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Lock-Free

A shared data structure is lock-free if its operations 
do not require mutual exclusion
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Motivation
Problem: Multi-core systems are hard to program
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Motivation
Problem: Multi-core systems are hard to program

Transactional Memory solves the problem by:

• Makes parallel programming easier by simplifying 
coordination

• Exploit hardware support for performance

• Implements lock-free data structures
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Common problems 
with locking techniques

• Priority Inversion

when a lower-priority process is preempted while holding a lock needed by 
higher-priority processes

• Convoying

a process holding a lock is descheduled

• Deadlock

processes attempt to lock the same set of objects in different orders
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Transaction

• Assumption: a process executes only 
one transaction at a time

• Finite sequence of instructions

• Executed by a single process

• Satisfies serializability and atomicity
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TM primitive instructions

• Load-transactional (LT): reads value of a shared 
memory location into a private register

• Load-transactional-exclusive (LTX): similar to LT, but 
indicates that is likely to be updated

• Store-transactional (ST): tentatively writes a value to 
a shared memory location, but not visible until a 
successful commit.
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Transaction’s sets

• Read set: set of locations read by LT

• Write set: set of locations accessed by LTX or ST

• Data set: Read set U Write set
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TM instructions for 
transaction state

• Commit (COMMIT) attempts to make the 
transaction’s tentative changes permanent. 

• Abort (ABORT) discards all updates

• Validate (VALIDATE) tests the current transaction 
status. Return TRUE or FALSE.
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Intended Use
LT or LTX

Read from a set of locations
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LT or LTX
Read from a set of locations

VALIDATE
Check if read values are consistent

FAIL

Intended Use
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LT or LTX
Read from a set of locations

VALIDATE
Check if read values are consistent

FAIL
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Modify set of location
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Intended Use
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LT or LTX
Read from a set of locations

VALIDATE
Check if read values are consistent

ST
Modify set of location

COMMIT
Try to make changes permanent

FAIL

FAIL
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Intended Use
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LT or LTX
Read from a set of locations

VALIDATE
Check if read values are consistent

ST
Modify set of location

COMMIT
Try to make changes permanent

HW make changes Permanent

FAIL

FAIL

PASS

Critical
Section
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TM implementation
• Implemented by modifying standard 

multiprocessor cache coherence protocols

• Basic idea: any protocol capable of detecting 
accessibility conflicts can also detect transaction 
conflict at no extra cost

• Transactional cache holds all the tentative writes, 
without propagating them to other processors or 
to main memory unless the transaction commits
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Cache-Coherence Protocol

• Intended for managing caches of a multiprocessor 
system

• Each processor may have its own memory cache, 
which is separated from the shared memory

• Cache coherence is intended to manage conflicts 
and mantain consistency between cache and 
memory
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Caches in TM

• Each processor maintains two caches:

• Regular cache for non-transactional operations

• Transactional cache for transactional operations
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Cache line states

Name Access Shared? Modified? Meaning

INVALID none - -
Incoherent copy of the 
memory

VALID R Yes No
Coherent copy of the 
memory

DIRTY R, W No Yes Incoherent and only copy 

RESERVED R, W No No Coherent copy, but is the 
only copy

Each cache line has one of the following states
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Transactional Cache States
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The transactional cache expends these states with 
transactional tags

Name Meaning

EMPTY contains no data

NORMAL contains committed data

XCOMMIT discard on commit

XABORT discard on abort
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Bus Cycle
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Name Kind Meaning New Access

READ regular read value shared

RFO regular read value exclusive

WRITE both write back exclusive

T_READ transactional read value shared

T_RFO transactional read value exclusive

BUSY transactional refuse access unchanged

Added by 
TM

Original in 
Goodman’s 
protocol
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LT Instruction
Operations for an active transaction

Look for XABORT
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LT Instruction
Operations for an active transaction

Look for XABORT

Return VALUE

FOUND

Look for NORMAL

NOT FOUND

change NORMAL
to XABORT and 
allocate another 

XCOMMIT
with the same data

FOUND
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LT Instruction
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Operations for an active transaction

Look for XABORT Look for NORMAL

Return VALUE
change NORMAL
to XABORT and 
allocate another 

XCOMMIT
with the same data

T_READ: read block
from shared memory

FOUND

NOT FOUND NOT FOUND

FOUND
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LT Instruction
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Operations for an active transaction

Look for XABORT Look for NORMAL

Return VALUE
change NORMAL
to XABORT and 
allocate another 

XCOMMIT
with the same data

T_READ: read block
from shared memory

Create two entries:
XABORT

XCOMMIT

FOUND

NOT FOUND NOT FOUND

FOUND
FOUND
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LT Instruction
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Operations for an active transaction

Look for XABORT Look for NORMAL

Return VALUE
change NORMAL
to XABORT and 
allocate another 

XCOMMIT
with the same data

T_READ: read block
from shared memory

Create two entries:
XABORT

XCOMMIT

ABORT transaction

TSTATUS := false
drop_all XABORT

set_all XCOMMIT to 
NORMAL

FOUND

NOT FOUND NOT FOUND

FOUND
FOUND

BUSY
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Simulation

• Proteus: execution driven simulator system for 
multiprocessor developed at MIT

• Two version of TM:

• Goodman’s snoopy protocol for bus based 
architecture

• Chaicken directory protocol for a simulated 
Alewife machine
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Simulated Architecture

• 32 processors

• Regular cache is direct mapped with 2048 
lines of 8 bytes

• Transactional cache has 64 lines of 8 bytes

• Memory access requires 4 cycle
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Counter Benchmark
• N processes increment shared counter 216 / N times (1≤N≤32)
• Short critical section (only two shared memory accesses)
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Counter Benchmark
• N processes increment shared counter 216 / N times (1≤N≤32)
• Short critical section (only two shared memory accesses)
Shared variable
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Counter Benchmark
• N processes increment shared counter 216 / N times (1≤N≤32)
• Short critical section (only two shared memory accesses)

1.2.
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Counter Benchmark
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• N processes increment shared counter 216 / N times (1≤N≤32)
• Short critical section (only two shared memory accesses)

Critical Section
Reads the value 
“hinting” that the 
variable is likely to be 
update. 
Then store the new 
one
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Counter Benchmark
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• N processes increment shared counter 216 / N times (1≤N≤32)
• Short critical section (only two shared memory accesses)

If counter has been 
committed 

successfully, then we 
can proceed 

otherwise we wait
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Counting Result
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Bus-Based Directory-Based
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In Conclusion TM...

• overcome single-word limitation

• is a multi-processor architecture which 
allows easy lock-free multi-word 
synchronization in HW

• matches or outperforms atomic update 
locking techniques for simple benchmarks
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Pros
• Easy programming semantics

• More parallelism and hence highly scalable for transactions 
of small size
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Pros
• Easy programming semantics

• More parallelism and hence highly scalable for transactions 
of small size

Cons
• Small transaction size limit usage for applications locking large 

object

• Limited only to primary cache
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Questions?
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