
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2012

Solution 8: Recursion

ETH Zurich

1 An infectious task

1. Correct. However, this version will call set flu twice on all reachable persons except the
initial one. On the initial person set flu will be called once in case of a non-circular
structure and three times in case of a circular structure.

2. Incorrect. This version results in endless recursion if the coworker structure is cyclic. The
main cause is that the coworker does not get infected before the recursive call is made, so
with a cyclic structure nobody will ever be infected to terminate the recursion.

3. Incorrect. This version results in an endless loop if the structure is cyclic. The main
problem is with the loop’s exit condition that does not include the case when q is already
infected.

4. Correct. This version works and uses tail recursion. It will always give the flu to p first,
and then call infect on his/her coworker. The recursion ends when either there is no
coworker, or the coworker is already infected. Without the second condition the recursion
is endless if the coworker structure is cyclic.

Multiple coworkers

class
PERSON

create
make

feature −− Initialization

make (a name: STRING)
−− Create a person named ‘a name’.

require
a name valid: a name /= Void and then not a name.is empty

do
name := a name
create {V ARRAYED LIST [PERSON]} coworkers

ensure
name set: name = a name
no coworkers: coworkers.is empty

end

feature −− Access

1



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2012

name: STRING
−− Name.

coworkers: V LIST [PERSON]
−− List of coworkers.

has flu: BOOLEAN
−− Does the person have flu?

feature −− Element change

add coworker (p: PERSON)
−− Add ‘p’ to ‘coworkers’.

require
p exists: p /= Void
p different: p /= Current
not has p: not coworkers.has (p)

do
coworkers.extend back (p)

ensure
coworker set: coworkers.has (p)

end

set flu
−− Set ‘has flu’ to True.

do
has flu := True

ensure
has flu: has flu

end

invariant
name valid: name /= Void and then not name.is empty
coworkers exists: coworkers /= Void
all coworkers exist: not coworkers.has (Void)

end

infect (p: PERSON)
−− Infect ‘p’ and coworkers.

require
p exists: p /= Void

do
p.set flu
across

p.coworkers as c
loop

if not c.item.has flu then
infect (c.item)

end
end

end

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2012

The coworkers structure is a directed graph. The master solution traverses this graph using
depth-first search.

2 Short trips

Listing 1: Class SHORT TRIPS

note
description: ”Short trips.”

class
SHORT TRIPS

inherit
ZURICH OBJECTS

feature −− Explore Zurich

highlight short distance (s: STATION)
−− Highight stations reachable from ‘s’ within 2 minutes.

require
station exists: s /= Void

do
highlight reachable (s, 2 ∗ 60)

end

feature {NONE} −− Implementation

highlight reachable (s: STATION; t: REAL 64)
−− Highight stations reachable from ‘s’ within ‘t’ seconds.

require
station exists: s /= Void

local
line: LINE
next: STATION

do
if t >= 0.0 then

Zurich map.station view (s).highlight
across

s.lines as li
loop

line := li.item
next := line.next station (s, line.north terminal)
if next /= Void then

highlight reachable (next, t − s.position.distance (next.position) / line.speed)
end
next := line.next station (s, line.south terminal)
if next /= Void then

highlight reachable (next, t − s.position.distance (next.position) / line.speed)
end

end
end

end

3



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2012

end

3 N Queens

Listing 2: Class PUZZLE

note
description: ”N−queens puzzle.”

class
PUZZLE

feature −− Access

size: INTEGER
−− Size of the board.

solutions: LIST [SOLUTION]
−− All solutions found by the last call to ‘solve’.

feature −− Basic operations

solve (n: INTEGER)
−− Solve the puzzle for ‘n’ queens
−− and store all solutions in ‘solutions’.

require
n positive: n > 0

do
size := n
create {LINKED LIST [SOLUTION]} solutions.make
complete (create {SOLUTION}.make empty)

ensure
solutions exists: solutions /= Void
complete solutions: across solutions as s all s.item.row count = n end

end

feature {NONE} −− Implementation

complete (partial: SOLUTION)
−− Find all complete solutions that extend the partial solution ‘partial’
−− and add them to ‘solutions’.

require
partial exists: partial /= Void

local
c: INTEGER

do
if partial.row count = size then

solutions.extend (partial)
else
from

c := 1

4



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2012

until
c > size

loop
if not under attack (partial, c) then

complete (partial.extended with (c))
end
c := c + 1

end
end

end

under attack (partial: SOLUTION; c: INTEGER): BOOLEAN
−− Is column ‘c’ of the current row under attack
−− by any queen already placed in partial solution ‘partial’?

require
partial exists: partial /= Void
column positive: c > 0

local
current row, row: INTEGER

do
current row := partial.row count + 1
from

row := 1
until
Result or row > partial.row count

loop
Result := attack each other (row, partial.column at (row), current row, c)
row := row + 1

end
end

attack each other (row1, col1, row2, col2: INTEGER): BOOLEAN
−− Do queens in positions (‘row1’, ‘col1’) and (‘row2’, ‘col2’) attack each other?

do
Result := row1 = row2 or

col1 = col2 or
(row1 − row2).abs = (col1 − col2).abs

end

end

5


	An infectious task
	Short trips
	N Queens

