void *, const void *)
• Compare function.

Phoenix
Data flow

Phoenix
Data flow

• Scheduler determines the number of cores to use for this computation.

• Spawns a worker thread for each core.

• Map and Reduce tasks are then later dynamically assigned.

Phoenix
Data flow

• Scheduler uses the Splitter to divide input pairs into equally sized units.

Phoenix
Data flow

• Map tasks are assigned dynamically to workers.

• Intermediate <key, value> pairs.

Phoenix
Data flow

• Splits <key, value> into units for the Reduce tasks.

• Ensures all values of the same key go to the same unit.

Phoenix
Data flow

• Wait until Map stage finished completely.

Phoenix
Data flow

• Reduce tasks dynamically assigned to workers.

• Possibly higher imbalance. (Same key  same worker)

Phoenix
Data flow

• Merge into a single buffer.

• Takes log(P/2) steps.

• Ordered.

Phoenix
Buffer management

• Buffers allocated in shared memory.
– Accessed in a well specified way by a few

functions.

– Intermediate buffers not visible to user code.

• Intermediate buffers are used to store
intemediate output pairs.
– Each worker has its own set of buffers.

– Dynamically resized.

Phoenix
Fault recovery

• Limited fault detection, focuses on recovery

• Detect faults through timeouts
– Re-execute the failed task

– Assume transient error

• Repeated errors  assume permanent error.
– Do not use this worker anymore.

• Corruption of the shared memory?

• No fault recovery for the scheduler itself.

Evaluation

of Phoenix

Evaluation

• Shared memory systems

– The same program should run as efficiently as possible
on any type of shared-memory system.

– Without any involvement of the user.

Evaluation
Applications

Evaluation
Speedup for different # of processors

Evaluation
Speedup for different # of processors

• WordCount, MatrixMultiply, StringMatch, LinearRegression
key-based structure  significant speedups

• Kmeans, PCA, Histogram
significant overheads due to unnatrual key-based structure

Evaluation
Speedup for different # of processors

• ReverseIndex

• Heaps become increasingly smaller over time

• Reduced merging overhead due to additional cores and caching

Evaluation
Speedup for different # of processors

• MatrixMultiply

• Caching effects (beneficial sharing in the CMP, increased cache
capacity in the SMP with more cores)

Evaluation
Speedup for different dataset sizes

Evaluation
Speedup for different dataset sizes

• Larger data sets allow the phoenix runtime to better armotize its
overheads for task management, buffer allocation and sorting.

• Caching effects are more significant.
• Load imbalance is more rare

Evaluation
Speedup for different dataset sizes

• StringMatch, LinearRegression

• Even their small sets contain a large number of elements

• Significant amount of per-element computation in their dataset

Evaluation
Speedup vs. P-threads

Evaluation
Fault injection

• Fault injection experiment
– Failure affects the execution and buffers for the

tasks, but does not corrupt the runtime or its data
structures

– Runtime increases by
• 9-14% for 1 permanent fault

(mostly depending on at which point the fault occured)

• <0.5% for 1-2 transient faults

Conclusion

Conclusion

• Goal: Evaluating MapReduce for shared-
memory systems.
– Given an efficient implementation, MapReduce is

an attractive model for some classes of
computation.

– Leads to good parallel efficiency with simple code
• Dynamically managed without any programmer effort

– MapReduce performs subobtimally for
applications that are difficult to express with its
model anyway...

	Evaluating MapReduce for Multi-core and Multiprocessor Systems
	Structure
	Introduction
	Introduction�What is MapReduce?
	Introduction�What does MapReduce do for you?
	Introduction�How does MapReduce work?
	Introduction�MapReduce Example
	Introduction�Why MapReduce is awesome
	Phoenix
	Phoenix
	Phoenix
	Phoenix
	Phoenix�Data flow
	Phoenix�Data flow
	Phoenix�Data flow
	Phoenix�Data flow
	Phoenix�Data flow
	Phoenix�Data flow
	Phoenix�Data flow
	Phoenix�Data flow
	Phoenix�Buffer management
	Phoenix�Fault recovery
	Evaluation
	Evaluation
	Evaluation�Applications
	Evaluation�Speedup for different # of processors
	Evaluation�Speedup for different # of processors
	Evaluation�Speedup for different # of processors
	Evaluation�Speedup for different # of processors
	Evaluation�Speedup for different dataset sizes
	Evaluation�Speedup for different dataset sizes
	Evaluation�Speedup for different dataset sizes
	Evaluation�Speedup vs. P-threads
	Evaluation�Fault injection
	Conclusion
	Conclusion

