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Introduction
(1) C++: a single-threaded programming language
(2) Pthreads: separate threads library
(3) Parallel applications: combining (1) and (2)
(4) Since (1), compilers are thread-unaware:

• generate code as for single-threaded application
• transformations/optimizations (i.e. reordering)
• do not preserve the meaning of the multithreaded program

(5) Hardware: further transformations
This obviously makes difficult to reason about

parallel programs
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Currently solutions
• Threads libraries provide synchronization 

primitives (mutex, semaphores, fences, …)
• To prohibit concurrent accesses to shared memory
• But also to apply restrictions for compilers:

it is prohibited to reordering synchronization 
operations with respect to ordinary memory 
operations (in a given thread)

Unfortunately this is insufficient
We need a more formal model for multithread
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Why insufficient?

• Is outcome r1=r2=1 allowed? Yes!
• Is this program data-race-free? Unclear
• Possible if compiler reorders the last 2 lines of T1, 

or if hardware speculates on values of X/Y
• This example shows that is unclear and difficult to 

reason about parallel programs and data-races

… at least without a formal memory model
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Memory model
• specifies what values a read can return
• affects programmability
• affects performance and portability
• must be defined also for any part that transforms 

the program (compilers, hardware)
• The HW memory model must be consistent with 

the memory model of the software
• The most intuitive: Sequential Consistency Model

• Very simple for programmers but very restrictive for 
optimizations (the main trade-off of memory models)



6

Sequential consistency
A program is Sequential Consistent if:
• the result of any execution is the same as if the 

operations of all threads were executed in some 
sequence

• and the operations of single threads are in the 
program order

• Efforts to determine transformations SC-safe, but 
anyway most of compilers/HW don't preserve SC

• Relaxed model: specified at low level (difficult to 
reason for programmers) and not so efficient
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Data-Race-Free Models
• Class of models with a different approach:

correct programs are only those w/o data-races
• It guarantees SC to programs w/o data-races
• It does not define anything about the behavior of 

programs with data-races
• It formalizes the notion of data-race

• the notion changes depending on the specific model
• Data-Race-Free-0 model uses the simplest notion

• It combines the simple programming model of SC 
and good performances
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The proposed C++ Model
• A memory action can be of a synchronization type (un/lock, 

atomic load/store/read-modify-write) or of a data operation 
type (load, store)

• Thread execution: set of memory actions with
a sequenced-before order

• SC execution: set of thread executions with
a total order <

T 
on memory actions

• <
T 
respects the SB order (thread exec. internally consistent)

• Each load/lock/RMW reads the value from the last preceding 
(according to <

T 
) write on the same location

• Last operation on a lock preceding an unlock must be a lock 
operation by the same thread

• Effectively <
T  

is just an interleaving of thread actions
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Data-Race
• Two memory operations conflict if

1. access the same memory location
2. and at least one is a store or atomic store/RMW

• In a SC execution two memory operations from 
different threads form a data-race if:
1. they conflict
2. and at least one is a data operation
3. and they are adjacent in some interleaving with 

respect to <
T
 (i.e., they may be executed in parallel)

• If a program has a data race, the behavior is 
undefined, otherwise behaves according SC
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Optimizations allowed
• Compilers can reorder memory operation A 

sequenced before B if:
• A: data operation; B: read synchronization operation
• A: write synchronization op.; B: data op.
• A and B both data with no synchronization sequence-

ordered between them
• A: data op.; B: write of a lock op.
• A: unlock; B: is either a read or write of a lock

• At the hardware level, data writes and writes from 
(well-structured) un/locks can be executed non-
atomically
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The trylock() issue

• It inverts the sense of a lock, but it is sometimes used
• It is DRF, apparently the assertion cannot fail, but it can if the 

two T1's statements are reordered (optimization allowed)
• Inefficient solutions: avoid reordering with fences;

distinguish sync./data op. to detect 
these situations, consider them races

• A simple solution is new definition of trylock():
it is not  guaranteed that it will succeed if the lock is
available (it can “spuriously fail”)

• With this new definition is clear that the assertion may fail: the 
execution in which it fails is now SC: it simply involved a 
spurious trylock() failure
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Sequentially consistent atomics
• The model requires that synchronization 

operations appear sequentially consistent, i.e. 
must be executed in a sequenced-before order

• New values of synchronization variables must be 
propagated to all threads in the same order

• For single-core/thread processor: directory-based 
cache coherence protocol

• For multicore: one needs to specific atomic 
instructions (like CAS or xchg) 

• Thus Intel/AMD influenced by this fact and they 
are now implementing HW with a clear and 
efficient way to guarantee SC
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Low-Level atomics
• Some processors have a mechanism to weaken 

memory ordering
• Low-Level atomics: instructions that allow to 

specify (relaxed) memory ordering constraints
• This leads to a more complicated model
• But has been proved that is exactly the same 

(equivalent) as that presented
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Semantics of DR: undefined

● if during foo there is a race on x, and its new value 
is >1, the branch table is accessed out of bounds

● With these compiler's optimizations we can fall on 
a behavior very hard to define

● The result is a wild branch, i.e. arbitrary code

• x is a shared global variable
• in foo i is spilled (i.e., not keep in register)
• switch uses a branch table
• Compiler reloads value of i from x
• 0<=i<=1: compiler do not check bounds 

and eliminate the default branch
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Conclusions
● Users: simple programming model (don't care 

about complexity/intricacies of HW memory model)
● Compiler implementors: doesn't change anything 

relevant
● HW implementors: provide sequential consistency 

for synchronization operations
● Increasing consensus for “sequential consistency 

for data-race-free” as the fundamental model
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Questions?


