Evaluating MapReduce for Multi-
core and Multiprocessor Systems

Colby Ranger, Ramanan Raghuraman, Arun Penmetsa,
Gary Bradski, Christos Kozyrakis

Computer Systems Laboratory
Stanford University

Presentation: Fabian Gremper

Introduction
— MapReduce

Phoenix
Evaluation

Conclusion

Structure

Introduction

MapReduce

Introduction
What is MapReduce?

e MapReduce

— Allows programmers to write functional style code
that is automatcally parallelized and scheduled in
a distributed system

— Practical. Avoid having to
* manage concurrency manually (threads/locks)

e deal with data locality
— Portable

Introduction
What does MapReduce do for you?

e MapReduce

— Specify concurrency and locality at a high level

— Efficient runtime system handles low-level
mapping, resource management and fault
management

Introduction
How does MapReduce work?

e Map

— Input: ??7?

— Output: Intermediate <key, value> pairs.
* Reduce

— Input: Intermediate <key, value> pairs with the
same key.

— Output: Zero or more output pairs, sorted by their
key.

Introduction
MapReduce Example

e Example: Word count

Map(void *input) {
for each word w In 1nput
EmitIntermediate(w, 1);
ks

Reduce(String key, lterator values) {
int result = O;
for each v i1n values
result += v;
Emit(w, result);

}

Introduction
Why MapReduce is awesome

e Why?
— Simplicity
— Programmer focuses on functionality

— Model provides enough high-level information for
parallelization

— Pretty widely applicable

Phoenix

(Stanford University)

Phoenix

 Implementation of MapReduce
— Multi-core and multi-processor systems
— Shared memory

* Includes a programming API

 Run-time system
— Thread creation
— Dynamic task scheduling
— Fault tolerance across processor nodes

Phoenix

Functions provided by the runtime

int phoenix_scheduler(scheduler_args t *args)

void emit _intermediate(void *key, void *val, Int key size)

void emit(void *key, void *val)

Phoenix

Functions defined by the user

int (splitter_t)(void *, int, map_args t *)

void (*map_t)(map_args t *)

int (Cpartition_t)(int, void *, Int)

void (*reduce_t)(void *, void **, 1Int)

int (*key_cmp_t)(const void *, const void *)

Input

Phoenix
Data flow

Map Stage Reduce Stage
Worker 1 Worker 1

II artition . II II
|| ("-_ T T

" S YavAL L
|| artition A 1]

Worker N Worker M

Phoenix
Data flow

Map Stage Reduce Stage

Input

Worker 1 Worker 1

|| T n
|| l’L T ll\\\

|| : YT T /

- - - s
.

II i .) II II

Worker N Worker M

Scheduler determines the number of cores to use for this computation.

Spawns a worker thread for each core.
Map and Reduce tasks are then later dynamically assigned.

Output

Phoenix
Data flow

Map Stage Reduce Stage

Worker 1 Worker 1

|| Al T
PN
\

Input

/V“ artition <\ ’A T F .
'S T e
5 _ . ¥ o
O

\ ition : Reduce
II artition ’ ‘v I I . I I //
A ..‘

Worker N Worker M

Scheduler uses the Splitter to divide input pairs into equally sized units.

Phoenix

Data flow

Map Stage

Input

Worker 1

Worker N

II artition

Intermediate <key, value> pairs.

Reduce Stage
Worker 1

T T

‘,h-
STl

A 1)

Worker M

Map tasks are assigned dynamically to workers.

Input

Phoenix
Data flow

Map Stage Reduce Stage

Worker 1 Worker 1

|| T ||:
.11 T “\

II > 1 il y

1 — | //
.1 1

Worker N Norker M

1) o o

Splits <key, value> into units for the Reduce tasks.
Ensures all values of the same key go to the same unit.

Input

Phoenix
Data flow

Map Stage Reduce Stage
Worker 1 Worker 1

L
|
]

A
-
| |
-

Worker N Norker M

Wait until Map stage finished completely.

