
Foundations of the C++
Concurrency Memory Model

ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2008

Hans-J. Boehm
(HP Laboratories)

Sarita V. Adve
(University of Illinois)

presented by Nicola Vermes

2

Introduction
(1) C++: a single-threaded programming language
(2) Pthreads: separate threads library
(3) Parallel applications: combining (1) and (2)
(4) Since (1), compilers are thread-unaware:

• generate code as for single-threaded application
• transformations/optimizations (i.e. reordering)
• do not preserve the meaning of the multithreaded program

(5) Hardware: further transformations
This obviously makes difficult to reason about

parallel programs

3

Currently solutions
• Threads libraries provide synchronization

primitives (mutex, semaphores, fences, …)
• To prohibit concurrent accesses to shared memory
• But also to apply restrictions for compilers:

it is prohibited to reordering synchronization
operations with respect to ordinary memory
operations (in a given thread)

Unfortunately this is insufficient
We need a more formal model for multithread

4

Why insufficient?

• Is outcome r1=r2=1 allowed? Yes!
• Is this program data-race-free? Unclear
• Possible if compiler reorders the last 2 lines of T1,

or if hardware speculates on values of X/Y
• This example shows that is unclear and difficult to

reason about parallel programs and data-races

… at least without a formal memory model

5

Memory model
• specifies what values a read can return
• affects programmability
• affects performance and portability
• must be defined also for any part that transforms

the program (compilers, hardware)
• The HW memory model must be consistent with

the memory model of the software
• The most intuitive: Sequential Consistency Model

• Very simple for programmers but very restrictive for
optimizations (the main trade-off of memory models)

6

Sequential consistency
A program is Sequential Consistent if:
• the result of any execution is the same as if the

operations of all threads were executed in some
sequence

• and the operations of single threads are in the
program order

• Efforts to determine transformations SC-safe, but
anyway most of compilers/HW don't preserve SC

• Relaxed model: specified at low level (difficult to
reason for programmers) and not so efficient

7

Data-Race-Free Models
• Class of models with a different approach:

correct programs are only those w/o data-races
• It guarantees SC to programs w/o data-races
• It does not define anything about the behavior of

programs with data-races
• It formalizes the notion of data-race

• the notion changes depending on the specific model
• Data-Race-Free-0 model uses the simplest notion

• It combines the simple programming model of SC
and good performances

8

The proposed C++ Model
• A memory action can be of a synchronization type (un/lock,

atomic load/store/read-modify-write) or of a data operation
type (load, store)

• Thread execution: set of memory actions with
a sequenced-before order

• SC execution: set of thread executions with
a total order <

T
on memory actions

• <
T
respects the SB order (thread exec. internally consistent)

• Each load/lock/RMW reads the value from the last preceding
(according to <

T
) write on the same location

• Last operation on a lock preceding an unlock must be a lock
operation by the same thread

• Effectively <
T

is just an interleaving of thread actions

9

Data-Race
• Two memory operations conflict if

1. access the same memory location
2. and at least one is a store or atomic store/RMW

• In a SC execution two memory operations from
different threads form a data-race if:
1. they conflict
2. and at least one is a data operation
3. and they are adjacent in some interleaving with

respect to <
T
 (i.e., they may be executed in parallel)

• If a program has a data race, the behavior is
undefined, otherwise behaves according SC

10

Optimizations allowed
• Compilers can reorder memory operation A

sequenced before B if:
• A: data operation; B: read synchronization operation
• A: write synchronization op.; B: data op.
• A and B both data with no synchronization sequence-

ordered between them
• A: data op.; B: write of a lock op.
• A: unlock; B: is either a read or write of a lock

• At the hardware level, data writes and writes from
(well-structured) un/locks can be executed non-
atomically

11

The trylock() issue

• It inverts the sense of a lock, but it is sometimes used
• It is DRF, apparently the assertion cannot fail, but it can if the

two T1's statements are reordered (optimization allowed)
• Inefficient solutions: avoid reordering with fences;

distinguish sync./data op. to detect
these situations, consider them races

• A simple solution is new definition of trylock():
it is not guaranteed that it will succeed if the lock is
available (it can “spuriously fail”)

• With this new definition is clear that the assertion may fail: the
execution in which it fails is now SC: it simply involved a
spurious trylock() failure

12

Sequentially consistent atomics
• The model requires that synchronization

operations appear sequentially consistent, i.e.
must be executed in a sequenced-before order

• New values of synchronization variables must be
propagated to all threads in the same order

• For single-core/thread processor: directory-based
cache coherence protocol

• For multicore: one needs to specific atomic
instructions (like CAS or xchg)

• Thus Intel/AMD influenced by this fact and they
are now implementing HW with a clear and
efficient way to guarantee SC

13

Low-Level atomics
• Some processors have a mechanism to weaken

memory ordering
• Low-Level atomics: instructions that allow to

specify (relaxed) memory ordering constraints
• This leads to a more complicated model
• But has been proved that is exactly the same

(equivalent) as that presented

14

Semantics of DR: undefined

● if during foo there is a race on x, and its new value
is >1, the branch table is accessed out of bounds

● With these compiler's optimizations we can fall on
a behavior very hard to define

● The result is a wild branch, i.e. arbitrary code

• x is a shared global variable
• in foo i is spilled (i.e., not keep in register)
• switch uses a branch table
• Compiler reloads value of i from x
• 0<=i<=1: compiler do not check bounds

and eliminate the default branch

15

Conclusions
● Users: simple programming model (don't care

about complexity/intricacies of HW memory model)
● Compiler implementors: doesn't change anything

relevant
● HW implementors: provide sequential consistency

for synchronization operations
● Increasing consensus for “sequential consistency

for data-race-free” as the fundamental model

16

Questions?

