
Reachability Testing of

Semaphore-based Programs

Yu Lei, Univ. of Texas at Arlington

Richard Carver, George Mason Univ. Fairfax

International Computer Software and Applications Conference, 2004

21th March 2012

Presentation by Daniel Schweizer

An example program

S1.count = 2; S2.count = 1

T1 T2 T3

S1.down

-- T1 in critical section

print(“1“)

S1.up

S1.down

S2.down

-- T2 in critical section

print(“2“)

S2.up

S1.up

S1.down

-- T3 in critical section

print(“3“)

S1.up

S2.down

-- T3 in critical section

print(“3“)

S2.up
possible outputs:

1233, 1332, 2331, 3231, ...

An example program

� possible outputs (determined statically):

1233, 1332, 2331, 3231, ...

� actual outputs (20 test runs):

� 1332 3 x

� 1233 17 x

� but: 2331 0 x

� Problem: We did not observe all feasible executions when

testing!

Definitions

� when a thread T calls down or up on a semaphore S, a call

event is performed by T

� when a down or up operation on a semaphore S is

completed, a completion event occurs on S

� an execution of a semaphore-based program is characterized

by the sequence of call and completion events it exercises,

called the CC-sequence of the execution

� if the operation of a call event c is completed by a

completion event e, then c and e form a completion pair <c,

e>

c2
down

e1

c10

c4

c5

c6

c1

c7

c8

c9

e2

e3

e4

e9

e10

e5

e6

e7

e8

down

up

down

up

up

down

up

down

up

T1 S1 T2 S2 T3

Q
(“3123“)

c3

ti
m

e

Race

� Q: a CC-sequence exercised by an execution of a semaphore-

based program CP

� c, c’: call events in Q (c ≠ c’)

� e: completion event in Q

� <c, e> is a completion pair

� there is a race between c’ and <c, e> in Q if c’ and e can form

a completion pair in another execution Q’ of CP, provided

that all the events that happen before c’ or e in Q are

replayed in Q’

c2
down

e1

c10

c4

c5

c6

c1

c3

c7

c8

c9

e2

e3

e4

e9

e10

e5

e6

e7

e8

down

up

down

up

up

down

up

down

up

T1 S1 T2 S2 T3

Q
(“3123“)

c2
down

e1

c10

c4

c5

c6

c1

c3

c7

c8

c9

e2

e3

e4

e9

e10

e5

e6

e7

e8

down

up

down

up

up

down

up

down

up

T1 S1 T2 S2 T3

Q‘

Race variant

� Q: a CC-sequence

� a race variant V of Q is a CC-sequence that is derived by

changing the call partner of one or more completion events

in Q, with the following constraints:

� if we change the call partner of a completion event e,

1) there must be a race between the new call partner of

e and the completion pair <c, e> in Q

2) we must remove all events that happen after e

c2
down

e1

c10

c4

c5

c6

c1

c3

c7

c8

c9

e2

e3

e4

e9

e10

e5

e6

e7

e8

down

up

down

up

up

down

up

down

up

T1 S1 T2 S2 T3

Q

c2

e1

c10

c4

c5

c6

c1

c3

c7

c8

c9

e2

e4

e9

e10

e5

e6

e7

e8

down

up

down

up

up

down

up

down

up

T1 S1 T2 S2 T3

V

Reachability-Test

Reachability-Test (CP: a semaphore-based program)

do

variants = ∅

collect a CC-sequence Q0 by executing CP non-deterministically

derive variants(Q0) -- the race variants of Q0

variants = variants ∪ variants(Q0)

while variants not empty loop

withdraw a variant V from variants

collect a CC-sequence Q using prefix-based testing with V

derive variants(Q) -- the race variants of Q

variants = variants ∪ variants(Q)

end

end

“ Theorem: Let CP be a semaphore-based program.

Assume that every execution of CP with input I terminates.

Then, algorithm Reachability-Test terminates, and

executes all feasible CC-sequences of CP with input I. “

� no proof

Results (1)

Results (2)

BB: bounded-bufferDP: dining philosophers

RW: readers/writers ME: a distributed mutual exclusion algorithm

Open questions:

� comparison with other methods?

� performance?

� what about larger programs?

Discussion

