Eraser: A Dynamic Data Race Detector for
Multithreaded Programs

S. Savage
University of Washington

M. Burrows, G. Nelson, P. Sobalvarro
Digital Equipment Corporation

T. Anderson
University of California at Berkeley

(ACM Transactions on Computer Systems, November 1997)

Presented by Nikolaos Kyrtatas

Concurrency

 Multithreaded programs are complicated

* Difficult to avoid or detect concurrency-
related bugs (data races, deadlocks, ...)

* Different synchronization mechanisms used
(semaphores, locks, monitors, ...)

» Eraser dynamically detects data races in
multithreaded, lock-based programs

Data race

* Definition:
A situation when two (or more) concurrent
threads access a shared memory location and:
— at least one access is a write

— no explicit mechanism to prevent the accesses
from being simultaneous

A solution: locks

e Simple synchronization
object used for mutual
exclusion

* Either available or owned
by one thread

e But: no explicit relation
between locks and shared
variables

Thread 1:
lock (mu)

v := v+l
unlock (mu)

Thread 2:
lock (mu)

X =V
unlock (mu)

Eraser: Lockset algorithm

* Eraser tries to infer this protection relation
through dynamic analysis

 |dea: Look for a lock that is held whenever a
shared variable is accessed. If at least one such
lock exists, the variable is race-free.

* Eraser maintains a candidate lockset C(v) for each
shared variable v, that contains the locks that
consistently protect v so far

Lockset Algorithm (simple version)

 For each shared variable v create a candidate
ockset C(v) that initially contains all locks

* |n each access of v by thread t, refine C(v):
C(v) := C(v) N locks _held(t);

e |f C(v) ={}, then issue a warning.

Program

lock(mul);
v := vtl;

unlock(mul);

lock(mu2);
v := v+l;

unlock(mu2);

Example

locks held

{}

{mul}

{mul}

i}

{mu2}

{mu2}

Clv)

{mul, mu2}

{mul, mu2}

{mul}

{mul}

{mul}
{}

warning!

Limitations of simple version

* Simple algorithm is too restrictive:
— Initialization: thread-local data is always race-free

— Read-shared data: no data race if after
initialization all accesses are reads

— Read-write locks: no support for locks that can be
held in: - read mode (multiple reader) or
- write mode (single writer)

* Many false positives

Lockset Algorithm (improved version)

» Improved version supports

initialization and read-
shared data:

r/w, first
* |ntroduce states for each thread
shared variable:
— Virgin/Exclusive: no candidate

lockset refinement (data is
local)

— Shared: refinement is done, r new
but no warnings are reported ihread
(read-shared data)

— Shared-Modified: refinement
is done and warnings are
reported (write-shared data)

W, hew
thread r/w

S

Shared-
modified

Lockset Algorithm (improved version)

» Improved version supports read/write locks

* Improved refinement: W, new
On each read of v by thread t, freee B
set C(v) := C(v)(locks held(t); ’\ ‘

Shared-

if C(v) ={}, then issue a warning
modified

On each write of v by thread t,
set C(v) := C(v)Nwrite _locks_held(t);
if C(v) ={}, then issue a warning "

locks held(t) : set of locks held in any mode by thread t.
write _locks held(t) : set of locks held in write mode by thread t.

Implementation

* |[nstrumentation of binary program by
embedding calls to Eraser runtime for every:

— load/store

— lock/unlock

— thread initialization/finalization
— call to storage allocator

* 10 - 30 times slowdown: Important for time-
sensitive applications

Program annotations

 Still many false alarms because of:
— memory reuse
— private locks

— benign races

» Use of explicit annotations to communicate
this information to Eraser and reduce the false
alarms

Experiments

 Eraser was used to test:
— Two modules of Altavista web indexing service (25K loc)
— Vesta cache server (30K loc)
— Petal distributed storage system (25K loc)
— Undergraduate student projects

e Results:

— Some serious data races detected in 3 out of 4 servers (e.g.
unprotected reads and writes in Vesta)

— Several false alarms (almost all of them disappeared after
a few annotations were added)

Aftermath

* Influence: 299 citations (ACM DL)

* Many improvements/extensions of lockset algorithm

— Hybrid Dynamic Data Race Detection® (2003): combines lockset and
happens-before algorithms, fewer false positives, better performance

— MultiRace? (2007): source code instrumentation, better performance

— Locksmith3 (2011): static implementation of lockset algorithm for C
programs

1 R. O'Callahan and J. Choi. 2003. Hybrid dynamic data race detection. SIGPLAN Not. 38, 10 (June 2003),
167-178

2E. Pozniansky and A. Schuster. 2007. MultiRace: efficient on-the-fly data race detection in multithreaded
C++ programs: Research Articles. Concurr. Comput. : Pract. Exper. 19, 3 (March 2007), 327-340.

3P, Pratikakis, J. Foster and M. Hicks. 2011. LOCKSMITH: Practical static race detection for C. ACM Trans.
Program. Lang. Syst. 33, 1, Article 3 (January 2011)

Conclusion

Eraser dynamically detects data-races in lock-
based programs

— cannot prove that a program is race-free

— only produces warnings that can be possible false
alarms

Nevertheless, it finds more bugs than previous

approaches

Tested real-world multithreaded systems for
data-races with significant success

Lockset algorithm has been widely used in
further research on this field

Discussion

