
1

Introduction to Eiffel

Martin Nordio

ETH Zurich

martin.nordio@inf.ethz.ch

Distributed and Outsourced Software

Engineering - ETH course, Fall 2012

2

CONTRACTS

3

Contracts

A contract is a semantic condition characterizing usage

properties of a class or a feature

Three principal kinds:

 Precondition

 Postcondition

 Class invariant

4

Design by Contract

Together with the implementation (“how”) of each software

element, describe “what” it is supposed to do: its contract

Three basic questions about every software element:

 What does it assume?

 What does it guarantee?

 What does it maintain?

Precondition

Postcondition

Invariant

5

Contracts in programming languages

Eiffel: integrated in the language

Java: Java Modeling Language (JML), iContract etc.

.Net languages: Code Contracts (a library)

Spec# (Microsoft Research extension of C#): integrated in the language

UML: Object Constraint Language

Python

C++: Nana

etc.

6

Property that a feature imposes on every client:

A client calling a feature must make sure that the precondition

holds before the call

A client that calls a feature without satisfying its precondition

is faulty (buggy) software.

Precondition

factorial (i: INTEGER): INTEGER

 require

 valid_arg: i >= 0

 do

 …

 end

A feature with no require clause

is always applicable, as if it had

 require

 always_OK: True

7

Another example:

extend (a_element: G)

 require

 valid_elem: a_element /= void

 not_full: not is_full

 do … end

Precondition

A feature with a require clause

 require

 label_1: cond_1

 label_2: cond_2 …

 label_n: cond_n

is equivalent to

 require

 label: cond_1 and cond_2 and …

cond_n

8

Assertions

not_too_small: i >= 0

Assertion

Condition
Assertion tag

9

Precondition: obligation for clients

Postcondition: benefit for clients

extend (a_element: G)

 ensure

 inserted: i_th (count) = a_element

index (a_element: G): INTEGER

 ensure

 exists: result > 0 implies i_th (result) = a_element

 no_exists: result = -1 implies not is_inserted (a_element)

Postconditions

10

Old notation

Usable in postconditions only

Denotes value of an expression as it was on routine entry

Example (in a class ACCOUNT):

 balance : INTEGER
 -- Current balance.

 deposit (v : INTEGER)
 -- Add v to account.
 require
 positive: v > 0
 do
 …
 ensure
 added: balance = old balance + v
 end

11

Postcondition principle

A feature that fails to ensure its postcondition

is buggy software.

A feature must make sure that, if its precondition held

at the beginning of its execution, its postcondition will

hold at the end.

12 12

A class with contracts

class

 BANK_ACCOUNT

create

 make

feature

make (n : STRING)

 -- Set up with name n

require

 n /= Void

do

 name := n

 balance := 0

ensure

 name = n

end

name : STRING

balance : INTEGER

deposit (v : INTEGER)

 -- Add amount v

 do

 balance := balance + v

 ensure

 balance = old balance + v

 end

Invarian

t

 name /= Void

 balance >= 0

end

ensure

 name = n

require

 n /= Void

ensure

 balance = old balance + v

invariant

 name /= Void

 balance >= 0

13

Contracts and inheritance

Issues: what happens, under inheritance:

Invariant Inheritance rule:

The invariant of a class automatically includes the

invariant clauses from all its parents,

 “and”-ed.

When redeclaring a routine, we may only:

Keep or weaken the precondition

Keep or strengthen the postcondition

14

Assertion redeclaration rule in Eiffel

A simple language rule does the trick!

Redefined version may have nothing (assertions kept by default), or

 require else new_pre

 ensure then new_post

Resulting assertions are:

 original_precondition or new_pre

 original_postcondition and new_post