T n

: II

II

Input

Phoenix
Data flow

Map Stage Reduce Stage

Worker 1 Worker 1

" ‘\ su..x

/ //
Merge

Worker N Norker M

Reduce tasks dynamically assigned to workers.
Possibly higher imbalance. (Same key - same worker)

Input

Phoenix
Data flow

Map Stage Reduce Stage

Worker 1

Worker N

Merge into a single buffer.
Takes log(P/2) steps.
Ordered.

Worker 1

T T

‘,h-
STl

A 1)

Worker M

Output

Phoenix
Buffer management

e Buffers allocated in shared memory.

— Accessed in a well specified way by a few
functions.

— Intermediate buffers not visible to user code.
* Intermediate buffers are used to store

intemediate output pairs.

— Each worker has its own set of buffers.

— Dynamically resized.

Phoenix
Fault recovery

Limited fault detection, focuses on recovery
Detect faults through timeouts

— Re-execute the failed task
— Assume transient error

Repeated errors = assume permanent error.

— Do not use this worker anymore.
Corruption of the shared memory?
No fault recovery for the scheduler itself.

Evaluation

of Phoenix

Evaluation

 Shared memory systems

CMP SMP

Model Sun Fire T1200 Sun Ultra-Enterprise 6000

CPU Type UltraSparc T'1 UltraSparc 11
single-issue 4-way issue
in-order in-order

CPU Count 8 24

Threads/CPU | 4 1

L1 Cache 8KB 4-way SA 16KB DM

L2 Size 3MB 12-way SA | 512KB per CPU
shared (off chip)

Clock Freq. 1.2 GHz 250 MHz

— The same program should run as efficiently as possible
on any type of shared-memory system.

— Without any involvement of the user.

Evaluation
Applications

Description Data Sets Code Size Ratio
Pthreads | Phoenix
Word Determine frequency of words in a file S:10MB, M:50MB, L:100MB 1.8 0.9
Count
Matrix Dense integer matrix multiplication S:100x 100, M:500x500, L:1000x 1000 1.8 2.2
Multiply
Reverse Build reverse index for links in HTML files S:100MB, M:500MB, L:1GB 1.5 0.9
Index
Kmeans Iterative clustering algorithm to classify 3D | S:10K, M:50K, L:100K points 1.2 1.7
data points into groups
String Search file with keys for an encrypted word S:50MB, M:100MB, L:500MB 1.8 1.5
Match
PCA Principal components analysis on a matrix S:500x500, M:1000x1000, L.:1500x1500 1.7 2.3
Histogram | Determine frequency of each RGB compo- | S:100MB, M:400MB, L:1.4GB 24 2.2
nent in a set of images
Linear Compute the best fit line for a set of points S:50M, M:100M, L:500M 1.7 1.6

Regression

CMP Speedup
o]
=

Evaluation
Speedup for different # of processors

b2 Cores

ore:
[18 Cores

¢
| I I

SMP Speedup
= & S & &

o
|

o
|

02 Cores
H 4 Cores

[18 Cores
[116 Cores

W24 Cores

1

CMP Speedup

5]
=]

o]
[9]]

o]
=]

—
on
I

—
(o]
1

on
I

O
I

Evaluation

Speedup for different # of processors

43 72

O 2 Cores 30
W 4 Cores
[18 Cores

25

02 Cores
H 4 Cores
[18 Cores

[116 Cores
W24 Cores

]
(=]

SMP Speedup
L&}

[
=
—

<)
1
_ 1

ddddddd

n Matrix Mult StringMatch Km eans Reverselndex PCA Histegram LingarReg WerdCount MatrizMult StringMatch

WordCount, MatrixMultiply, StringMatch, LinearRegression
key-based structure = significant speedups

Kmeans, PCA, Histogram
significant overheads due to unnatrual key-based structure

Histegram LinearReg

CMP Speedup
— i %] o] [4]
N [en] (8] = o [en]

O
I

Speedup for different # of processors

Evaluation

43 72

(<))
L]
|

b2 Cores
W 4 Cores
[18 Cores

o]
(8]

02 Cores
H 4 Cores
[18 Cores
[116 Cores
W24 Cores

]
(=]

