
Transactional Memory
Architectural Support for Lock-Free Data Structures

Maurice Herlihy and J. Eliot B. Moss

1993

Presenter: Giulio Valente



Wednesday, 16. May 2012

Lock-Free

A shared data structure is lock-free if its operations 
do not require mutual exclusion

2



Wednesday, 16. May 2012

Motivation
Problem: Multi-core systems are hard to program

3



Wednesday, 16. May 2012

Motivation
Problem: Multi-core systems are hard to program

Transactional Memory solves the problem by:

• Makes parallel programming easier by simplifying 
coordination

• Exploit hardware support for performance

• Implements lock-free data structures

4



Wednesday, 16. May 2012

Common problems 
with locking techniques

• Priority Inversion

when a lower-priority process is preempted while holding a lock needed by 
higher-priority processes

• Convoying

a process holding a lock is descheduled

• Deadlock

processes attempt to lock the same set of objects in different orders

5



Wednesday, 16. May 2012

Transaction

• Assumption: a process executes only 
one transaction at a time

• Finite sequence of instructions

• Executed by a single process

• Satisfies serializability and atomicity

6



Wednesday, 16. May 2012

TM primitive instructions

• Load-transactional (LT): reads value of a shared 
memory location into a private register

• Load-transactional-exclusive (LTX): similar to LT, but 
indicates that is likely to be updated

• Store-transactional (ST): tentatively writes a value to 
a shared memory location, but not visible until a 
successful commit.

7



Wednesday, 16. May 2012

Transaction’s sets

• Read set: set of locations read by LT

• Write set: set of locations accessed by LTX or ST

• Data set: Read set U Write set

8



Wednesday, 16. May 2012

TM instructions for 
transaction state

• Commit (COMMIT) attempts to make the 
transaction’s tentative changes permanent. 

• Abort (ABORT) discards all updates

• Validate (VALIDATE) tests the current transaction 
status. Return TRUE or FALSE.

9



Wednesday, 16. May 2012

Intended Use
LT or LTX

Read from a set of locations



Wednesday, 16. May 2012 11

LT or LTX
Read from a set of locations

VALIDATE
Check if read values are consistent

FAIL

Intended Use



Wednesday, 16. May 2012 12

LT or LTX
Read from a set of locations

VALIDATE
Check if read values are consistent

FAIL

Intended Use

ST
Modify set of location



Wednesday, 16. May 2012

Intended Use

13

LT or LTX
Read from a set of locations

VALIDATE
Check if read values are consistent

ST
Modify set of location

COMMIT
Try to make changes permanent

FAIL

FAIL



Wednesday, 16. May 2012

Intended Use

14

LT or LTX
Read from a set of locations

VALIDATE
Check if read values are consistent

ST
Modify set of location

COMMIT
Try to make changes permanent

HW make changes Permanent

FAIL

FAIL

PASS

Critical
Section



Wednesday, 16. May 2012

TM implementation
• Implemented by modifying standard 

multiprocessor cache coherence protocols

• Basic idea: any protocol capable of detecting 
accessibility conflicts can also detect transaction 
conflict at no extra cost

• Transactional cache holds all the tentative writes, 
without propagating them to other processors or 
to main memory unless the transaction commits

15



Wednesday, 16. May 2012

Cache-Coherence Protocol

• Intended for managing caches of a multiprocessor 
system

• Each processor may have its own memory cache, 
which is separated from the shared memory

• Cache coherence is intended to manage conflicts 
and mantain consistency between cache and 
memory

16



Wednesday, 16. May 2012

Caches in TM

• Each processor maintains two caches:

