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Concurrency

 Multithreaded programs are complicated

* Difficult to avoid or detect concurrency-
related bugs (data races, deadlocks, ...)

* Different synchronization mechanisms used
(semaphores, locks, monitors, ...)

» Eraser dynamically detects data races in
multithreaded, lock-based programs



Data race

* Definition:
A situation when two (or more) concurrent
threads access a shared memory location and:
— at least one access is a write

— no explicit mechanism to prevent the accesses
from being simultaneous



A solution: locks

e Simple synchronization
object used for mutual
exclusion

* Either available or owned
by one thread

e But: no explicit relation
between locks and shared
variables

Thread 1:
lock (mu)

v := v+l
unlock (mu)

Thread 2:
lock (mu)

X =V
unlock (mu)



Eraser: Lockset algorithm

* Eraser tries to infer this protection relation
through dynamic analysis

 |dea: Look for a lock that is held whenever a
shared variable is accessed. If at least one such
lock exists, the variable is race-free.

* Eraser maintains a candidate lockset C(v) for each
shared variable v, that contains the locks that
consistently protect v so far



Lockset Algorithm (simple version)

 For each shared variable v create a candidate
ockset C(v) that initially contains all locks

* |n each access of v by thread t, refine C(v):
C(v) := C(v) N locks _held(t);

e |f C(v) ={}, then issue a warning.



Program

lock(mul);
v := vtl;

unlock(mul);

lock(mu2);
v := v+l;

unlock(mu2);

Example

locks held

{}

{mul}

{mul}

i}

{mu2}

{mu2}

Clv)

{mul, mu2}

{mul, mu2}

{mul}

{mul}

{mul}
{}

warning!



Limitations of simple version

* Simple algorithm is too restrictive:
— Initialization: thread-local data is always race-free

— Read-shared data: no data race if after
initialization all accesses are reads

— Read-write locks: no support for locks that can be
held in: - read mode (multiple reader) or
- write mode (single writer)

* Many false positives



Lockset Algorithm (improved version)

» Improved version supports

initialization and read-
shared data:

r/w, first
* |ntroduce states for each thread
shared variable:
— Virgin/Exclusive: no candidate

lockset refinement (data is
local)

— Shared: refinement is done,  r new
but no warnings are reported ihread
(read-shared data)

— Shared-Modified: refinement
is done and warnings are
reported (write-shared data)

W, hew
thread r/w

S

Shared-
modified




Lockset Algorithm (improved version)

» Improved version supports read/write locks

* Improved refinement: W, new
On each read of v by thread t, freee B
set C(v) := C(v)(locks held(t); ’\ ‘

Shared-

if C(v) ={}, then issue a warning
modified

On each write of v by thread t,
set C(v) := C(v)Nwrite _locks_held(t);
if C(v) ={}, then issue a warning "

locks held(t) : set of locks held in any mode by thread t.
write _locks held(t) : set of locks held in write mode by thread t.



Implementation

* |[nstrumentation of binary program by
embedding calls to Eraser runtime for every:

— load/store

— lock/unlock

— thread initialization/finalization
— call to storage allocator

* 10 - 30 times slowdown: Important for time-
sensitive applications



Program annotations

 Still many false alarms because of:
— memory reuse
— private locks

— benign races

» Use of explicit annotations to communicate
this information to Eraser and reduce the false
alarms



Experiments

 Eraser was used to test:
— Two modules of Altavista web indexing service (25K loc)
— Vesta cache server (30K loc)
— Petal distributed storage system (25K loc)
— Undergraduate student projects

e Results:

— Some serious data races detected in 3 out of 4 servers (e.g.
unprotected reads and writes in Vesta)

— Several false alarms (almost all of them disappeared after
a few annotations were added)




Aftermath

* Influence: 299 citations (ACM DL)

* Many improvements/extensions of lockset algorithm

— Hybrid Dynamic Data Race Detection® (2003): combines lockset and
happens-before algorithms, fewer false positives, better performance

— MultiRace? (2007): source code instrumentation, better performance

— Locksmith3 (2011): static implementation of lockset algorithm for C
programs
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Conclusion

Eraser dynamically detects data-races in lock-
based programs

— cannot prove that a program is race-free

— only produces warnings that can be possible false
alarms

Nevertheless, it finds more bugs than previous

approaches

Tested real-world multithreaded systems for
data-races with significant success

Lockset algorithm has been widely used in
further research on this field



Discussion