SMP Speedup
L&}

[
=
—

<)
1
_ 1

- |—I T i - - T . — 0 -
StringMatch Km eans verselnd i i ordCount MatrizMul

* Reverselndex

Heaps become increasingly smaller over time
Reduced merging overhead due to additional cores and caching

CMP Speedup
— i %] o] [4]
N [en] (8] = o [en]

O
I

Speedup for different # of processors

Evaluation

43 72

O 2 Cores 30
W 4 Cores
[18 Cores

25

02 Cores
H 4 Cores
[18 Cores
[116 Cores
W24 Cores

]
(=]

SMP Speedup
L&}

[
=
—

<)
1
_ 1

- |—I T i - - T . — 0 -
StringMatch Km eans verselnd i i ordCount MatrizMul

MatrixMultiply

Caching effects (beneficial sharing in the CMP, increased cache
capacity in the SMP with more cores)

Evaluation
Speedup for different dataset sizes

30

Osmall

W medium
95 [large

]
o

CMP Speedup
o

(=]
]
[

o
|
|

o

Evaluation
Speedup for different dataset sizes

33 7
30
Osmall
W medium
[large

]
(&)1

]
o

CMP Speedup
o
‘_|

(=]
]
[

o
|
|

1

Werdeount Matri= mult String match Km eans Reverseindex PCA Histogram Linear Rey

0

Larger data sets allow the phoenix runtime to better armotize its
overheads for task management, buffer allocation and sorting.

Caching effects are more significant.
Load imbalance is more rare

Evaluation
Speedup for different dataset sizes

33 71

30
Osmall
W medium
95 [large
:'.‘.20
=
2
& m
o L
A 15
[/
5
10 — : —
i | i_|> | _
0 . . i . i |

Werdeount Matri= mult String match Km eans Reverseindex PCA Histogram Linear Rey

e StringMatch, LinearRegression
* Even their small sets contain a large number of elements

e Significant amount of per-element computation in their dataset

CMP Speedup

Evaluation

Speedup vs. P-threads

52 71
30
O Pthreads

B Phoenix

Histegram Linear_reg

Wordcount Matrix_mult String_match Kmeans Reverseindex FCA

30

i a8

HE Pthreads

W Phoenix

25

s
o

SMP Speedup
&

10

Wordcount

PCA Histogram Linear_reg

Matrix_mult String_match Kmeans Reverseindex

Evaluation
Fault injection

e Fault injection experiment

— Failure affects the execution and buffers for the
tasks, but does not corrupt the runtime or its data
structures

— Runtime increases by

e 9-14% for 1 permanent fault
(mostly depending on at which point the fault occured)

e <0.5% for 1-2 transient faults

Conclusion

Conclusion

e Goal: Evaluating MapReduce for shared-
memory systems.
— Given an efficient implementation, MapReduce is

an attractive model for some classes of
computation.

— Leads to good parallel efficiency with simple code
 Dynamically managed without any programmer effort
— MapReduce performs subobtimally for

applications that are difficult to express with its
model anyway...

	Evaluating MapReduce for Multi-core and Multiprocessor Systems
	Structure
	Introduction
	Introduction�What is MapReduce?
	Introduction�What does MapReduce do for you?
	Introduction�How does MapReduce work?
	Introduction�MapReduce Example
	Introduction�Why MapReduce is awesome
	Phoenix
	Phoenix
	Phoenix
	Phoenix
	Phoenix�Data flow
	Phoenix�Data flow
	Phoenix�Data flow
	Phoenix�Data flow
	Phoenix�Data flow
	Phoenix�Data flow
	Phoenix�Data flow
	Phoenix�Data flow
	Phoenix�Buffer management
	Phoenix�Fault recovery
	Evaluation
	Evaluation
	Evaluation�Applications
	Evaluation�Speedup for different # of processors
	Evaluation�Speedup for different # of processors
	Evaluation�Speedup for different # of processors
	Evaluation�Speedup for different # of processors
	Evaluation�Speedup for different dataset sizes
	Evaluation�Speedup for different dataset sizes
	Evaluation�Speedup for different dataset sizes
	Evaluation�Speedup vs. P-threads
	Evaluation�Fault injection
	Conclusion
	Conclusion