• Regular cache for non-transactional operations

• Transactional cache for transactional operations

17



Wednesday, 16. May 2012

Cache line states

Name Access Shared? Modified? Meaning

INVALID none - -
Incoherent copy of the 
memory

VALID R Yes No
Coherent copy of the 
memory

DIRTY R, W No Yes Incoherent and only copy 

RESERVED R, W No No Coherent copy, but is the 
only copy

Each cache line has one of the following states

18



Wednesday, 16. May 2012

Transactional Cache States

19

The transactional cache expends these states with 
transactional tags

Name Meaning

EMPTY contains no data

NORMAL contains committed data

XCOMMIT discard on commit

XABORT discard on abort



Wednesday, 16. May 2012

Bus Cycle

20

Name Kind Meaning New Access

READ regular read value shared

RFO regular read value exclusive

WRITE both write back exclusive

T_READ transactional read value shared

T_RFO transactional read value exclusive

BUSY transactional refuse access unchanged

Added by 
TM

Original in 
Goodman’s 
protocol



Wednesday, 16. May 2012

LT Instruction
Operations for an active transaction

Look for XABORT



Wednesday, 16. May 2012

LT Instruction
Operations for an active transaction

Look for XABORT

Return VALUE

FOUND



Wednesday, 16. May 2012

LT Instruction
Operations for an active transaction

Look for XABORT

Return VALUE

FOUND

Look for NORMAL

NOT FOUND



Wednesday, 16. May 2012

LT Instruction
Operations for an active transaction

Look for XABORT

Return VALUE

FOUND

Look for NORMAL

NOT FOUND

change NORMAL
to XABORT and 
allocate another 

XCOMMIT
with the same data

FOUND



Wednesday, 16. May 2012

LT Instruction

25

Operations for an active transaction

Look for XABORT Look for NORMAL

Return VALUE
change NORMAL
to XABORT and 
allocate another 

XCOMMIT
with the same data

T_READ: read block
from shared memory

FOUND

NOT FOUND NOT FOUND

FOUND



Wednesday, 16. May 2012

LT Instruction

26

Operations for an active transaction

Look for XABORT Look for NORMAL

Return VALUE
change NORMAL
to XABORT and 
allocate another 

XCOMMIT
with the same data

T_READ: read block
from shared memory

Create two entries:
XABORT

XCOMMIT

FOUND

NOT FOUND NOT FOUND

FOUND
FOUND



Wednesday, 16. May 2012

LT Instruction

27

Operations for an active transaction

Look for XABORT Look for NORMAL

Return VALUE
change NORMAL
to XABORT and 
allocate another 

XCOMMIT
with the same data

T_READ: read block
from shared memory

Create two entries:
XABORT

XCOMMIT

ABORT transaction

TSTATUS := false
drop_all XABORT

set_all XCOMMIT to 
NORMAL

FOUND

NOT FOUND NOT FOUND

FOUND
FOUND

BUSY



Wednesday, 16. May 2012

Simulation

• Proteus: execution driven simulator system for 
multiprocessor developed at MIT

• Two version of TM:

• Goodman’s snoopy protocol for bus based 
architecture

• Chaicken directory protocol for a simulated 
Alewife machine

28



Wednesday, 16. May 2012

Simulated Architecture

• 32 processors

• Regular cache is direct mapped with 2048 
lines of 8 bytes

• Transactional cache has 64 lines of 8 bytes

• Memory access requires 4 cycle

29



Wednesday, 16. May 2012

Counter Benchmark
• N processes increment shared counter 216 / N times (1≤N≤32)
• Short critical section (only two shared memory accesses)



Wednesday, 16. May 2012

Counter Benchmark
• N processes increment shared counter 216 / N times (1≤N≤32)
• Short critical section (only two shared memory accesses)
Shared variable



Wednesday, 16. May 2012

Counter Benchmark
• N processes increment shared counter 216 / N times (1≤N≤32)
• Short critical section (only two shared memory accesses)

1.2.



Wednesday, 16. May 2012

Counter Benchmark

33

• N processes increment shared counter 216 / N times (1≤N≤32)
• Short critical section (only two shared memory accesses)

Critical Section
Reads the value 
“hinting” that the 
variable is likely to be 
update. 
Then store the new 
one



Wednesday, 16. May 2012

Counter Benchmark

34

• N processes increment shared counter 216 / N times (1≤N≤32)
• Short critical section (only two shared memory accesses)

If counter has been 
committed 

successfully, then we 
can proceed 

otherwise we wait



Wednesday, 16. May 2012

Counting Result

35

Bus-Based Directory-Based



Wednesday, 16. May 2012

In Conclusion TM...

• overcome single-word limitation

• is a multi-processor architecture which 
allows easy lock-free multi-word 
synchronization in HW

• matches or outperforms atomic update 
locking techniques for simple benchmarks

36



Wednesday, 16. May 2012

Pros
• Easy programming semantics

• More parallelism and hence highly scalable for transactions 
of small size



Wednesday, 16. May 2012

Pros
• Easy programming semantics

• More parallelism and hence highly scalable for transactions 
of small size

Cons
• Small transaction size limit usage for applications locking large 

object

• Limited only to primary cache



Wednesday, 16. May 2012

Questions?

39


